
. . . . . .

Existence of Global Solutions for Unsteady
Isentropic Gas Flow in a Laval Nozzle

Properties of Steady Solutions and Existence of Time Global
Solutions

Naoki Tsuge

Department of Mathematics Education, Faculty of Education, Gifu University

「The 7th Japanese-German International Workshop on
Mathematical Fluid Dynamics」,

November 5 to 8, 2012,
Waseda University, Tokyo, Japan

Naoki Tsuge (Gifu University) Isentropic Gas Flow in a Laval Nozzle Japanese-German Workshop 1 / 76
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A Girl is Blowing out Candles.

The girl puckers up1 her mouth to make her breath stronger.

.
Properties of Gas
..

.

. ..

.

.

By making the exit (her mouth) of a nozzle (her windpipe) narrow, we
can make the gas (her breath) through the nozzle stronger.

1窄（すぼ）める
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Jet Engine of Plane

The exhaust port1 of the jet engine is convergent2 to make the
exhaust gas3 stronger.

1排気口
2狭まっている
3排気ガス
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Jet Engine of Plane
The exhaust port1 of the jet engine is convergent2 to make the
exhaust gas3 stronger.
Is the exhaust port of every engine convergent?

1排気口
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Rocket
The exhaust port of rocket engine is divergent1.

1広がっている
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Rocket Engine

　Why does the rocket engine have convergent-divergent form?
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Solar Wind
The solar wind is the stream of plasma ejected from the corona of the
sun. It consists of electrons and positive ions. The solar wind collides
with the magnetosphere1 of the earth. As a result, influencing its
magnetic field, the solar wind causes the outbreak of auroras and the
electromagnetic interference2.

1磁気圏
2電波障害
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Speed of Solar Wind near the Orbit of the Earth

The speed of the solar wind near the orbit of the earth is 300～700
km/s.
Why is the speed of the solar wind so large?
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Nozzle

x

Entry ( 入口 ) Exhaust ( 出口 )

Figure: Nozzle

.
Remark
..

.

. ..

.

.

In this section, we consider the only gas which flows from left to right.
Therefore, every velocity, momentum and Mach number are positive in
this section. Moreover, we call the left and right of the nozzle the entry
and exhaust section.
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Isentropic Gas Flow through a Nozzle of (Slowly)
Varying Cross Section A(x)
Compressible Euler Equations :The equations represent the motion
of the inviscid and compressible gas through a nozzle.

m′ = −A′(x)
A(x)

m,(
m2

ρ
+ p(ρ)

)′

= −A′(x)
A(x)

m2

ρ
,

x ∈ R, ′ =
d
dx

.

ρ: the density of the gas
v : the velocity of the gas
m = ρv : the momentum of the gas
γ ∈ (1,5/3]: the adiabatic exponent1

p(ρ) = ργ/γ: the pressure of the gas
A(x): the cross section2 of the nozzle at x

1比熱比
2断面積
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Mass Flow Conservation, the Bernoulli Equation


m′ = −A′(x)

A(x)
m,(

m2

ρ
+ p(ρ)

)′

= −A′(x)
A(x)

m2

ρ
,

x ∈ R. (1.1)

From (1.1), we obtain
Mass Flow Conservation

A(x)m = A(x)ρv = C1 (1.2)

and

Bernoulli Equation:

v2

2
+

ργ−1

γ − 1
= C2. (1.3)
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Mach Number, Supersonic, Sonic, Subsonic, Thrust

c :=
√

p′(ρ) = ρ
γ−1

2 :sonic speed (the speed of sound)

M :=
v
c

: Mach number

▶ M > 1 supersonic=⇒The speed of gas is greater than that of
sound.

▶ M = 1 sonic=⇒The speed of gas is equal to that of sound.
▶ M < 1 subsonic=⇒The speed of gas is lower than that of sound.

Thrust1 is the force that produced by an engine to push a plane
and rocket forward.
Thrust T ＝ the mass of the exhaust gas jetting per second
A(x)ρv×the velocity of the exhaust gas v .

T = A(x)ρv2 (1.4)

1推（進）力
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Gustaf de Laval

Figure: Gustaf de Laval (1845-1913)
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Shape of the Rocket Engine

.
Question 1
..

.

. ..

.

.

Why dose the exhaust port of the rocket engine have the
convergent-divergent form?
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Internal Constitution of the Rocket Engine

oxygen (oxidizing agent) hydrogen (fuel)

com
bustion cham

ber
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Laval Nozzle (Convergent-Divergent Nozzle)

O

Throat （the point where A(x) is minimum. ）

xx

０M

Entry Exhaust

0

Figure: Laval Nozzle

We assume that A(x) satisfies the following.
A′(x) ≤ 0, x < 0,

A′(x) ≥ 0, x ≥ 0,

A′(0) = 0.

(1.5)
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Purpose
.
Purpose
..

.

. ..

.

.

If the Mach number of the exhaust gas at the entry section is lower
than 1 (i.e. M0 < 1), we want to make the thrust (of the exhaust gas at
the exhaust section) T maximum.

From (1.2) and (1.3),

T = A(x)ρv2 = C1

√
(γ − 1)C2

1√
γ−1

2 + 1
M2

(1.6)

=⇒ T is the increasing function of M.

.
Purpose
..

.

. ..

.

.

If the Mach number of the exhaust gas at the entry section is lower
than 1 (i.e. M0 < 1), we want to make the Mach number (of the
exhaust gas at the exhaust section) M maximum.
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Properties of F (M)

From (1.1), we obtain the following

(A(x)F (M))′ = 0 =⇒ A(x)F (M) = A(x0)F (M0), (1.7)

where

F (M) = M

(
γ+1

2

1 + γ−1
2 M2

) γ+1
2(γ−1)

.

.
Properties of F (M)
..

.

. ..

.

.

F (0) = 0, F (1) = 1.{
F ′(M) ≥ 0, 0 ≤ M < 1,

F ′(M) ≤ 0, M ≥ 1.

F (M) → 0 (M → ∞).
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Graph of F (M)

O

     F

M

1

1

Figure: Graph of MF

.
Purpose
..
.
. ..

.

.We investigate the increase and decrease of the Mach number M.
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Value of M on x0 ≤ x ≤ 0
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1 M
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A(x )F(M )/A(x)

=M(x )0

Figure: Graph of MF
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Value of M on x > 0

O

F

M(x) M(0)

0 0

00

1

1 M

A(x )F(M )/A(0)

A(x )F(M )/A(x)

Figure: Graph of MF

Naoki Tsuge (Gifu University) Isentropic Gas Flow in a Laval Nozzle Japanese-German Workshop 25 / 76



. . . . . .

Value of M on x > 0

O

F

M(x) M(0)

0 0

00

1

1 M

A(x )F(M )/A(0)

A(x )F(M )/A(x)

Figure: Graph of MF

Naoki Tsuge (Gifu University) Isentropic Gas Flow in a Laval Nozzle Japanese-German Workshop 26 / 76



. . . . . .

Graph of xM

M

xO

1

M

M
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0  

0x

Figure: Graph of xM
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Critical Value of M0

A solution only exists, if the following holds

A(x0)

A(0)
F (M0) ≤ 1.

Varying M0, we consider the case where the equal sign is valid.

A(x0)

A(0)
F (M̂0) = 1.

We denote M0 in this case by M̂0. We call M̂0 the critical value of the
Mach number.
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Graph of F (M) on x0 ≤ x ≤ 0 in the Case where M0 is
the Critical Value
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Graph of F (M) on x > 0 in the Case where M0 is the
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Bifurcation 1 (Subsonic-Subsonic Flow)

M

xO
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M
^
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0

Figure: Graph of xM
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Graph of F (M) on x > 0 in the Case where M0 is the
Critical Value 2
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Bifurcation 2 (Subsonic-Supersonic Flow)

M

xO

1

M
^

M

M

0  

0  

0x

0

Figure: Graph of xM

Naoki Tsuge (Gifu University) Isentropic Gas Flow in a Laval Nozzle Japanese-German Workshop 34 / 76



. . . . . .

Properties of Laval Nozzle

.
Properties of Laval Nozzle
..

.

. ..

.

.

By using the Laval nozzle, we can obtain the supersonic gas (M > 1)
from the subsonic gas (M < 1). As a result, the gas has the maximal
thrust at the exhaust section.
=⇒The Laval nozzle is essential for the rocket and the supersonic jet
plane.
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Solar Wind

.
Question 2
..
.
. ..

.

.Why is the speed of the solar wind so large near the orbit of the earth?
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Spherically Symmetric Flow around the Sun

r

O

Sun

r0

Figure: Spherical Symmetric Flow around the Sun
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Spherical Symmetric Gas Flow with the Gravitational
Source Term

We consider the isothermal case (γ = 1).
m′ = −2

r
m,(

m2

ρ
+ ρ

)′

= −2
r

m2

ρ
− GMs

r2 ρ, r ≥ r0,
′ =

d
dr

.
(1.8)

G: the gravitational constant
Ms: the mass of the sun
r : the distance from the center of the sun

.
Remark
..
.
. ..

.

.From p(ρ) = ρ, since c = 1, we find v = M.
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Comparison between Plasma and Laval Nozzle

From (1.8), we have the following.

(Fs(M)As(r))′ = 0, (1.9)

where

Fs(M) = Me− 1
2 M2

, As(r) = r2e
GMs

r .

Fs(M) and As(r) satisfy the following.
F ′

s(M) ≥ 0, 0 ≤ M ≤ 1,

F ′
s(M) ≤ 0, 1 < M,

Fs(0) = 0,

Fs(M) → 0 (M → ∞),


A′

s(r) ≤ 0, r0 ≤ r < GMs/2,

A′
s(r) ≥ 0, r ≥ GMs/2,

A′
s(GMs/2) = 0.

(1.10)
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.
Conclusion
..

.

. ..

.

.

(1.8) has the same structure as the Laval nozzle. Therefore, the
motion of plasma is the same as that of the gas in the Laval nozzle. As
a result, the plasma can be supersonic.

M

rO

1

M
^

M

M

0  

0  

0r

0

This plasma has a large speed.

It is called the solar wind. 

GM /2s

Figure: Graph of Solar Wind
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Isentropic Gas Flow through a Nozzle of (Slowly)
Varying Cross Section A(x)


ρt + mx = a(x)m,

mt +

(
m2

ρ
+ p(ρ)

)
x
= a(x)

m2

ρ
,

x ∈ R. (2.1)

ρ: the density of gas

v : the velocity of gas

m = ρv : the momentum of gas

γ ∈ (1,5/3]: the adiabatic exponent

p(ρ) = ργ/γ: the pressure of gas

a(x) = −A′(x)/A(x), A(x): the cross section of the nozzle at x
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For simplicity, we denote (2.1) by

ut + f (u)x = g(x ,u), u =

(
ρ
m

)
. (2.1)

Then, we consider the Cauchy problem (2.1) with initial data

u
∣∣
t=0 = u0(x) = (ρ0(x),m0(x)). (2.2)
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Riemann Invariants

We define Riemann invariants by

z = v − ρθ

θ
, w = v +

ρθ

θ
, θ =

γ − 1
2

. (2.3)

.
Properties of Riemann Invariants
..

.

. ..

.

.

If v ≥ 0, |w | ≥ |z| and w ≥ 0.

If v ≤ 0, |w | ≤ |z| and z ≤ 0.

z is bounded from below and w is bounded from above. ⇐⇒ ρ
and v are bounded.
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Diagonalization, Characteristic Speed

One-dimensional Euler equations (i.e., A′(x) = 0):
ρt + mx = 0,

mt +

(
m2

ρ
+ p(ρ)

)
x
= 0,

x ∈ R. (2.4)

If (2.4) has a smooth solution, we can diagonalize (2.4) into{
zt + λ1zx = 0,
wt + λ2wx = 0,

(2.5)

where λ1 and λ2 are characteristic speeds defined by

λ1 = v − ρθ, λ2 = v + ρθ.
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Existence of Invariant Regions
.
Theorem 1 (by Chueh, K. N., Conley, C. C., Smoller, J. A. in
1977)
..

.

. ..

.

.

For any fixed C1,C2 > 0, if initial data u0(x) are contained the region
∆ = {(ρ, v) ∈ R2; ρ ≥ 0, z ≥ −C1, w ≤ C2}, solutions to the Cauchy
problem of (2.4) are also contained in ∆.
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Existence of Solutions for One-dimensional Case (2.4)
.
Theorem 2 (by (1) DiPerna, R. J. in 1983, (2) Ding, X., Chen,
G.-Q., and Luo, P. in 1985)
..
.
. ..

.

.If ρ0, v0 ∈ L∞(R), the Cauchy problem of (2.4) has a weak solution.

Outline of the proof
...1 We deduce from Theorem 1 the L∞ estimate of approximate

solutions (constructed by difference schemes and vanishing
viscosity methods).

...2 We deduce from the compactness of approximate solutions.

...3 From compensated compactness, we derive the convergence of
approximate solutions.

.
Remark 1
..
.
. ..

.

.The invariant region for the nozzle flow (2.1) has not yet been obtained.
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Relative Results (the Glimm Scheme)

...1 Liu, T. P. (1979)
Existence of time global solutions to n × n system of conservation
laws with inhomogeneous terms including (2.1).: The Cauchy
problem (2.1)–(2.2) has a time global solution, provided that

(C1) the total variation of initial data is small enough,
(C2) initial data are away from sonic states,
(C3) inhomogeneous terms are small enough in L1 and L∞.
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Bifurcation 2(Subsonic-Supersonic Flow)

M

xO

1

M
^

M

M

0  

0  

0x

0

Figure: Graph of x and M
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Relative Results (the Glimm Scheme)

...1 Liu, T. P. (1979)
Existence of time global solutions to n × n system of conservation
laws with inhomogeneous terms including (2.1).:The Cauchy
problem (2.1)–(2.2) has a time global solution, provided that

(C1) the total variation of initial data is small enough,
(C2) initial data are away from sonic states,
(C3) inhomogeneous terms are small enough in L1 and L∞.
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Relative Results (Compensated Compactness)

...5 Tsuge, N. (2006)
Existence of time global solutions to an exterior problem with
spherical symmetry (i.e., the initial-boundary value problem of
(2.1) with A(x) = x2 the boundary condition m|x=1 = 0 x ≥ 1):
For any fixed C1,C2 > 0, if initial data satisfy

ρ0(x) ≥ 0, −C1x− 2(γ−1)
γ+1 ≤ z(u0(x)), w(u0(x)) ≤ C2,

the initial-boundary problem has a solution.
method:the Godunov scheme

...6 Lu, Y.-G. (2011)
Existence of time global solutions to the Cauchy problem of (2.1)
with the monotone cross section
method: vanishing viscosity
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Laval Nozzle

We hereafter consider the following Laval nozzle
(A′(x) ≤ 0, x ≤ 0, A′(x) ≥ 0, x ≥ 0).

entry exhaust

O

throat (the point where A(x) is minimum)

x

Figure: Laval nozzle
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Main Theorem

.
Theorem 3 (published in ARMA)
..

.

. ..

.

.

For any fixed M > 0, if initial data satisfy

− M{A−(x)}−
γ−1
γ+1 ≤ z(u0(x)), w(u0(x)) ≤ M{A+(x)}−

γ−1
γ+1 ,

0 ≤ ρ0(x),
(2.6)

the Cauchy problem (2.1)–(2.2) has a weak entropy solution, where

A−(x) =

{
A(x), x ≥ 0,

A(0), x < 0,
A+(x) =

{
A(0), x ≥ 0,

A(x), x < 0.
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Remark for Theorem 3

...1 If A(x) is uniformly bounded, the condition (2.6) implies that we
can give arbitrary L∞ data, ρ0, v0 ∈ L∞(R).

...2 Our theorem contains sonic state, subsonic-supersonic flow.

...3 Solutions u(x , t) of Theorem 3 satisfy

− M{A−(x)}−
γ−1
γ+1 ≤ z(u(x , t)), w(u(x , t)) ≤ M{A+(x)}−

γ−1
γ+1 ,

0 ≤ ρ(x , t).

That is, the region

∆x = {(z,w); ρ ≥ 0, −M{A−(x)}−
γ−1
γ+1 ≤ z, w ≤ M{A+(x)}−

γ−1
γ+1 }

is the invariant region for the Cauchy problem (2.1)–(2.2).
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Invariant Region ∆x

Figure: Invariant Region ∆x
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What Kinds of Nozzles Can We Apply the Method of
Theorem 3 to?

Laval nozzle

Concentration

Figure: Four kinds of nozzles
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Diagonalization of (2.1)

If (2.1) has a smooth solution, we can diagonalize (2.1) into

zt + λ1zx = −a(x)ρθv ,

wt + λ2wx = a(x)ρθv .
(2.7)

For symmetry, we consider the only case where x ≥ 0. Then, we
notice that a(x) ≤ 0.
.
Effect of inhomogeneous term of (2.7)
..

.

. ..

.

.

If v is positive, the inhomogeneous term makes z increase and w
decrease in t .

If v is negative, the inhomogeneous term makes z increase and w
decrease in t .
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Riemann Invariants

We define Riemann invariants by

z = v − ρθ

θ
, w = v +

ρθ

θ
, θ =

γ − 1
2

. (2.3)

.
Properties of Riemann Invariants
..

.

. ..

.

.

z is bonded from below and w is bounded from above. ⇐⇒ ρ and
v are bounded.

If v ≥ 0, |w | ≥ |z| and w ≥ 0.

If v ≤ 0, |w | ≤ |z| and z ≤ 0.

v =
w + z

2
.
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. . . . . .

Diagonalization of (2.1)
If (2.1) has a smooth solution, we can diagonalize (2.1) into

zt + λ1zx = −a(x)ρθv ,
wt + λ2wx = a(x)ρθv .

(2.7)

For symmetry, we consider the only case where x ≥ 0. Then, we
notice that a(x) ≤ 0.
.
Effect of inhomogeneous term of (2.7)
..

.

. ..

.

.

If v is positive, inhomogeneous term makes z increase and w
decrease in t .

If v is negative, inhomogeneous term makes z increase and w
decrease in t .

.
Most Difficult Point
..
.
. ..

.

.The bounded estimate of z from below in the case where v is negative.
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Transformation of (2.7)

We set z̃ = {A(x)}
γ−1
γ+1 z. From (2.6)1, we find −M ≤ z̃0(x).

Moreover, from (2.7)1, we have

z̃t + λ1(u)z̃x = −γ − 1
γ + 1

a(x) {A(x)}
γ−1
γ+1

(
(v)2 +

(ρ)2θ

θ

)
. (2.8)

.
Remark 2
..
.
. ..

.

.The inhomogeneous term of (2.8) is nonnegative.

Set w̃ = {A(0)}
γ−1
γ+1 w . From (2.6)2, we find w̃0(x) ≤ M.

Moreover, from (2.7)2, we have

w̃t + λ2w̃x = a(x) {A(0)}
γ−1
γ+1 ρθv = a(x) {A(0)}

γ−1
γ+1 ρθ

w + z
2

(2.9)
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Outline of the Proof

We formally prove that ∆x is an invariant region, that is, for any fixed
M > 0, initial data satisfy

−M{A−(x)}−
γ−1
γ+1 ≤ z0(x), w0(x) ≤ M{A+(x)}−

γ−1
γ+1 ,

solutions to the Cauchy problem (2.1)–(2.2)

−M{A−(x)}−
γ−1
γ+1 ≤ z(x , t), w(x , t) ≤ M{A+(x)}−

γ−1
γ+1 , (2.10)

where

A−(x) =

{
A(x), x ≥ 0,

A(0), x < 0,
A+(x) =

{
A(0), x ≥ 0,

A(x), x < 0.
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We set z̃ = {A−(x)}
γ−1
γ+1 z, w̃ = {A+(x)}

γ−1
γ+1 w . We prove the following.

If

−M ≤ z̃0(x), w̃0(x) ≤ M,

−M ≤ z̃(x , t), w̃(x , t) ≤ M.

For any positive constant ε and T , we set

ž(x , t) = z̃(x , t) +
ε

T − t
, w̌(x , t) = w̃(x , t)− ε

T − t
.

Then we find

−M<ž0(x), w̌0(x)<M.
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.
Purpose
..

.

. ..

.

.

We assume ž(x , t) and w̌(x , t) have compact supports on 0 ≤ t < T .
Then, on 0 ≤ t < T , we shall prove

−M < ž(x , t), w̌(x , t) < M.

At a point x = x∗, t = t∗ (t∗ < T ), if

−M = ž(x∗, t∗), − M < ž(x , t), w̌(x , t) < M, 0 ≤ t < t∗ (2.11)

or

w̌(x∗, t∗) = M, − M < ž(x , t), w̌(x , t) < M, 0 ≤ t < t∗ (2.12)

hold, we shall deduce a contradiction.
We hereafter consider the only case where x∗ ≥ 0. We can similarly
treat with the case where x∗ < 0.
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The Case where (2.11) Holds

Then, since ž attains the minimum at x = x∗, t = t∗, we find
žt ≤ 0, žx = 0.
On the other hand, from

z̃t + λ1(u)z̃x = −γ − 1
γ + 1

a(x) {A(x)}
γ−1
γ+1

(
(v)2 +

(ρ)2θ

θ

)
(2.9)

and ž(x , t) = z̃(x , t) + ε/(T − t), at x = x∗, t = t∗ we have

žt + λ1(u)žx = −γ − 1
γ + 1

a(x) {A(x)}
γ−1
γ+1

(
(v)2 +

(ρ)2θ

θ

)
+

ε

(T − t)2 > 0.

This is a contradiction.
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The Case where (2.12) Holds

Then, w̌ attains the maximum at x = x∗, t = t∗, we find w̌t ≥ 0, w̌x = 0.
On the other hand, at x = x∗, t = t∗, we notice that

w + z = {A(0)}−
γ−1
γ+1 w̃ + {A(x∗)}−

γ−1
γ+1 z̃

= {A(0)}−
γ−1
γ+1

(
w̌ +

ε

T − t

)
+ {A(x∗)}−

γ−1
γ+1

(
ž − ε

T − t

)
≥
(

M +
ε

T − t

)[
{A(0)}−

γ−1
γ+1 − {A(x∗)}−

γ−1
γ+1

]
≥ 0.
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Then, from

w̃t + λ2w̃x = a(x) {A(0)}
γ−1
γ+1 ρθ

w + z
2

(2.10)

and w̌(x , t) = w̃(x , t)− ε/(T − t), we have

w̌t + λ2w̌x = a(x) {A(0)}
γ−1
γ+1 ρθ

w + z
2

− ε

(T − t)2 < 0.

This is a contradiction.
Since ε and T are arbitrary, we can prove (2.10).
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In this section, we consider a general nozzle.
We choose positive constants M, σ and nonnegative function
b ∈ C1(R) such that

∥b∥L1 ≪ M ≪ 1. (3.1)
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Main Theorem 2

.
Theorem 4 (to appear in ARMA)
..

.

. ..

.

.

For M and b in (3.1), we assume that initial data
u0 = (ρ0,m0) ∈ L∞(R) satisfy

0 ≤ ρ0(x), −M −
∫ ∞

x
b(y)dy ≤ z(u0(x)),

w(u0(x)) ≤ M +

∫ x

−∞
b(y)dy .

(3.2)

Then the Cauchy problem (2.1)–(2.2) has a weak entropy solution.

.
Remark 3
..
.
. ..

.

.The solution of Theorem 4 satisfy the same inequality as (3.2).
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