Fourier analysis methods, nonstandard maximal regularity and applications to fluid mechanics

Raphaël Danchin, Université Paris-Est

The 7th Japanese-German International Workshop on Mathematical Fluid Dynamics, November 5 – 8, 2012, Waseda University, Tokyo

- Talk 1. Basic Fourier analysis and maximal regularity
- Talk 2. Some applications to fluid mechanics
- Talk 3. Partially parabolic or dissipative PDEs
- Talk 4. Applications to the global existence issue and incompressible limit of the compressible Navier-Stokes equations

- 本語 医子宫管

Fundamental fact: for spectrally localized functions over \mathbb{R}^d , derivatives act almost as homotheties. In effect:

$\mathcal{F}(\nabla u)(\xi) = i\xi \mathcal{F}(u).$

Hence, Parseval equality implies that if Supp $\mathcal{F}(u) \subset \{\xi \in \mathbb{R}^d : r\lambda \le |\xi| \le R\lambda\}$ then

 $\|\nabla u\|_{L^2} \approx \lambda \|u\|_{L^2}.$

・ロト ・同ト ・ヨト ・ヨト

-

Fourier analysis	Applications	Partially dissipative eq.	Global results for comp. NS
000000000000000000000000000000000000000			
Description in proceedities			

• Direct Bernstein inequality: Let R > 0. A constant C exists so that, for any $k \in \mathbb{N}$, any couple (p,q) in $[1,\infty]^2$ with $q \ge p \ge 1$ and any function u of L^p with $\operatorname{Supp} \widehat{u} \subset B(0,\lambda R)$ for some $\lambda > 0$, we have

$$\|\nabla^{k} u\|_{L^{q}} \leq C^{k+1} \lambda^{k+d(\frac{1}{p}-\frac{1}{q})} \|u\|_{L^{p}}.$$

• Reverse Bernstein inequality: Let 0 < r < R. There exists a constant C so that for any $k \in \mathbb{N}$, $p \in [1, \infty]$ and any function u of L^p with $\operatorname{Supp} \widehat{u} \subset \{\xi \in \mathbb{R}^d / r\lambda \le |\xi| \le R\lambda\}$, we have

 $\lambda^{k} \|u\|_{L^{p}} \leq C^{k+1} \|\nabla^{k} u\|_{L^{p}}.$

Proposition

Assume $\operatorname{Supp} \widehat{u} \subset \{\xi \in \mathbb{R}^d : r\lambda \leq |\xi| \leq R\lambda\}$. Then for any $\sigma \in \mathbb{R}$, there exists c and C so that for all $p \in [1, +\infty]$,

 $||e^{-t|D|^{\sigma}}u||_{L^{p}} \leq Ce^{-ct\lambda^{\sigma}}||u||_{L^{p}}.$

If p = 2 then this is an obvious consequence of the localization of $\mathcal{F}u$ and of Parseval equality, since

 $\mathcal{F}(e^{-t|D|^{\sigma}}u)(\xi) = e^{-t|\xi|^{\sigma}}\mathcal{F}u(\xi) \text{ and } |\xi| \sim \lambda \text{ on } \operatorname{Supp} \mathcal{F}u.$

・ 同 ト ・ ヨ ト ・ ・ ヨ ト ……

3

Bernstein inequality for (generalized) heat semi-groups

Proposition

Assume $\operatorname{Supp} \widehat{u} \subset \{\xi \in \mathbb{R}^d : r\lambda \leq |\xi| \leq R\lambda\}$. Then for any $\sigma \in \mathbb{R}$, there exists c and C so that for all $p \in [1, +\infty]$,

$$\|e^{-t|D|^{\sigma}}u\|_{L^p} \leq Ce^{-ct\lambda^{\sigma}}\|u\|_{L^p}.$$

The proof for general p stems from the following lemma:

Lemma

Let $\phi \in C_0^{\infty}(\mathbb{R}^d)$ supported in (say) $\{\xi \in \mathbb{R}^d : r/2 \le |\xi| \le 2R\}$. There exist two positive constants c and C such that for any $\lambda > 0$, and $p \in [1, \infty]$ we have

 $\|e^{-t|D|^{\sigma}}\phi(\lambda^{-1}D)\|_{\mathcal{L}(L^{p};L^{p})} \leq Ce^{-ct\lambda^{\sigma}}.$

Proof:

- **(**) Change of scale reduces the proof to the case $\lambda = 1$;

3 Young inequality reduces the proof to $\|\mathcal{F}^{-1}(e^{-t|\xi|^{\sigma}}\phi(\xi))\|_{L^{1}} \leq Ce^{-ct}$. This follows from standard computations : integration by parts, ...

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ● ● ● ●

The Littlewood-Paley decomposition

Let χ be a bump function with $\operatorname{Supp} \chi \subset B(0, \frac{4}{3})$ and $\chi \equiv 1$ on $B(0, \frac{3}{4})$. We set $\varphi(\xi) = \chi(\xi/2) - \chi(\xi)$ so that:

$$\chi(\xi) + \sum_{j \in \mathbb{N}} \varphi(2^{-j}\xi) = 1 \quad \text{and} \quad \sum_{j \in \mathbb{Z}} \varphi(2^{-j}\xi) = 1 \quad \text{if} \quad \xi \neq 0.$$

The homogeneous dyadic blocks $\dot{\Delta}_j$ are defined by

 $\dot{\Delta}_j := \varphi(2^{-j}D) \quad \text{for} \quad j \in \mathbb{Z}.$

The homogeneous Littlewood-Paley decomposition for u reads

$$u = \sum_{j} \dot{\Delta}_{j} u. \tag{1}$$

That equality holds true in the set S' of tempered distributions modulo polynomials only. A way to overcome this is to restrict to the set S'_h of tempered distributions u such that

$$\lim_{j \to -\infty} \|\dot{S}_j u\|_{L^{\infty}} = 0 \quad \text{with} \quad \dot{S}_j := \chi(2^{-j}D).$$

Equality (1) holds true in \mathcal{S}' whenever u is in \mathcal{S}'_h .

イロト イポト イラト イラト

Fourier analysis	Applications	Partially dissipative eq.	Global results for comp. N	\mathbf{s}
000000000000000000000000000000000000000				

Littlewood Paley decomposition allows to characterize some classical norms or semi-norms such as:

- homogeneous Sobolev semi-norm: $||u||_{\dot{H}^s}^2 \approx \sum_j (2^{js} ||\dot{\Delta}_j u||_{L^2})^2;$
- homogeneous Hölder semi-norm: $||u||_{\dot{C}^{0,r}} \approx \sup_{i} 2^{jr} ||\dot{\Delta}_{j}u||_{L^{\infty}}.$

This motivates the following definition of homogeneous Besov spaces:

Definition

For $s \in \mathbb{R}$ and $1 \leq p, r \leq \infty$, we set

$$\|u\|_{\dot{B}^{s}_{p,r}} := \left(\sum_{j} 2^{rjs} \|\dot{\Delta}_{j}u\|_{L^{p}}^{r}\right)^{\frac{1}{r}} \quad if \ r < \infty \quad and \ \|u\|_{\dot{B}^{s}_{p,\infty}} := \sup_{j} 2^{js} \|\dot{\Delta}_{j}u\|_{L^{p}}.$$

The homogeneous Besov space $\dot{B}_{p,r}^s$ is the subset of $u \in \mathcal{S}'_h$ s.t. $||u||_{\dot{B}_{p,r}^s} < \infty$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Fourier analysis	Applications	Partially dissipative eq.	Global results for comp. NS
000000000000000000000000000000000000000			

Besov spaces are *independent* of the Littlewood-Paley decomposition $(\dot{\Delta}_j)_{j \in \mathbb{Z}}$. This is a consequence of the following fundamental lemma:

Lemma

Let 0 < r < R. Let $s \in \mathbb{R}$ and $1 \le p, r \le \infty$. Let $(u_j)_{j \in \mathbb{Z}}$ be such that $u := \sum_{j \in \mathbb{Z}} u_j$ converges in S'_h and $\operatorname{Supp} \widehat{u}_j \subset 2^j \mathcal{C}(0, r, R)$ for all $j \in \mathbb{Z}$. Then $\left\| 2^{js} \|u_j\|_{L^p(\mathbb{R}^d)} \right\|_{\ell^r(\mathbb{Z})} < \infty \implies u := \sum_{j \in \mathbb{Z}} u_j$ is in $\dot{B}^s_{p,r}(\mathbb{R}^d)$ and we have $\|u\|_{\dot{B}^s_{p,r}} \approx \left\| 2^{js} \|u_j\|_{L^p(\mathbb{R}^d)} \right\|_{\ell^r(\mathbb{Z})}$. If s > 0 then the result is still true under the weaker assumption that $\operatorname{Supp} \widehat{u}_j \subset B(0, 2^j R)$.

In other words, for spectrally localized series, proving that the sum is in a Besov space amounts to getting suitable bounds for the L^p norm of each term.

10

Comparison with Lebesgue spaces:

$$\dot{B}^0_{p,\min(p,2)} \hookrightarrow L^p \hookrightarrow \dot{B}^0_{p,\max(p,2)}$$
 for any $p \in (1,\infty)$.

We also have

$$\dot{B}^0_{p,1} \hookrightarrow L^p \hookrightarrow \dot{B}^0_{p,\infty} \quad \text{ if } \ p=1,\infty.$$

Having u in $\dot{B}_{p,r}^s$ means that u has s fractional derivatives in L^p :

Proposition (Characterization by finite differences)

For $s \in]0,1[$ and finite p,r, we have

$$\|u\|_{\dot{B}^s_{p,r}}\approx \left(\int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} \left(\frac{|u(y)-u(x)}{|y-x|^s}\right)^p \frac{dy}{|y-x|^d}\right)^{\frac{r}{p}} dx\right)^{\frac{1}{r}}$$

Similar result holds for p or r infinite.

< 6 N

→ 3 → 4 3

Functional spaces

A few classical properties of Besov spaces:

- With our definition, the spaces B^s_{p,r}(ℝ^d) are complete if and only if s < d/p, or s = d/p and r = 1.
- The following real interpolation property is fulfilled for all $\theta \in (0, 1)$:

$$[\dot{B}^{s_1}_{p,r_1},\dot{B}^{s_2}_{p,r_2}]_{(\theta,r)}=\dot{B}^{\theta s_2+(1-\theta)s_1}_{p,r}\quad\text{if}\ \ 1\leq p,r_1,r_2,r\leq\infty\ \ \text{and}\ \ s_1\neq s_2.$$

- Functional embedding: If $s \in \mathbb{R}$, $1 \le p_1 \le p_2 \le \infty$, $1 \le r_1 \le r_2 \le \infty$ then $\dot{B}^s_{p_1,r_1}(\mathbb{R}^d) \hookrightarrow \dot{B}^{s-d(\frac{1}{p_1}-\frac{1}{p_2})}_{p_2,r_2}(\mathbb{R}^d)$;
- Fatou property: if $(u_n)_{n\in\mathbb{N}}$ is a bounded sequence of functions of $\dot{B}^s_{p,r}$ with $u_n \rightharpoonup u$ in S'_h then

$$u \in \dot{B}_{p,r}^s$$
 and $||u||_{\dot{B}_{p,r}^s} \leq C \liminf ||u_n||_{\dot{B}_{p,r}^s}$.

• Action of Fourier multipliers: For any smooth homogeneous of degree m function F on $\mathbb{R}^d \setminus \{0\}$ the operator F(D) maps $\dot{B}^s_{p,r}$ in $\dot{B}^{s-m}_{p,r}$. In particular $\nabla : \dot{B}^s_{p,r} \longrightarrow \dot{B}^{s-1}_{p,r}$.

・ロト ・ 一下 ・ ・ ヨト ・ ・ ヨト ・ ・

-

Maximal regularity estimates for parabolic equations

Consider the heat equation

$$\partial_t u - \Delta u = f, \qquad u_{|t=0} = u_0$$

or, more generally,

$$\partial_t v + |D|^\sigma v = g, \qquad v_{|t=0} = v_0.$$

We want to establish estimates of the form

$$\|\partial_t u, D^2 u\|_{L^1(X)} \le C \left(\|u_0\|_X + \|f\|_{L^1(X)} \right) \tag{2}$$

$$\|\partial_t v, |D|^{\sigma} v\|_{L^1(X)} \le C \big(\|v_0\|_X + \|g\|_{L^1(X)} \big).$$
(3)

It is well known that if $r \in (1, \infty)$ and $X = L^q$ or $\dot{W}^{s,q}$ for some $s \in \mathbb{R}$ and $q \in (1, \infty)$ then, for the heat equation with $u_0 \equiv 0$,

 $\|\partial_t u, D^2 u\|_{L^r(X)} \le C \|f\|_{L^r(X)}.$

However the inequality fails for the endpoint case r = 1 for those spaces X.

Theorem

Inequality (2) holds true for any $p \in [1, \infty]$ and $s \in \mathbb{R}$, if $X = \dot{B}_{p,1}^s$.

Maximal regularity estimates for parabolic equations

Proof for the heat equation (for simplicity):

We start with $\partial_t \dot{\Delta}_j u - \Delta \dot{\Delta}_j u = \dot{\Delta}_j f$ for any $j \in \mathbb{Z}$. Hence, according to Duhamel's formula

$$\dot{\Delta}_j u(t) = e^{t\Delta} \dot{\Delta}_j u_0 + \int_0^t e^{(t-\tau)\Delta} \dot{\Delta}_j f(\tau) \, d\tau.$$

Therefore, taking the L^p norm of both sides, we get

$$\|\dot{\Delta}_{j}u(t)\|_{L^{p}} \leq \|e^{t\Delta}\dot{\Delta}_{j}u_{0}\|_{L^{p}} + \int_{0}^{t} \|e^{(t-\tau)\Delta}\dot{\Delta}_{j}f(\tau)\|_{L^{p}} d\tau.$$
 (4)

According to Bernstein inequality for the heat semi-group, we have

$$\|e^{\lambda\Delta}\dot{\Delta}_j z\|_{L^p} \le C e^{-c\lambda 2^{2j}} \|\dot{\Delta}_j z\|_{L^p}.$$

Therefore, applying this inequality and taking the L^1 or L^{∞} norm of both sides of (4) on [0, t],

$$\|\dot{\Delta}_{j}u\|_{L^{\infty}_{t}(L^{p})} + 2^{2j}\|\dot{\Delta}_{j}u\|_{L^{1}_{t}(L^{p})} \leq C\Big(\|\dot{\Delta}_{j}u_{0}\|_{L^{p}} + \|\dot{\Delta}_{j}f\|_{L^{1}_{t}(L^{p})}\Big).$$

Multiplying by 2^{js} and summing up over j yields

$$\sum_{j=1}^{j} 2^{js} \|\dot{\Delta}_{j}u\|_{L_{t}^{\infty}(L^{p})} + \|u\|_{L_{t}^{1}(\dot{B}_{p,1}^{s+2})} \lesssim \|u_{0}\|_{\dot{B}_{p,1}^{s}} + \|f\|_{L_{t}^{1}(\dot{B}_{p,1}^{s})}. \quad \Box$$

Maximal regularity estimates for parabolic equations

More maximal regularity estimates:

- Those results may be somewhat generalized to domains if restricting to indices (p, s) with −1 + 1/p < s < 1/p and 1 < p < ∞.
- In \mathbb{R}^d , taking the L^{ρ_1} norm of each $\|\dot{\Delta}_j u\|_{L^p}$ over the time interval [0,t] yields:

$$\begin{split} \|u\|_{\tilde{L}^{\rho_1}_t(\dot{B}^{s+\frac{2}{p,r}}_{p,r})} &\lesssim \|u_0\|_{\dot{B}^s_{p,1}} + \|f\|_{\tilde{L}^{\rho_2}_t(\dot{B}^{s-2+\frac{2}{\rho_2}}_{p,r})} \quad \text{for} \ 1 \le \rho_2 \le \rho_1 \le \infty \end{split}$$

with $\|v\|_{\tilde{L}^a_t(\dot{B}^\sigma_{b,c})} := \left\|2^{j\sigma}\|\dot{\Delta}_j v\|_{L^a(0,t;L^b(\mathbb{R}^d))}\right\|_{\ell^c(\mathbb{Z})}.$

Note that time integration has been performed *before* spectral summation.

• Lamé system: $\partial_t u - \mu \Delta u - \mu' \nabla \operatorname{div} u = f$ in \mathbb{R}^d with $\mu > 0$ and $\mu + \mu' > 0$:

$$\|u\|_{\tilde{L}^{\infty}_{t}(\dot{B}^{s}_{p,1})} + \min(\mu,\mu+\mu')\|\nabla^{2}u\|_{L^{1}_{t}(\dot{B}^{s}_{p,1})} \lesssim \|u_{0}\|_{\dot{B}^{s}_{p,1}} + \|f\|_{L^{1}_{t}(\dot{B}^{s}_{p,1})}.$$

• Stokes system: $\partial_t u - \mu \Delta u + \nabla P = f$ and div u = 0 in \mathbb{R}^d :

$$\|u\|_{\tilde{L}^{\infty}_{t}(\dot{B}^{s}_{p,1})}+\|(\partial_{t}u,\mu\nabla^{2}u,\nabla P)\|_{L^{1}_{t}(\dot{B}^{s}_{p,1})}\lesssim \|u_{0}\|_{\dot{B}^{s}_{p,1}}+\|f\|_{L^{1}_{t}(\dot{B}^{s}_{p,1})}.$$

・ロト ・同ト ・ヨト ・ヨト

Nonlinear estimates

Consider u and v in two different Besov spaces:

- Does *uv* make sense ?
- If so, where does uv lie?

Formally, we have

$$uv = T_u v + R(u, v) + T_v u \tag{5}$$

with

$$T_u v := \sum_j \dot{S}_{j-1} u \,\dot{\Delta}_j v \quad \text{and} \quad R(u,v) := \sum_j \sum_{|j'-j| \leq 1} \dot{\Delta}_j u \,\dot{\Delta}_{j'} v.$$

The above operator T is called paraproduct whereas R is called remainder. Relation (5) (the so called Bony's decomposition) has been introduced by J.-M. Bony in the early eighties.

・ロト ・同ト ・ヨト ・ヨト

Fourier analysis	Applications	Partially dissipative eq.	Global results for comp. NS
000000000000000000000000000000000000000	000000000000000000000000000000000000000	0000000	000000000000

Nonlinear estimates

Proposition

For any
$$(s, p, r) \in \mathbb{R} \times [1, \infty]^2$$
 and $t < 0$ we have

$$\|T_uv\|_{\dot{B}^s_{p,r}} \lesssim \|u\|_{L^{\infty}} \|v\|_{\dot{B}^s_{p,r}} \quad and \quad \|T_uv\|_{\dot{B}^{s+t}_{p,r}} \lesssim \|u\|_{\dot{B}^t_{\infty,\infty}} \|v\|_{\dot{B}^s_{p,r}}$$

For any (s_1, p_1, r_1) and (s_2, p_2, r_2) in $\mathbb{R} \times [1, \infty]^2$ we have

• if $s_1 + s_2 > 0$, $1/p := 1/p_1 + 1/p_2 \le 1$ and $1/r := 1/r_1 + 1/r_2 \le 1$ then

$$\|R(u,v)\|_{\dot{B}^{s_1+s_2}_{p,r}} \lesssim \|u\|_{\dot{B}^{s_1}_{p_1,r_1}} \|v\|_{\dot{B}^{s_2}_{p_2,r_2}};$$

• if
$$s_1 + s_2 = 0$$
, $1/p := 1/p_1 + 1/p_2 \le 1$ and $1/r_1 + 1/r_2 \ge 1$ then

 $\|R(u,v)\|_{\dot{B}^{0}_{p,\infty}} \lesssim \|u\|_{\dot{B}^{s_{1}}_{p_{1},r_{1}}} \|v\|_{\dot{B}^{s_{2}}_{p_{2},r_{2}}}.$

Idea of proof. The general term defining $T_u v$ and R(u, v) (namely $\dot{S}_{j-1} u \dot{\Delta}_j v$ and $\dot{\Delta}_j u \dot{\Delta}_j v$) is spectrally localized in $2^j C(0, r, R)$ and $2^j B(0, R)$, respectively. Hence, according to the "fundamental lemma", it suffices to establish a suitable L^p estimate for each term.

- A IB N - A IB N

Fourier analysis	Applications	Partially dissipative eq.	Global results for comp.	NS
000000000000000000000000000000000000000				
Product laws				

Corollary

Let u and v be in $L^{\infty} \cap \dot{B}_{p,r}^s$ for some s > 0 and $(p,r) \in [1, \infty]^2$. Then there exists a constant C depending only on d, p and s and such that

 $\|uv\|_{\dot{B}^{s}_{p,r}} \leq C(\|u\|_{L^{\infty}}\|v\|_{\dot{B}^{s}_{p,r}} + \|v\|_{L^{\infty}}\|u\|_{\dot{B}^{s}_{p,r}}).$

Proof:

- Write Bony's decomposition $uv = T_uv + T_vu + R(u, v);$
- $e Use T: L^{\infty} \times \dot{B}^{s}_{p,r} \to \dot{B}^{s}_{p,r};$
- $\hbox{ is } R: \dot{B}^0_{\infty,\infty} \times \dot{B}^s_{p,r} \to \dot{B}^s_{p,r} \text{ if } s>0;$

Corollary

If $p < \infty$ then $\dot{B}_{p,1}^{\frac{d}{p}}$ is a Banach algebra continuously embedded in the set of continuous functions decaying to 0 at infinity.

Basic question:

Let $u \in \dot{B}_{p,r}^s$ and $F : \mathbb{R} \times \mathbb{R}$ smooth. What can be said of F(u)?

イロト イボト イヨト イヨ

Left composition in Besov spaces

Proposition

Let $F : \mathbb{R} \to \mathbb{R}$ be a smooth function with F(0) = 0. Then for all $(p, r) \in [1, \infty]^2$ and all s > 0, there exists a constant C such that for all $u \in \dot{B}^s_{p,r} \cap L^{\infty}$ we have $F(u) \in \dot{B}^s_{p,r} \cap L^{\infty}$ and

 $||F(u)||_{\dot{B}^{s}_{p,r}} \le C ||u||_{\dot{B}^{s}_{p,r}}$

with C depending only on $||u||_{L^{\infty}}$, F, s, p and d.

Sketchy proof: We use Meyer's first linearization method:

$$F(u) = \sum_{j} F(\dot{S}_{j+1}u) - F(\dot{S}_{j}u) = \sum_{j} \underbrace{\dot{\Delta}_{j}u \int_{0}^{1} F'(\dot{S}_{j}u + \tau \dot{\Delta}_{j}u) d\tau}_{u_{j}}.$$

We notice that

$$\|u_j\|_{L^p} \le C \|\dot{\Delta}_j u\|_{L^p}.$$

Unfortunately, $\mathcal{F}u_j$ is not localized in a ball of size 2^j . However, we find out that

$$||D^k u_j||_{L^p} \le C 2^{jk} ||\dot{\Delta}_j u||_{L^p}.$$

Hence everything happens as if the $\mathcal{F}u_j$ were well localized. This suffices to complete the proof.

Change of variables in Besov spaces

Multiplier space $\mathcal{M}(X)$ for the Banach space X = set of distributions f such that ψf is in X whenever ψ is in X, endowed with the norm

 $\|f\|_{\mathcal{M}(X)} := \sup \|\psi f\|_X$

where the supremum is taken over all functions ψ in X with norm 1.

Proposition

Let Z be a bi-Lipschitz diffeomorphism of \mathbb{R}^d and (s, p, q) with $1 \le p < \infty$ and -d/p' < s < d/p (or just $-d/p' < s \le d/p$ if q = 1 and just $-d/p' \le s < d/p$ if $q = \infty$). Then $a \mapsto a \circ Z$ is a self-map over $\dot{B}_{p,q}^s$ in the following cases: • $s \in (0,1)$ and $J_{Z^{-1}}$, DZ are bounded, • $s \in (-1,0]$, J_Z , DZ^{-1} are bounded and $J_{Z^{-1}}$ is in $\mathcal{M}(\dot{B}_{p',q'}^{-s})$.

Proof.

Case $\,s\in(0,1)$ is based on characterization by finite differences and change of variables.

Case $s \in (-1, 0)$ follows by duality.

Remark : Higher order estimates are available under stronger condition over Z: use chain rule and induction.

The transport equation

Consider the following transport equation:

(T)
$$\begin{cases} \partial_t a + v \cdot \nabla a = f \in L^1([0,T);X) \\ a_{|t=0} = a_0 \in X. \end{cases}$$

Roughly, if v is a Lipschitz time-dependent vector-field and if X is a "reasonable" Banach space then we expect (T) to have a unique solution $a \in \mathcal{C}([0,T); X)$ satisfying

$$\|a(t)\|_{X} \leq e^{CV(t)} \left(\|a_{0}\|_{X} + \int_{0}^{t} e^{-CV(\tau)} \|f(\tau)\|_{X} \, d\tau \right)$$

with $V(t) := \int_{0}^{t} \|\nabla v(\tau)\|_{L^{\infty}} \, d\tau.$ (6)

-

The transport equation

Consider the following transport equation:

(T)
$$\begin{cases} \partial_t a + v \cdot \nabla a = f \in L^1([0,T);X) \\ a_{|t=0} = a_0 \in X. \end{cases}$$

Roughly, if v is a Lipschitz time-dependent vector-field and if X is a "reasonable" Banach space then we expect (T) to have a unique solution $a \in \mathcal{C}([0,T); X)$ satisfying

$$\|a(t)\|_{X} \leq e^{CV(t)} \left(\|a_{0}\|_{X} + \int_{0}^{t} e^{-CV(\tau)} \|f(\tau)\|_{X} \, d\tau \right)$$

with $V(t) := \int_{0}^{t} \|\nabla v(\tau)\|_{L^{\infty}} \, d\tau.$ (6)

Basic example: Hölder space $C^{0,\varepsilon}$.

・ロト ・同ト ・ヨト ・ヨト

The transport equation

Consider the following transport equation:

(T)
$$\begin{cases} \partial_t a + v \cdot \nabla a = f \in L^1([0,T);X) \\ a_{|t=0} = a_0 \in X. \end{cases}$$

Roughly, if v is a Lipschitz time-dependent vector-field and if X is a "reasonable" Banach space then we expect (T) to have a unique solution $a \in \mathcal{C}([0,T); X)$ satisfying

$$\|a(t)\|_{X} \leq e^{CV(t)} \left(\|a_{0}\|_{X} + \int_{0}^{t} e^{-CV(\tau)} \|f(\tau)\|_{X} \, d\tau \right)$$

with $V(t) := \int_{0}^{t} \|\nabla v(\tau)\|_{L^{\infty}} \, d\tau.$ (6)

Theorem

The above result holds true for $X = \dot{B}_{p,r}^{s}$ with $V(t) = \int_{0}^{t} \|\nabla v(\tau)\|_{\dot{B}_{p_{1},1}^{p_{1}}} d\tau$ whenever $1 \le p \le p_{1} \le \infty$, $1 \le r \le \infty$, $-\min\left(\frac{d}{p_{1}}, \frac{d}{p'}\right) \le s \le 1 + \frac{d}{p_{1}}$. If r > 1 then we need $s < 1 + d/p_{1}$.

イロト イポト イラト イラト

The transport equation

Sketch of the proof:

Applying $\dot{\Delta}_j$ to (T) gives

$$\partial_t \dot{\Delta}_j a + v \cdot \nabla \dot{\Delta}_j a = \dot{\Delta}_j f + \dot{R}_j \quad \text{with} \quad \dot{R}_j := [v \cdot \nabla, \dot{\Delta}_j] a. \tag{7}$$

Under the above conditions over s, p, the remainder term \dot{R}_j satisfies

$$\|\dot{R}_{j}(t)\|_{L^{p}} \leq Cc_{j}(t)2^{-js} \|\nabla v(t)\|_{\dot{B}^{p_{1}}_{p_{1},1}} \|a(t)\|_{\dot{B}^{s}_{p,r}} \quad \text{with} \quad \|(c_{j}(t))\|_{\ell^{r}} = 1.$$
(8)

Applying standard L^p estimates for the transport equation (7) yields

$$\|\dot{\Delta}_{j}a(t)\|_{L^{p}} \leq \|\dot{\Delta}_{j}a_{0}\|_{L^{p}} + \int_{0}^{t} \left(\|\dot{\Delta}_{j}f\|_{L^{p}} + \|\dot{R}_{j}\|_{L^{p}} + \frac{\|\operatorname{div} v\|_{L^{\infty}}}{p}\|\dot{\Delta}_{j}a\|_{L^{p}}\right) d\tau.$$

Multiplying by 2^{js} then summing up over j yields

$$\|a\|_{L^{\infty}_{t}(\dot{B}^{s}_{p,r})} \leq \|a\|_{\tilde{L}^{\infty}_{t}(\dot{B}^{s}_{p,r})} \leq \|a_{0}\|_{\dot{B}^{s}_{p,r}} + \int_{0}^{t} \|f\|_{\dot{B}^{s}_{p,r}} \, d\tau + C \int_{0}^{t} V' \|a\|_{\dot{B}^{s}_{p,r}} \, d\tau$$

with $||a||_{\widetilde{L}^{\infty}_{t}(\dot{B}^{s}_{p,r})} := ||2^{js}||\dot{\Delta}_{j}a||_{L^{\infty}_{t}(L^{p})}||_{\ell^{r}}.$

Then applying Gronwall's lemma yields the desired inequality for a.

ъ.

The homogeneous incompressible Navier-Stokes equations read:

(NS)
$$\begin{cases} \partial_t u + \operatorname{div}(u \otimes u) - \mu \Delta u + \nabla P = 0, \\ \operatorname{div} u = 0. \end{cases}$$

Here $u: [0, T[\times \mathbb{R}^d \to \mathbb{R}^d \text{ stands for the velocity field, and } P: [0, T[\times \mathbb{R}^d \to \mathbb{R}, \text{ for the pressure. The viscosity } \mu \text{ is a given positive number.}$ If we want to solve the Cauchy problem for (NS) then we have to prescribe some initial divergence-free velocity field u_0 .

Introducing the Leray projector over divergence-free vector fields: $\mathcal{P} := \mathrm{Id} + \nabla (-\Delta)^{-1} \mathrm{div}$, System (NS) recasts in

 $\partial_t u + \mathcal{P} \operatorname{div} \left(u \otimes u \right) - \mu \Delta u = 0.$

This equation enters in the class of generalized Navier-Stokes equations:

(GNS) $\partial_t u + Q(u, u) - \mu \Delta u = 0$

 $\text{ with } \mathcal{F}Q^j(u,v)(\xi):=\sum \alpha_{k,\ell}^{j,m,n,p}\frac{\xi_n\,\xi_p\,\xi_m}{|\xi|^2}\,\mathcal{F}(u^k\,v^\ell)(\xi).$

- E

The (homogeneous) incompressible Navier-Stokes equations

Scaling invariance for (GNS): for all $\lambda > 0$ it is clear that v is a solution if and only if $T_{\lambda}v$ is a solution with

 $T_{\lambda}v(t,x) := \lambda v(\lambda^2 t, \lambda x).$

Examples of scaling invariance spaces for (GNS):

- $\mathcal{C}(\mathbb{R}^+; \dot{H}^{\frac{d}{2}-1}) \cap L^2(\mathbb{R}^+; \dot{H}^{\frac{d}{2}})$ (Fujita and Kato, 1964);
- $\mathcal{C}(\mathbb{R}^+; L^d)$ (Giga-Miyakawa, Kato, (1984) Furioli-Lemarié-Terraneo (1998));
- $\mathcal{C}(\mathbb{R}^+; \dot{B}_{p,1}^{\frac{d}{p}-1}) \cap L^1(\mathbb{R}^+; \dot{B}_{p,1}^{\frac{d}{p}+1})$ and more general Besov spaces (Cannone-Meyer-Planchon, Kozono-Yamazaki 1994).

Theorem (global existence for small data)

Let $u_0 \in \dot{B}_{p,r}^{\frac{d}{p}-1}$ with div $u_0 = 0$. Assume that p is finite. There exists c > 0 such that if

$$\|u_0\|_{\dot{B}^{\frac{d}{p}-1}_{p,r}} \le c\mu$$

then (GNS) has a unique global solution u in the space

$$X := \widetilde{L}^{\infty}(\mathbb{R}^+; \dot{B}_{p,r}^{\frac{d}{p}-1}) \cap \widetilde{L}^1(\mathbb{R}^+; \dot{B}_{p,r}^{\frac{d}{p}+1}).$$

 $\frac{\text{Mild formulation of } (GNS): \text{ finding } u: \mathbb{R}^+ \times \mathbb{R}^d \to \mathbb{R}^d \text{ so that}}{u(t) = u_L(t) + \mathcal{B}(u, u)(t) \text{ with}}$

$$u_L(t):=e^{\mu t\Delta}u_0 \quad \text{and} \quad \mathcal{B}(u,v)(t):=-\int_0^t e^{\mu(t-\tau)\Delta}Q(u,v)\,d\tau.$$

Claim : if $\mu^{-1} \| u_0 \|_{\dot{B}^{\frac{d}{p}-1}_{p,r}}$ is small enough then $\Phi : v \mapsto u_L + \mathcal{B}(v,v)$ possesses a unique fixed point in the closed ball $\bar{B}_X(0, 2C \| u_0 \|_{\dot{B}^{\frac{d}{p}-1}_{p,r}})$ of the Banach space X.

・ロト ・同ト ・ヨト ・ヨト

The (homogeneous) incompressible Navier-Stokes equations

Mild formulation of (GNS): finding $u : \mathbb{R}^+ \times \mathbb{R}^d \to \mathbb{R}^d$ so that $u(t) = u_L(t) + \mathcal{B}(u, u)(t)$ with

$$u_L(t) := e^{\mu t \Delta} u_0$$
 and $\mathcal{B}(u, v)(t) := -\int_0^t e^{\mu(t-\tau)\Delta} Q(u, v) d\tau.$

Claim : if $\mu^{-1} \| u_0 \|_{\dot{B}^{\frac{d}{p}-1}_{p,r}}$ is small enough then $\Phi : v \mapsto u_L + \mathcal{B}(v,v)$ possesses a unique fixed point in the closed ball $\bar{B}_X(0, 2C \| u_0 \|_{\dot{B}^{\frac{d}{p}-1}_{p,r}})$ of the Banach space X.

1. Maximal regularity estimates for the heat equation imply that

$$\|u_L\|_X := \|u_L\|_{\tilde{L}^{\infty}(\dot{B}_{p,r}^{\frac{d}{p}-1})} + \mu \|u_L\|_{\tilde{L}^1(\dot{B}_{p,r}^{\frac{d}{p}+1})} \le C \|u_0\|_{\dot{B}_{p,r}^{\frac{d}{p}-1}}.$$

2. Continuity results for the paraproduct and remainder $\implies \mathcal{B}: X \times X \to X$ whenever $p < \infty$. Indeed, for some C = C(d, p, Q), we have

$$\|Q(u,v)\|_{\tilde{L}^{1}(\dot{B}^{\frac{d}{p}}_{p,r})} \leq C\mu^{-1} \|u\|_{X} \|v\|_{X}.$$

Hence

$$\|\mathcal{B}(u,v)\|_X \le C\mu^{-1}\|u\|_X\|v\|_X.$$

・ロト ・ 一下 ・ ・ ヨ ト ・ ・ ヨ ト

1. Maximal regularity estimates for the heat equation imply that

$$\|u_L\|_X := \|u_L\|_{\tilde{L}^{\infty}(\dot{B}_{p,r}^{\frac{d}{p}-1})} + \mu \|u_L\|_{\tilde{L}^1(\dot{B}_{p,r}^{\frac{d}{p}+1})} \le C \|u_0\|_{\dot{B}_{p,r}^{\frac{d}{p}-1}}.$$

2. Continuity results for the paraproduct and remainder $\implies \mathcal{B}: X \times X \to X$ whenever $p < \infty$. Indeed, for some C = C(d, p, Q), we have

$$\|Q(u,v)\|_{\tilde{L}^{1}(\dot{B}^{\frac{d}{p}-1}_{p,r})} \leq C\mu^{-1}\|u\|_{X}\|v\|_{X}.$$

Hence

$$\begin{split} \|\mathcal{B}(u,v)\|_{X} &\leq C\mu^{-1} \|u\|_{X} \|v\|_{X}.\\ \text{Therefore } \|\Phi(v)\|_{X} &\leq C \|u_{0}\|_{\dot{B}^{\frac{d}{p}-1}_{p,r}} + C\mu^{-1} \|v\|_{X}^{2} \leq 2C \|u_{0}\|_{\dot{B}^{\frac{d}{p}-1}_{p,r}} \text{ if }\\ \|v\|_{X} &\leq 2C \|u_{0}\|_{\dot{B}^{\frac{d}{p}-1}_{p,r}} \text{ and } 4C^{2} \|u_{0}\|_{\dot{B}^{\frac{d}{p}-1}_{p,r}} \leq \mu, \text{ and, under the same conditions,} \end{split}$$

 $\|\Phi(v) - \Phi(w)\|_X \le C\mu^{-1}(\|v\|_X + \|w\|_X)\|v - w\|_X \le \frac{1}{2}\|v - w\|_X.$

Hence Φ is a contraction on $\bar{B}_X(0, 2C ||u_0||_{\dot{B}^{\frac{d}{p}-1}_{p,r}}).$

→ B → < B</p>

The system for incompressible nonhomogeneous viscous fluids reads:

(INS)
$$\begin{cases} \partial_t \rho + u \cdot \nabla \rho = 0\\ \rho(\partial_t u + u \cdot \nabla u) - \mu \Delta u + \nabla P = 0\\ \operatorname{div} u = 0. \end{cases}$$

For simplicity, we restrict ourselves to the case where the density ρ of the fluid goes to 1 at infinity. So we set $\rho = 1 + a$.

System (INS) is invariant by the rescaling

 $\rho(t,x) \to \rho(\lambda^2 t,\lambda x), \qquad u(t,x) \to \lambda u(\lambda^2 t,\lambda x).$

In the Besov spaces scale, this induces to take data $(\rho_0 = 1 + a_0, u_0)$ with

$$a_0 \in \dot{B}_{p_1,r_1}^{\frac{d}{p_1}}$$
 and $u_0 \in \dot{B}_{p_2,r_2}^{\frac{d}{p_2}-1}$.

- To avoid vacuum (and loss of ellipticity), we need a to be bounded away from 0. Notice that $\dot{B}_{p_1,r_1}^{\frac{d}{p_1}} \hookrightarrow L^{\infty}$ iff $r_1 = 1$. Hence we take $r_1 = 1$.
- If $r_2 = 1$ then regularity properties of the heat equation give $u \in L_T^1(\dot{B}_{p_2,1}^{\frac{d}{p_2}+1})$. This is exactly what we need to transport the Besov regularity of a.
- We take $p_1 = p_2 = p$ for simplicity.

・ロト ・四ト ・ヨト ・ヨト

The density-dependent incompressible Navier-Stokes equations

Theorem (Global existence for small data)

Let $a_0 \in \dot{B}_{p,1}^{\frac{d}{p}}$ and $u_0 \in \dot{B}_{p,1}^{\frac{d}{p}-1}$ with $\operatorname{div} u_0 = 0$ and $1 \le p < 2d$. If in addition $\|a_0\|_{\dot{B}_{p,1}^{\frac{d}{p}}} + \mu^{-1} \|u_0\|_{\dot{B}_{p,1}^{\frac{d}{p}-1}} \le c$ for a small enough c > 0 then (INS) has a unique global solution (a, u) with $a \in \mathcal{C}(\mathbb{R}^+; \dot{B}_{p,1}^{\frac{d}{p}})$ and $u \in \mathcal{C}(\mathbb{R}^+; \dot{B}_{p,1}^{\frac{d}{p}-1}) \cap L^1(\mathbb{R}^+; \dot{B}_{p,1}^{\frac{d}{p}+1})$.

Owing to the **hyperbolic nature of the density equation**, one cannot use the contracting mapping argument in Banach spaces because there is a **loss of one derivative** in the stability estimates. Nevertheless, one may proceed as follows:

- 1) proving a priori estimates in high norm (that is in the space E of the statement) for a solution;
- 2) proving stability estimates in low norm (with one less derivative);
- 3) Use functional analysis (Fatou property) to justify that the constructed solution is in E.

As regards uniqueness, this approach works only for $1 \le p \le d$. For the full range $1 \le p < 2d$, one has to reformulate the system in Lagrangian coordinates.

・ロト ・四ト ・ヨト ・ヨト

Sketchy proof of existence in the Eulerian framework

Step 1 : A priori estimates in large norm. Estimate a in $\mathcal{C}_b(\mathbb{R}^+; \dot{B}^{d/p}_{p,1})$ and $(u, \nabla P)$ in

 $\mathcal{C}_{b}(\mathbb{R}^{+}; \dot{B}_{p,1}^{d/p-1}) \times L^{1}(\mathbb{R}^{+}; \dot{B}_{p,1}^{d/p-1}) \text{ with } \partial_{t}u, \nabla^{2}u \in L^{1}(\mathbb{R}^{+}; \dot{B}_{p,1}^{d/p-1}).$

Main ingredients:

- I Estimates in Besov space for the transport equation.
- 2 The previous maximal regularity estimates for the Stokes equation.

Step 2 : Stability estimates in small norm. The difference $\delta \rho := \rho_2 - \rho_1$, $\delta u := u_2 - u_1$ and $\nabla \delta P := \nabla P_2 - \nabla P_1$ between two solutions satisfies

$$\begin{cases} \partial_t \delta \rho + u_2 \cdot \nabla \delta \rho = -\delta u \cdot \nabla \rho_1 \\ \rho_2(\partial_t \delta u + u_2 \cdot \nabla \delta u) - \mu \Delta \delta u + \nabla \delta P = -\delta \rho (\partial_t u_1 + (\rho_2 u_2 - \rho_1 u_1) \cdot \nabla u_1) \end{cases}$$

 \implies loss of one derivative in the stability estimates. We need to use that the product maps

$$\dot{B}^{d/p-1}_{p,1} \times \dot{B}^{d/p-1}_{p,1} \to \dot{B}^{d/p-2}_{p,1}.$$

But this is true if and only if $1 \le p < d$ and d > 2.

4 3 5 4 3 5 5

The Lagrangian approach

Lagrangian change of coordinates

Flow of
$$u = u(t, x)$$
:

$$X_u(t,y) = y + \int_0^t u(\tau, X_u(\tau, y)) d\tau$$

<u>Change of coordinates</u>: $(t, x) \longrightarrow (t, y)$ with $x = X_u(t, y)$.

$$\bar{u}(t,y) = u(t,x),$$

$$\bar{P}(t,y) = P(t,x).$$

Chain rule:

$$\nabla_y \bar{F} = \nabla_y X_u \cdot \nabla_x F.$$

Hence the divergence-free condition recasts in

$$\operatorname{div}_{y}\bar{u} = g := D_{y}\bar{u} : (\operatorname{Id} - A) \text{ with } A := (D_{y}X_{u})^{-1}.$$

э

The Lagrangian approach

Lagrangian change of coordinates

Flow of u = u(t, x):

$$X_u(t,y) = y + \int_0^t u(\tau, X_u(\tau, y)) \, d\tau = y + \int_0^t \bar{u}(\tau, y) \, d\tau.$$

 $\underline{\text{Change of coordinates:}} (t, x) \longrightarrow (t, y) \text{ with } x = X_u(t, y).$

$$ar{u}(t,y) = u(t,x),$$

 $ar{P}(t,y) = P(t,x).$

Chain rule:

 $\nabla_y \bar{F} = \nabla_y X_u \cdot \nabla_x F.$

Hence the divergence-free condition recasts in

 $\operatorname{div}_{y}\bar{u} = g := D_{y}\bar{u} : (\operatorname{Id} - A) \text{ with } A := (D_{y}X_{u})^{-1}.$

In general, $\operatorname{div} \overline{u}$ need not be 0 for t > 0.

・ロト ・同ト ・ヨト ・ヨト

The generalized Stokes equations

The momentum equation now reads:

$$(S): \begin{cases} \partial_t u - \mu \Delta u + \nabla P = f \\ \operatorname{div} u = g. \end{cases}$$

Set u = v + w with w s.t. div w = g. One can take $w = -\nabla(-\Delta)^{-1}g$. Then v has to satisfy

$$\begin{cases} \partial_t v - \mu \Delta v + \nabla P = f - \nabla (-\Delta)^{-1} \partial_t g + \mu \nabla g \\ \operatorname{div} v = 0. \end{cases}$$

Needed conditions for g:

- $\nabla g \in L^1(\mathbb{R}^+; \dot{B}^s_{p,1})$
- $\partial_t g = \operatorname{div} R$ with $R \in L^1(\mathbb{R}^+; \dot{B}^s_{p,1}).$

If so, then we get

$$\begin{split} \|(u,\nabla P)\|_{E_p^s} &:= \|u\|_{L^{\infty}(\dot{B}_{p,1}^s)} + \|(\partial_t u, \mu \nabla^2 u, \nabla P)\|_{L^1(\dot{B}_{p,1}^s)} \\ &\lesssim \|u_0\|_{\dot{B}_{p,1}^s} + \|f\|_{L^1(\dot{B}_{p,1}^s)} + \mu \|\nabla g\|_{L^1(\dot{B}_{p,1}^s)} + \|R\|_{L^1(\dot{B}_{p,1}^s)}. \end{split}$$

We are interested in the case s = d/p - 1.

Estimates for g

Recall that $g = D_y \bar{u}$: (Id -A) with $A = (D_y X_u)^{-1}$ and that

$$D_y X_u(t) - \operatorname{Id} = \int_0^t D\bar{u}(\tau) \, d\tau \in \dot{B}_{p,1}^{d/p}.$$

As $\dot{B}^{d/p}_{p,1}$ is a Banach algebra, if the red term is small enough then one may write

$$A = (\mathrm{Id} + (D_y X_u - \mathrm{Id})) = \sum_{k=0}^{+\infty} (-1)^k \left(\int_0^t D\bar{u} \, d\tau \right)^k \cdot$$

Hence

$$\| \mathrm{Id} - A(t) \|_{\dot{B}^{d/p}_{p,1}} \lesssim \| D\bar{u} \|_{L^1(0,t;\dot{B}^{d/p}_{p,1})},$$

whence

$$\|g\|_{L^1(0,t;\dot{B}^{d/p}_{p,1})} \lesssim \|D\bar{u}\|^2_{L^1(0,t;\dot{B}^{d/p}_{p,1})}.$$

Do we have $\partial_t g = \operatorname{div} R$ with $R \in L^1(\mathbb{R}^+; \dot{B}^{d/p-1}_{p,1})$?

() <) <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <

Estimates for g (continued)

Magic identity: X_u measure preserving implies that

$$\operatorname{div}_{x} u = D_{y} \bar{u} : A = \operatorname{div}_{y} (A \bar{u}).$$

Hence

$$\partial_t g = \operatorname{div} R$$
 with $R = -\partial_t A \,\overline{u} + (\operatorname{Id} - A) \,\partial_t \overline{u}.$

Under the same smallness condition as in the previous slide, one can write

$$\partial_t A = D\bar{u} \sum_{k \ge 1} k(-1)^k \left(\int_0^t D\bar{u} \, d\tau \right)^{k-1}$$

So finally, if $1 \le p < 2d$ then we get

 $\|R\|_{L^1(\dot{B}^{d/p-1}_{p,1})} \lesssim \|D\bar{u}\|_{L^1(\dot{B}^{d/p}_{p,1})} \big(\|\bar{u}\|_{L^\infty(\dot{B}^{d/p-1}_{p,1})} + \|\partial_t \bar{u}\|_{L^1(\dot{B}^{d/p-1}_{p,1})} \big).$

э.
In Lagrangian coordinates ρ_0 is time-independent, hence no loss of derivatives in the stability estimates.

For the velocity, we have

 $\begin{cases} \rho_0 \partial_t \bar{u} - \mu \operatorname{div}_y (A_u^T A_u \nabla_y \bar{u}) + {}^T A_u \nabla_y \bar{P} = 0\\ \operatorname{div}_y (A_u \bar{u}) = 0. \end{cases} \quad \text{with} \quad A_u = (D_y X_u)^{-1}$

(B)

In Lagrangian coordinates ρ_0 is time-independent, hence no loss of derivatives in the stability estimates.

For the velocity, we have

$$\begin{cases} \rho_0 \partial_t \bar{u} - \mu \operatorname{div}_y (A_u {}^T A_u \nabla_y \bar{u}) + {}^T A_u \nabla_y \bar{P} = 0\\ \operatorname{div}_y (A_u \bar{u}) = 0. \end{cases} \quad \text{with} \quad A_u = (D_y X_u)^{-1}$$

This equation rewrites

 $\begin{cases} \partial_t \bar{u} - \mu \Delta \bar{u} + \nabla_y \bar{P} = (1 - \rho_0) \partial_t \bar{u} + \mu \operatorname{div}_y ((A_u^T A_u - \operatorname{Id}) \nabla_y \bar{u}) + (\operatorname{Id} - ^T A_u) \nabla_y \bar{P} \\ \operatorname{div}_y \bar{u} = g := \operatorname{div}_y ((\operatorname{Id} - A_u) \bar{u}) = D\bar{u} : (\operatorname{Id} - A_u). \end{cases}$

化压力 化压力

This equation rewrites

$$\begin{cases} \partial_t \bar{u} - \mu \Delta \bar{u} + \nabla_y \bar{P} = (1 - \rho_0) \partial_t \bar{u} + \mu \operatorname{div}_y ((A_u {}^T A_u - \operatorname{Id}) \nabla_y \bar{u}) + (\operatorname{Id} - {}^T A_u) \nabla_y \bar{P} \\ \operatorname{div}_y \bar{u} = g := \operatorname{div}_y ((\operatorname{Id} - A_u) \bar{u}) = D \bar{u} : (\operatorname{Id} - A_u). \end{cases}$$

From the above estimates for g, A_u and for the Stokes equations, we thus get

$$U(t) \lesssim \|u_0\|_{\dot{B}^{d/p-1}_{p,1}} + U^2(t) + \int_0^t \|(1-\rho_0)\partial_t \bar{u}\|_{\dot{B}^{d/p-1}_{p,1}} \, d\tau$$

with $U(t) := \|\bar{u}\|_{L^{\infty}(0,t;\dot{B}_{p,1}^{d/p-1})} + \|\partial_t \bar{u}, \mu D^2 \bar{u}, \nabla \bar{P}\|_{L^1(0,t;\dot{B}_{p,1}^{d/p-1})}.$

・ 「 ト ・ ヨ ト ・ ヨ ト

This equation rewrites

 $\begin{cases} \partial_t \bar{u} - \mu \Delta \bar{u} + \nabla_y \bar{P} = (1 - \rho_0) \partial_t \bar{u} + \mu \operatorname{div}_y ((A_u^T A_u - \operatorname{Id}) \nabla_y \bar{u}) + (\operatorname{Id} - ^T A_u) \nabla_y \bar{P} \\ \operatorname{div}_y \bar{u} = g := \operatorname{div}_y ((\operatorname{Id} - A_u) \bar{u}) = D\bar{u} : (\operatorname{Id} - A_u). \end{cases}$

From the above estimates for g, A_u and for the Stokes equations, we thus get

$$\begin{split} U(t) &\lesssim \|u_0\|_{\dot{B}^{d/p-1}_{p,1}} + U^2(t) + \int_0^t \|(1-\rho_0)\partial_t \bar{u}\|_{\dot{B}^{d/p-1}_{p,1}} \,d\tau\\ \text{with } U(t) &:= \|\bar{u}\|_{L^\infty(0,t;\dot{B}^{d/p-1}_{p,1})} + \|\partial_t \bar{u}, \mu D^2 \bar{u}, \nabla \bar{P}\|_{L^1(0,t;\dot{B}^{d/p-1}_{p,1})}.\\ \text{Let } \mathcal{M}(\dot{B}^{d/p-1}_{p,1}) \text{ be the multiplier space for } \dot{B}^{d/p-1}_{p,1}. \text{ By definition,}\\ \|(1-\rho_0)\partial_t \bar{u}\|_{\dot{B}^{d/p-1}_{p,1}} \leq \|(1-\rho_0)\|_{\mathcal{M}(\dot{B}^{d/p-1}_{p,1})} \|\partial_t \bar{u}\|_{\dot{B}^{d/p-1}_{p,1}}. \end{split}$$

So we just need $\|(1-\rho_0)\|_{\mathcal{M}(\dot{B}^{d/p-1}_{p,1})} \ll 1$ and $\|u_0\|_{\dot{B}^{d/p-1}_{p,1}} \ll \mu$ to close the

estimates.

- A IB N - A IB N

Implementing the fixed point argument

Let $\Phi: (\bar{v}, \nabla \bar{Q}) \mapsto (\bar{u}, \nabla \bar{P})$ where $(\bar{u}, \nabla \bar{P})$ stands for the solution to the *linear* system

$$\begin{cases} \rho_0 \partial_t \bar{u} - \mu \operatorname{div}(A_v {}^T A_v \nabla \bar{u}) + {}^T A_v \nabla \bar{P} = 0\\ \operatorname{div}(A_v \bar{u}) = 0, \end{cases}$$

with $A_v := (DX_v)^{-1}$ and $X_v(t, y) := y + \int_0^t \bar{v}(\tau, y) \, d\tau$.

Step 1. Existence of Φ .

If $(\bar{v}, \nabla \bar{Q})$ belongs to a small ball B_R of $E_p^{d/p-1}$ and X_v is measure preserving in the "original" Eulerian coordinates then the previous slide implies that the same holds for $(\bar{u}, \nabla \bar{P})$.

Important: the corresponding set \mathcal{E}_R is a closed subset of $E_p^{d/p-1}$.

Step 2. Contraction estimates for Φ .

One just has to write $\Phi(\bar{v}_2, \nabla \bar{Q}_2) - \Phi(\bar{v}_1, \nabla \bar{Q}_1)$ as a solution to the Stokes equation and slightly generalize the previous estimates. No loss of derivative here !

Applying the Banach fixed point theorem allows to conclude to the existence of a solution in \mathcal{E}_R .

Step 3. Uniqueness. This is a straightforward modification of Step 2.

(本間)) ((日)) ((日)) (日)

Theorem (D. and P. Mucha, 2011)

Let $p \in [1, 2d)$ and $u_0 \in \dot{B}_{p,1}^{d/p-1}(\mathbb{R}^d)$ with $\operatorname{div} u_0 = 0$. Assume that $\rho_0 \in \mathcal{M}(\dot{B}_{p,1}^{d/p-1})$. There exists a constant c = c(p, d) such that if

$$\|\rho_0 - 1\|_{\mathcal{M}(\dot{B}^{d/p-1}_{p,1})} + \mu^{-1} \|u_0\|_{\dot{B}^{d/p-1}_{p,1}} \le c$$

then the Lagrangian (INS) system has a unique global solution $(\bar{u}, \nabla \bar{P})$ in $E_p^{d/p-1}$. Moreover, there exists C = C(p, d) so that

$$\|\bar{u}\|_{L^{\infty}(\dot{B}^{d/p-1}_{p,1})} + \|\mu\nabla^{2}\bar{u},\partial_{t}\bar{u},\nabla\bar{P}\|_{L^{1}(\dot{B}^{d/p-1}_{p,1})} \leq C\|u_{0}\|_{\dot{B}^{d/p-1}_{p,1}}$$

and the flow map $(\rho_0, u_0) \longmapsto (\bar{u}, \nabla \bar{P})$ is Lipschitz continuous from $\mathcal{M}(\dot{B}_{p,1}^{d/p-1}) \times \dot{B}_{p,1}^{d/p-1}$ to $E_p^{d/p-1}$.

Remarks

- Local-in-time statement if only $\rho_0 1$ is small.
- Propogation of interfaces: if d/p 1 < 1/p then one can take $\rho_0 = 1 + c1_D$ with c small enough, and D any C^1 domain.
- Corollary : same statement for the original system in Eulerian coordinates (except for the continuity of the flow map).

The barotropic Navier-Stokes equations read :

 $\begin{cases} \partial_t \rho + \operatorname{div}(\rho u) = 0, \\ \partial_t(\rho u) + \operatorname{div}(\rho u \otimes u) - \mu \Delta u - \mu' \nabla \operatorname{div} u + \nabla P = 0. \end{cases}$ (9)

- $\rho = \rho(t, x) \in \mathbb{R}^+$ (with $t \in \mathbb{R}^+$ and $x \in \mathbb{R}^d$) is the density.
- $u = u(t, x) \in \mathbb{R}^d$ is the velocity field.
- The pressure P is a given smooth function of ρ .
- The viscosity coefficients μ and μ' satisfy $\mu > 0$ and $\nu := \mu + \mu' > 0$ and are constant (for simplicity only).
- Boundary conditions: u decays to zero at infinity and ρ tends to some positive constant $\bar{\rho}$ at infinity. We take $\bar{\rho} = 1$ for simplicity.

Denoting $\rho = 1 + a$ and assuming that the density is positive everywhere the barotropic system rewrites

$$\begin{cases} \partial_t a + u \cdot \nabla a = -(1+a) \operatorname{div} u, \\ \partial_t u - \mathcal{A} u = -u \cdot \nabla u - J(a) \mathcal{A} u - \nabla G(a) \end{cases}$$

with $\mathcal{A} := \mu \Delta + \mu' \nabla \operatorname{div}, \ J(a) := a/(1+a)$ and G'(a) = P'(1+a)/(1+a).

イロト イポト イラト イラト

If neglecting the pressure term then the scaling invariance of the system still reads:

 $\rho(t,x) \to \rho(\lambda^2 t,\lambda x), \qquad u(t,x) \to \lambda u(\lambda^2 t,\lambda x).$

As for the incompressible Navier-Stokes equations, in the Besov spaces scale, this induces to take data $(\rho_0 = 1 + a_0, u_0)$ with

$$a_0 \in \dot{B}_{p,1}^{\frac{d}{p}}$$
 and $u_0 \in \dot{B}_{p,1}^{\frac{d}{p}-1}$.

Goal: Solving the compressible Navier-Stokes equations with $u_0 \in \dot{B}_{p,1}^{\frac{d}{p}-1}$ and $a_0 \in \dot{B}_{p,1}^{\frac{d}{p}}$ such that $1 + a_0 > 0$ (no vacuum assumption).

According to the preceding results on the transport equation and the Lamé system, we expect that

$$a \in \mathcal{C}([0,T]; \dot{B}_{p,1}^{\frac{d}{p}})$$
 and $u \in \mathcal{C}([0,T]; \dot{B}_{p,1}^{\frac{d}{p}-1}) \cap L^{1}([0,T]; \dot{B}_{p,1}^{\frac{d}{p}+1})$.

Owing to the hyperbolic nature of the density equation, there is a loss of one derivative in the stability estimates. Hence it is tempting to use again Lagrangian coordinates.

Given some solution (ρ, u) to the compressible Navier-Stokes equations, we introduce X the flow associated to the vector-field u:

$$X(t,y) = y + \int_0^t u(\tau, X(\tau, y)) \, d\tau.$$
 (10)

Let $\bar{\rho}(t,y) := \rho(t,X(t,y)), \quad \bar{u}(t,y) = u(t,X(t,y)), \quad J := |\det DX|, \text{ and } A := (D_y X)^{-1}.$

- $J\bar{\rho}$ is time independent,
- As X need not preserve the Lebesgue measure, the "magic relation" becomes

 $\operatorname{div}_{x} H(x) = D_{y} \overline{H}(y) \cdot A(y) = J^{-1} \operatorname{div}_{y}(\operatorname{adj}(D_{y}X)\overline{H})(y).$

• Hence

 $J\partial_t (J\bar{\rho}\bar{u}) - \mu \operatorname{div} \left(\operatorname{adj} (DX)^T A \nabla_y \bar{u} \right) - \mu' \operatorname{div} \left(\operatorname{adj} (DX)^T A : \nabla \bar{u} \right) + \operatorname{div} \left(\operatorname{adj} (DX) P(\bar{\rho}) \right) = 0.$

As before X may be directly computed from \bar{u} :

 $X(t,y) = y + \int_0^t \bar{u}(\tau,y) \, d\tau.$

As $J\bar{\rho} = \rho_0$, we just have to solve the following parabolic type equation for \bar{u} : $J\bar{\rho}_0\partial_t\bar{u} - \mu \operatorname{div}\left(\operatorname{adj}\left(DX\right)^T A \nabla_y \bar{u}\right)$ $-\mu' \operatorname{div}\left(\operatorname{adj}\left(DX\right)^T A : \nabla \bar{u}\right) + \operatorname{div}\left(\operatorname{adj}\left(DX\right)P(\bar{\rho})\right) = 0.$ (11)

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem

Let $p \in [1, 2d)$ (with $d \ge 2$) and u_0 be a vector-field in $\dot{B}_{p,1}^{\frac{d}{p}-1}$. Assume that the initial density ρ_0 is positive and satisfies $a_0 := (\rho_0 - 1) \in \dot{B}_{p,1}^{\frac{d}{p}}$. Then the above equation has a unique local solution $(\bar{\rho}, \bar{u})$ with $\bar{a} \in \mathcal{C}([0, T]; \dot{B}_{p,1}^{\frac{d}{p}})$ and $\bar{u} \in \mathcal{C}([0, T]; \dot{B}_{p,1}^{\frac{d}{p}}) \cap L^1(0, T; \dot{B}_{p,1}^{\frac{d}{p}+1})$. Moreover, the flow map $(a_0, u_0) \mapsto (\bar{a}, \bar{u})$ is Lipschitz continuous.

In Eulerian coordinates, this result recasts in:

Theorem

Under the above assumptions, the barotropic Navier-Stokes equations have a unique local solution (ρ, u) with the above regularity.

Remark

If working directly on the barotropic compressible Navier-Stokes equations in Eulerian coordinates, then uniqueness may be proved only under the stronger condition that $p \leq d$.

э

To simplify the presentation, we assume that $a_0 := \rho_0 - 1$ is small enough. The three ingredients are

- Regularity estimates for the Lamé system;
- Flow estimates in Besov spaces,
- The Banach fixed point theorem.

Let $E_p(T) := \left\{ \bar{u} \in \mathcal{C}([0,T]; \dot{B}_{p,1}^{\frac{d}{p}-1}) \mid \partial_t \bar{u}, \nabla^2 \bar{u} \in L^1(0,T; \dot{B}_{p,1}^{\frac{d}{p}-1}) \right\}$. Define a map $\Phi : \bar{v} \mapsto \bar{u}$ on $E_p(T)$ where \bar{u} stands for the solution to

 $\partial_t \bar{u} - \mu \Delta \bar{u} - (\lambda + \mu) \nabla \operatorname{div} \bar{u} = I_1(\bar{v}, \bar{v}) + 2\mu \operatorname{div} I_2(\bar{v}, \bar{v}) + \lambda \operatorname{div} I_3(\bar{v}, \bar{v}) - \operatorname{div} I_4(\bar{v})$

with

$$I_1(\bar{v},\bar{w}) = (1-\rho_0 J_v)\partial_t \bar{w} \qquad I_2(\bar{v},\bar{w}) = \operatorname{adj}(DX_v)D_{A_v}(\bar{w}) - D(\bar{w})$$

$$I_3(\bar{v},\bar{w}) = \operatorname{div}_{A_v}\bar{w}\operatorname{adj}(DX_v) - \operatorname{div}\bar{w}\operatorname{Id} \qquad I_4(\bar{v}) = \operatorname{adj}(DX_v)P(J_v^{-1}\rho_0).$$

Any fixed point of Φ is a solution in $E_p(T)$ to (11). We claim that the existence of such points is a consequence of the standard Banach fixed point theorem in a suitable closed ball of $E_p(T)$.

・ 「 ト ・ ヨ ト ・ ヨ ト

We first need to prove suitable a priori estimates for the Lamé system, that is, the linearized velocity equation (neglecting the pressure term). This system reads:

$$\partial_t u - \mu \Delta u - (\lambda + \mu) \nabla \operatorname{div} u = f, \qquad u_{|t=0} = u_0 \tag{12}$$

with $\mu > 0$ and $\nu := \lambda + 2\mu > 0$.

Apply the projector \mathcal{P} over divergence-free vector-fields, or \mathcal{Q} the projector over potential vector fields. We get

 $\partial_t \mathcal{P} u - \mu \Delta \mathcal{P} u = \mathcal{P} f$ and $\partial_t \mathcal{Q} u - \nu \Delta \mathcal{Q} u = \mathcal{Q} f$.

Hence applying the estimates for the heat equation yields in particular:

There exists a constant C depending only on μ/ν and λ/ν such that if $u_0 \in \dot{B}^s_{p,1}$ and $f \in L^1(\mathbb{R}^+; \dot{B}^s_{p,1})$ then (12) has a unique solution u in $\mathcal{C}(\mathbb{R}^+; \dot{B}^s_{p,1}) \cap L^1(\mathbb{R}^+; \dot{B}^s_{p,1})$ and

$$\|u\|_{\tilde{L}^{\infty}_{t}(\dot{B}^{\frac{d}{p}-1}_{p,1})} + \|\partial_{t}u,\min(\mu,\nu)\nabla^{2}u\|_{L^{1}_{t}(\dot{B}^{\frac{d}{p}-1}_{p,1})} \leq C\Big(\|u_{0}\|_{\dot{B}^{\frac{d}{p}-1}_{p,1}} + \|f\|_{L^{1}_{t}(\dot{B}^{\frac{d}{p}-1}_{p,1})}\Big).$$

Estimates for the Lamé system

Estimates for I_1 , I_2 , I_3 and I_4 .

Throughout we assume that

$$\int_{0}^{T} \|Dv\|_{\dot{B}^{\frac{d}{p}}_{p,1}} dt \ll 1.$$
(13)

In order to bound $I_1(v, w)$, we decompose it into

$$I_1(v,w) = (1 - J_v)\partial_t w - a_0(1 + (J_v - 1))\partial_t w \text{ with } a_0 := \rho_0 - 1.$$

Hence, product laws, definition of $\mathcal{M}(\dot{B}_{p,1}^{\frac{d}{p}-1})$ and flow estimates imply

$$\|I_1(v,w)\|_{L^1_T(\dot{B}^{\frac{d}{p}}_{p,1})} \stackrel{\underline{d}^{-1}}{\leq} C \left(\|a_0\|_{\dot{B}^{\frac{d}{p}}_{p,1}} + \|Dv\|_{\dot{B}^{\frac{d}{p}}_{p,1}} \right) \frac{\underline{d}^{-1}}{L^1_T(\dot{B}^{\frac{d}{p}}_{p,1})} \cdot L^1_T(\dot{B}^{\frac{d}{p}}_{p,1})$$

Similarly, we have

$$\|I_2(v,w)\|_{L^1_T(\dot{B}^p_{p,1})} + \|I_3(v,w)\|_{L^1_T(\dot{B}^p_{p,1})} \leq C \|Dv\|_{L^1_T(\dot{B}^p_{p,1})} \|Dw\|_{L^1_T(\dot{B}^p_{p,1})}$$

As regards the pressure term $I_4(v)$, we use the fact that under assumption (13), we have, by virtue of Proposition 1.4 and of flow estimates

$$\|I_4(v)\|_{L^{\infty}_T(\dot{B}^{\frac{d}{p}}_{p,1})} \leq C\left(1 + \|Dv\|_{L^{1}_T(\dot{B}^{\frac{d}{p}}_{p,1})}\right) \left(1 + \|a_0\|_{\dot{B}^{\frac{d}{p}}_{p,1}}\right).$$

Stability of a small enough ball by Φ .

We introduce u_L the solution to

$$\partial_t u_L - \mu \Delta u_L - (\lambda + \mu) \nabla \operatorname{div} u_L = 0, \qquad u_L|_{t=0} = u_0.$$

Claim: if R and T are small enough then

$$v \in \bar{B}_{E_p(T)}(u_L, R) \Longrightarrow u \in \bar{B}_{E_p(T)}(u_L, R).$$

Indeed $\widetilde{u} := u - u_L$ satisfies $\widetilde{u}(0) = 0$ and

 $\partial_t \widetilde{u} - \mu \Delta \widetilde{u} - (\lambda + \mu) \nabla \operatorname{div} \widetilde{u} = I_1(v, v) + 2\mu \operatorname{div} I_2(v, v) + \lambda \operatorname{div} I_3(v, v) - \operatorname{div} I_4(v).$

・ロト ・同ト ・ヨト ・ヨト

-

Stability of a small enough ball by Φ .

We introduce u_L the solution to

 $\partial_t u_L - \mu \Delta u_L - (\lambda + \mu) \nabla \operatorname{div} u_L = 0, \qquad u_L|_{t=0} = u_0.$

Claim: if R and T are small enough then

$$v \in \bar{B}_{E_p(T)}(u_L, R) \Longrightarrow u \in \bar{B}_{E_p(T)}(u_L, R).$$

Indeed $\widetilde{u} := u - u_L$ satisfies $\widetilde{u}(0) = 0$ and

 $\partial_t \widetilde{u} - \mu \Delta \widetilde{u} - (\lambda + \mu) \nabla \operatorname{div} \widetilde{u} = I_1(v, v) + 2\mu \operatorname{div} I_2(v, v) + \lambda \operatorname{div} I_3(v, v) - \operatorname{div} I_4(v).$

So regularity estimates for Lamé system imply that

$$\|\widetilde{u}\|_{E_{p}(T)} \lesssim \sum_{j=1}^{3} \|I_{j}(v,v)\|_{L^{1}_{T}(\dot{B}^{\frac{d}{p}}_{p,1})} + T\|I_{4}(v)\|_{L^{\infty}_{T}(\dot{B}^{\frac{d}{p}}_{p,1})}$$

(日) (四) (日) (日) (日)

-

Estimates for the Lamé system

Stability of a small enough ball by Φ .

We introduce u_L the solution to

 $\partial_t u_L - \mu \Delta u_L - (\lambda + \mu) \nabla \operatorname{div} u_L = 0, \qquad u_L|_{t=0} = u_0.$

Claim: if R and T are small enough then

$$v \in \bar{B}_{E_p(T)}(u_L, R) \Longrightarrow u \in \bar{B}_{E_p(T)}(u_L, R).$$

Indeed $\widetilde{u} := u - u_L$ satisfies $\widetilde{u}(0) = 0$ and

 $\partial_t \widetilde{u} - \mu \Delta \widetilde{u} - (\lambda + \mu) \nabla \operatorname{div} \widetilde{u} = I_1(v, v) + 2\mu \operatorname{div} I_2(v, v) + \lambda \operatorname{div} I_3(v, v) - \operatorname{div} I_4(v).$

Using the previous inequalities for $I_j(v, v)$ and that $v \in \overline{B}_{E_p(T)}(u_L, R)$, we get

$$\begin{split} \|\widetilde{u}\|_{E_{p}(T)} &\leq C\Big(\Big(\|a_{0}\|_{\mathcal{M}(\dot{B}_{p,1}^{\frac{d}{p}-1})} + \|Du_{L}\|_{L_{T}^{1}(\dot{B}_{p,1}^{\frac{d}{p}})} + R\Big)(R + \|\partial_{t}u_{L}\|_{L_{T}^{1}(\dot{B}_{p,1}^{\frac{d}{p}-1})}) \\ &+ \|Du_{L}\|_{L_{T}^{1}(\dot{B}_{p,1}^{\frac{d}{p}})} + R^{2} + T(1 + \|a_{0}\|_{\dot{B}_{p,1}^{\frac{d}{p}}})\Big). \end{split}$$

Hence there exists a small constant $\eta = \eta(d, p)$ such that if

$$\|a_0\|_{\mathcal{M}(\dot{B}_{p,1}^{\frac{d}{p}-1})} \leq \eta,$$

and if R, T have been chosen small enough then u is in $\overline{B}_{E_n(T)}(u_L, R)$.

Estimates for the Lamé system

Contraction properties for Φ on $B_{E_p(T)}(u_L, R)$.

Let v_1 and v_2 in $\bar{B}_{E_p(T)}(u_L, R)$ and $u_1 := \Phi(v_1)$ and $u_2 := \Phi(v_2)$. The equation satisfied by $\delta u := u_2 - u_1$ reads

 $\partial_t \delta u - \mu \Delta \delta u - (\lambda + \mu) \nabla \operatorname{div} \delta u = \delta f_1 + \delta f_2 + \operatorname{div} \delta f_3 + 2\mu \operatorname{div} \delta f_4 + \lambda \operatorname{div} \delta f_5$

with
$$\delta f_1 := (1 - \rho_0 J_2) \partial_t \delta u$$
, $\delta f_2 := -\rho_0 (J_2 - J_1) \partial_t u_1$,
 $\delta f_3 := \operatorname{adj} (DX_1) P(\rho_0 J_1^{-1}) - \operatorname{adj} (DX_2) P(\rho_0 J_2^{-1})$,
 $\delta f_4 := \operatorname{adj} (DX_2) D_{A_2}(u_2) - \operatorname{adj} (DX_1) D_{A_1}(u_1) - D(\delta u)$,
 $\delta f_5 := \operatorname{adj} (DX_2)^T A_2 : \nabla u_2 - \operatorname{adj} (DX_1)^T A_1 : \nabla u_1 - \operatorname{div} \delta u \operatorname{Id}$.

Bounding δu stems from the maximal regularity estimates: we get

$$\|\delta u\|_{E_p(T)} \lesssim \sum_{i=1}^2 \|\delta f_i\|_{L_T^1(\dot{B}_{p,1}^{\frac{d}{p}-1})} + T\|\delta f_3\|_{L_T^\infty(\dot{B}_{p,1}^{\frac{d}{p}})} + \sum_{i=4}^5 \|\delta f_i\|_{L_T^1(\dot{B}_{p,1}^{\frac{d}{p}})}$$

For instance we have

$$\begin{split} \|\delta f_3\|_{L^\infty_T(\dot{B}^{\frac{d}{p}}_{p,1})} \lesssim T(1+\|a_0\|_{\dot{B}^{\frac{d}{p}}_{p,1}}) \|D\delta v\|_{L^1_T(\dot{B}^{\frac{d}{p}}_{p,1})} \,. \end{split}$$

We eventually find that if η , R and T then

$$\|\delta u\|_{E_p(T)} \le \frac{1}{2} \|\delta v\|_{E_p(T)}.$$

Banach theorem ensures that Φ has a unique fixed point in $\overline{B}_{E_n(T)}(u_L, R)$.

Comments on the global existence issue

Aim: proving a global existence result for small data for the barotropic Navier-Stokes equation

(NSC)
$$\begin{cases} \partial_t a + u \cdot \nabla a = -(1+a) \operatorname{div} u, \\ \partial_t u - \mathcal{A} u = -u \cdot \nabla u - J(a) \mathcal{A} u - \nabla G(a), \end{cases}$$

in the spirit of those for the incompressible Navier-Stokes equation.

Above we saw that just assuming that

$$\|a_0\|_{\dot{B}^{\frac{d}{p}}_{p,1}} + \|u_0\|_{\dot{B}^{\frac{d}{p}-1}_{p,1}} \ll 1$$

is not enough because the pressure term (which has not the right-scaling) entails a linear growth in time in the estimates. In effect, in order to bound the term $I_4(\bar{v}) := \operatorname{adj} (DX_v) P(J_v^{-1}\rho_0)$, we just wrote

$$\|I_4(v)\|_{L^1_T(\dot{B}^{\frac{d}{p}}_{p,1})} \leq T\|I_4(v)\|_{L^\infty_T(\dot{B}^{\frac{d}{p}}_{p,1})} \leq CT\left(1 + \|Dv\|_{L^1_T(\dot{B}^{\frac{d}{p}}_{p,1})}\right)\left(1 + \|a_0\|_{\dot{B}^{\frac{d}{p}}_{p,1}}\right).$$

We have to include the pressure term in the linearized system. This will be done in Eulerian coordinates, in the next section.

・ロト ・同ト ・ヨト ・ヨト

Part III. Partially dissipative or parabolic linear systems

We focus on linear systems of the type

$$\partial_t w + A(D)w + B(D)w = 0 \tag{14}$$

with $w : \mathbb{R}^+ \times \mathbb{R}^d \to \mathbb{R}^n$, and

- $A(D) = (A_{ij}(D))_{1 \le i,j \le n}$ with $A_{ij}(D)$ homogeneous Fourier multiplier of degree α ,
- $B(D) = (B_{ij}(D))_{1 \le i,j \le n}$ with $B_{ij}(D)$ homogeneous Fourier multiplier of degree β .

We assume in addition that A(D) is antisymmetric:

 $\operatorname{Re}\left((A(\xi)\eta)\cdot\eta\right) = 0 \quad \text{for all} \ \ (\xi,\eta) \in \mathbb{R}^d \times \mathbb{C}^n,$

and that B(D) satisfies the following ellipticity property :

 $|\xi|^{\beta} \operatorname{Re}\left((B(\xi)\eta) \cdot \eta\right) \ge \kappa |B(\xi)\eta|^{2} \quad \text{for all} \ (\xi,\eta) \in \mathbb{R}^{d} \times \mathbb{C}^{n}$

where κ is a positive real number.

くぼう くちゃ くちゃ

Examples

• A partially dissipative symmetric linear one-dimensional system:

$$\begin{cases} \partial_t u + \partial_x v = 0\\ \partial_t v + \partial_x u + \lambda v = 0; \end{cases} \qquad \lambda > 0.$$

The general conditions are fulfilled with $d = 1, n = 2, \alpha = 1, \beta = 0$ and $\kappa = \lambda^{-1}$,

• The linearized barotropic Navier-Stokes equations :

$$\begin{cases} \partial_t a + \operatorname{div} u = 0\\ \partial_t u - \mu \Delta u - \mu' \nabla \operatorname{div} u + \nabla a = 0; \end{cases} \qquad \mu > 0 \quad \text{and} \quad \mu + \mu' > 0.$$

The general conditions are fulfilled with n = d + 1, $\alpha = 1$, $\beta = 2$ and $\kappa = c\nu^{-1}$ (with c depending only on μ/ν).

・ロト ・同ト ・ヨト ・ヨト

The general solution formula

Set
$$A_{\omega} := \rho^{-\alpha} A(\xi)$$
 and $B_{\omega} := \kappa \rho^{-\beta} B(\xi)$ with $\rho := |\xi|$ and $\omega := \xi/|\xi|$.

Therefore

$$\partial_t \widehat{w}(t,\xi) + E(\xi)\widehat{w}(t,\xi) = 0 \quad \text{with} \quad E(\xi) := \rho^{\alpha} A_{\omega} + \kappa^{-1} \rho^{\beta} B_{\omega}.$$

Hence

$$\widehat{w}(t,\xi) = \widehat{w}_0(\xi) \exp\left(-\frac{t\rho^{\beta}}{\kappa} \left(\kappa \rho^{\alpha-\beta} A_{\omega} + B_{\omega}\right)\right),\,$$

Let $z_0 := \widehat{w}_0(\xi), \ z(\tau) = \widehat{w}(t,\xi)$ with $\tau := (t\rho^\beta)/\kappa$, and $\varrho := \kappa \rho^{\alpha-\beta}$ We have

$$z(au) := z_0 \exp\Bigl(- au(arrho A_\omega + B_\omega)\Bigr)$$

Hence one may restrict our attention to the case $\alpha = 1$, $\beta = 0$ and $\kappa = 1$ (that is first order antisymmetric terms and partial dissipation). Indeed

$$\operatorname{Re}\left((A_{\omega}\eta)\cdot\eta\right)=0 \quad \text{and} \quad \operatorname{Re}\left((B_{\omega}\eta)\cdot\eta\right)\geq |B_{\omega}\eta|^2 \quad \text{for all} \quad (\omega,\eta)\in\mathbb{S}^{d-1}\times\mathbb{C}^n.$$

-

For $\varepsilon_1, \dots, \varepsilon_{k-1}$ small positive parameters, define the Lyapunov functional:

$$L(\tau) := |z(\tau)|^2 + \min(\varrho, \varrho^{-1}) \sum_{k=1}^{n-1} \varepsilon_k \operatorname{Re}\left((B_\omega A_\omega^{k-1} z) \cdot (B_\omega A_\omega^k z)\right).$$

As $z' + (\varrho A_\omega + B_\omega) z = 0$, $\operatorname{Re}\left((A_\omega \eta) \cdot \eta\right) = 0$ and $\operatorname{Re}\left((B_\omega \eta) \cdot \eta\right) \ge |B_\omega \eta|^2$ we get
 $L'(\tau) + 2\operatorname{Re}\left((B_\omega z) \cdot z\right) + \min(1, \varrho^2) \sum_{k=1}^{n-1} \varepsilon_k |B_\omega A_\omega^k z|^2$

$$= -\min(\varrho, \varrho^{-1}) \left\{ \sum_{k=1}^{n-1} \varepsilon_k \Big(\operatorname{Re} \left((B_\omega A_\omega^{k-1} B_\omega z) \cdot (B_\omega A_\omega^k z) + (B_\omega A_\omega^{k-1} z) \cdot (B_\omega A_\omega^k B_\omega z) \right) \Big) \right\}$$

k=1

$$-\min(1,\varrho^2)\sum_{k=1}^{n-1}\varepsilon_k\operatorname{Re}\left((B_{\omega}A_{\omega}^{k-1}B_{\omega}z)\cdot(B_{\omega}A_{\omega}^{k+1}z)\right).$$

One may take $\varepsilon_0, \cdots, \varepsilon_{k-1}$ so small as, for all $\omega \in \mathbb{S}^{d-1}$ and $\rho > 0$,

$$L'(\tau) + \frac{\min(1, \varrho^2)}{2} \sum_{k=0}^{n-1} \varepsilon_k |B_{\omega} A_{\omega}^k z(\tau)|^2 \le 0 \quad \text{and} \quad L \approx |z|^2.$$

Setting $N_{\omega} := \min_{\eta \in \mathbb{S}^{n-1}} \sum_{k=0}^{n-1} \varepsilon_k |B_{\omega} A_{\omega}^k \eta|^2$, we end up with

$$L(t) \le e^{-\frac{1}{4}\min(1,\varrho^2)N_{\omega}\tau}L(0)$$

Assumption: $\min_{\omega \in \mathbb{S}^{d-1}} N_{\omega} > 0.$

This entails the following decay inequality:

$$|\widehat{w}(t,\xi)| \le 2|\widehat{w}_0(\xi)| e^{-c\kappa^{-1}\min(|\xi|^\beta,\kappa^2|\xi|^{2\alpha-\beta})t}.$$
(15)

The above assumption is equivalent to the Kalman rank condition:

$$\begin{pmatrix} B_{\omega} \\ B_{\omega}A_{\omega} \\ \cdots \\ BA_{\omega}^{n-1} \end{pmatrix} \qquad \text{has rank } n$$

or to the Shizuta-Kawashima condition:

 $\ker B_{\omega} \cap \{ \text{eigenvectors of } A_{\omega} \} = \{ 0 \}.$

From (15), using Parseval equality, we get

$$\|\dot{\Delta}_j w(t)\|_{L^2} \le 2\|\dot{\Delta}_j w_0\|_{L^2} e^{-\min(2^{j\beta},\kappa^2 2^{(2\alpha-\beta)j})\kappa^{-1}t} \quad \text{for all } j \in \mathbb{Z}.$$
(16)

Taking advantage of Duhamel's formula, we may afford to have a right-hand side f in the linear system: Inequality (16) implies that

$$\|\dot{\Delta}_{j}w\|_{L^{\infty}_{t}(L^{2})} + \kappa^{-1}\min\left(2^{j\beta},\kappa^{2}2^{j(2\alpha-\beta)}\right)\|\dot{\Delta}_{j}w\|_{L^{1}_{t}(L^{2})} \lesssim \|\dot{\Delta}_{j}w_{0}\|_{L^{2}} + \|\dot{\Delta}_{j}f\|_{L^{1}_{t}(L^{2})}.$$

This means that there is a gain of $\max(\beta, 2\alpha - \beta)$ (resp. $\min(\beta, 2\alpha - \beta)$) in low frequencies (resp. high frequencies) when performing a L^1 -in-time integration.

Application to a partially dissipative system

$$\begin{aligned} \partial_t u + \partial_x v &= 0\\ \partial_t v + \partial_x u + \lambda v &= 0; \end{aligned} \qquad \lambda > 0 \end{aligned}$$

The corresponding matrices A_{ω} and B_{ω} read

$$A_{\omega} = \begin{pmatrix} 0 & i \operatorname{sgn} \omega \\ i \operatorname{sgn} \omega & 0 \end{pmatrix} \quad \text{and} \quad B_{\omega} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \cdot$$

Ellipticity condition is satisfied with $\kappa = \lambda^{-1}$ and $\beta = 0$. In addition,

$$B_{\omega}A_{\omega} = \begin{pmatrix} 0 & 0\\ i\operatorname{sgn}\omega & 0 \end{pmatrix} \cdot$$

Therefore the Kalman rank condition is satisfied.

The threshold between low and high frequencies is at λ . The corresponding Lyapunov functional reads (for small enough ε):

$$\begin{split} \|(u,v)\|_{L^2}^2 + \varepsilon \lambda^{-1} \int_{\mathbb{R}} v \partial_x u \, dx & \text{in low frequencies} \\ \|(u,v)\|_{L^2}^2 + \varepsilon \lambda \int_{\mathbb{R}} v \, |D|^{-2} \partial_x u \, dx & \text{in high frequencies} \end{split}$$

There is parabolic smoothing with diffusion λ^{-1} on the whole solution (u, v) in low frequency, and exponential decay with parameter λ for high frequencies. For A and B two given functions, consider

 $\begin{cases} \partial_t u + A \partial_x u + \partial_x v = 0\\ \partial_t v + B \partial_x v + \partial_x u + \lambda v = 0. \end{cases}$

Applying $\dot{\Delta}_j$ to the system, we get

$$\begin{cases} \partial_t \dot{\Delta}_j u + \dot{S}_{j-1} A \partial_x \dot{\Delta}_j u + \partial_x \dot{\Delta}_j v = R_j(A, u) \\ \partial_t \dot{\Delta}_j v + \dot{S}_{j-1} B \partial_x \dot{\Delta}_j v + \partial_x \dot{\Delta}_j u + \lambda \dot{\Delta}_j v = R_j(B, v) \end{cases}$$

where the terms $R_j(A, u)$ and $R_j(B, v)$ may be estimated as follows:

$$\sum_{j} \|\dot{R}_{j}(C, w)\|_{L^{2}} \leq C2^{-js} \|\nabla C\|_{\dot{B}^{\frac{d}{2}}_{2,1}} \|w\|_{\dot{B}^{s}_{2,1}} \quad \text{if} \quad -d/2 < s \leq d/2.$$

4 D b 4 A b

→ 3 → 4 3

Partially dissipative system with convection

For A and B two given functions, consider

 $\begin{cases} \partial_t u + A \partial_x u + \partial_x v = 0\\ \partial_t v + B \partial_x v + \partial_x u + \lambda v = 0. \end{cases}$

Applying $\dot{\Delta}_j$ to the system, we get

$$\begin{cases} \partial_t \dot{\Delta}_j u + \dot{S}_{j-1} A \partial_x \dot{\Delta}_j u + \partial_x \dot{\Delta}_j v = R_j(A, u) \\ \partial_t \dot{\Delta}_j v + \dot{S}_{j-1} B \partial_x \dot{\Delta}_j v + \partial_x \dot{\Delta}_j u + \lambda \dot{\Delta}_j v = R_j(B, v) \end{cases}$$

where the terms $R_j(A, u)$ and $R_j(B, v)$ may be estimated as follows:

$$\sum_{j} \|\dot{R}_{j}(C,w)\|_{L^{2}} \leq C2^{-js} \|\nabla C\|_{\dot{B}^{\frac{d}{2}}_{2,1}} \|w\|_{\dot{B}^{s}_{2,1}} \quad \text{if} \quad -d/2 < s \leq d/2.$$

For the localized system, the relevant Lyapunov functionals read:

$$\begin{split} \|(\dot{\Delta}_{j}u,\dot{\Delta}_{j}v)\|_{L^{2}}^{2} + \varepsilon\lambda^{-1} \int_{\mathbb{R}} \dot{\Delta}_{j}v \,\partial_{x}\dot{\Delta}_{j}u \,dx & \text{if } 2^{j} \leq \lambda \\ \|(\dot{\Delta}_{j}u,\dot{\Delta}_{j}v)\|_{L^{2}}^{2} + \varepsilon\lambda \int_{\mathbb{R}} \dot{\Delta}_{j}v \,|D|^{-2}\partial_{x}\dot{\Delta}_{j}u \,dx & \text{if } 2^{j} > \lambda. \end{split}$$

・ロト ・同ト ・ヨト ・ヨト

For A and B two given functions, consider

 $\begin{cases} \partial_t u + A \partial_x u + \partial_x v = 0\\ \partial_t v + B \partial_x v + \partial_x u + \lambda v = 0. \end{cases}$

For the localized system, the relevant Lyapunov functionals read:

$$\begin{split} \|(\dot{\Delta}_{j}u,\dot{\Delta}_{j}v)\|_{L^{2}}^{2} + \varepsilon\lambda^{-1} \int_{\mathbb{R}} \dot{\Delta}_{j}v \,\partial_{x}\dot{\Delta}_{j}u \,dx & \text{if } 2^{j} \leq \lambda \\ \|(\dot{\Delta}_{j}u,\dot{\Delta}_{j}v)\|_{L^{2}}^{2} + \varepsilon\lambda \int_{\mathbb{R}} \dot{\Delta}_{j}v \,|D|^{-2}\partial_{x}\dot{\Delta}_{j}u \,dx & \text{if } 2^{j} > \lambda \end{split}$$

Taking ε small enough (independently of A and B) yields

$$\begin{aligned} \|(\dot{\Delta}_{j}u,\dot{\Delta}_{j}v)(t)\|_{L^{2}} + \min(\lambda,\lambda^{-1}2^{2j})\|(\dot{\Delta}_{j}u,\dot{\Delta}_{j}v)\|_{L^{1}_{t}(L^{2})} &\leq C\bigg(\|(\dot{\Delta}_{j}u_{0},\dot{\Delta}_{j}v_{0})\|_{L^{2}} \\ &+ \int_{0}^{t} \|(R_{j}(A,u),R_{j}(B,v))\|_{L^{2}} \,d\tau + \int_{0}^{t} \|(\nabla A,\nabla B)\|_{L^{\infty}} \|(\dot{\Delta}_{j}u,\dot{\Delta}_{j}v)\|_{L^{2}} \,d\tau\bigg),\end{aligned}$$

4 D b 4 A b

→ Ξ →

Partially dissipative system with convection

For A and B two given functions, consider

 $\begin{cases} \partial_t u + A \partial_x u + \partial_x v = 0\\ \partial_t v + B \partial_x v + \partial_x u + \lambda v = 0. \end{cases}$

Taking ε small enough (independently of A and B) yields

$$\begin{aligned} \|(\dot{\Delta}_{j}u,\dot{\Delta}_{j}v)(t)\|_{L^{2}} + \min(\lambda,\lambda^{-1}2^{2j})\|(\dot{\Delta}_{j}u,\dot{\Delta}_{j}v)\|_{L^{1}_{t}(L^{2})} &\leq C\bigg(\|(\dot{\Delta}_{j}u_{0},\dot{\Delta}_{j}v_{0})\|_{L^{2}} \\ &+ \int_{0}^{t}\|(R_{j}(A,u),R_{j}(B,v))\|_{L^{2}} \,d\tau + \int_{0}^{t}\|(\nabla A,\nabla B)\|_{L^{\infty}}\|(\dot{\Delta}_{j}u,\dot{\Delta}_{j}v)\|_{L^{2}} \,d\tau\bigg),\end{aligned}$$

whence, for $-d/2 < s \le d/2$,

$$\begin{aligned} \|(u,v)(t)\|_{\dot{B}^{s}_{2,1}} + \lambda \int_{0}^{t} \left(\lambda^{-2} \|(u,v)\|_{\dot{B}^{s+2}_{2,1}}^{\ell} + \|(u,v)\|_{\dot{B}^{s}_{2,1}}^{h}\right) d\tau \\ & \leq C \bigg(\|(u_{0},v_{0})\|_{\dot{B}^{s}_{2,1}} + \int_{0}^{t} \|\nabla(A,B)\|_{\dot{B}^{\frac{d}{2}}_{2,1}} \|(u,v)\|_{\dot{B}^{s}_{2,1}} d\tau \bigg) \cdot \end{aligned}$$

Similar estimates may be proved in any Besov space $\dot{B}^{\sigma}_{2,r}$ with $|\sigma| < d/2$.

< 61 b

Part 4. Global existence results for the compressible NS equations

The linearized Navier-Stokes equations read:

$$\begin{cases} \partial_t a + \operatorname{div} u = 0 \\ \partial_t u - \mu \Delta u - \mu' \nabla \operatorname{div} u + \nabla a = 0; \end{cases} \qquad \mu > 0 \quad \text{and} \quad \nu := \mu + \mu' > 0$$

э

Part 4. Global existence results for the compressible NS equations

The linearized Navier-Stokes equations read:

$$\begin{cases} \partial_t a + \operatorname{div} u = 0\\ \partial_t u - \mu \Delta u - \mu' \nabla \operatorname{div} u + \nabla a = 0; \end{cases} \qquad \mu > 0 \quad \text{and} \quad \nu := \mu + \mu' > 0. \end{cases}$$

We may apply the former results with n = d + 1, $\alpha = 1$, $\beta = 2$, $\kappa = \nu^{-1}$. Let $\tilde{\mu} = \mu/\nu$ and $\tilde{\mu}' = \mu'/\nu$. We have $A_{\omega} = \begin{pmatrix} 0 & i \operatorname{sgn} \vec{\omega} \\ i^T \operatorname{sgn} \vec{\omega} & 0 \end{pmatrix}$ and $B_{\omega} = \begin{pmatrix} 0 & 0 \\ 0 & \tilde{\mu} I_d + (\tilde{\mu} + \tilde{\mu}') \operatorname{sgn} \vec{\omega} \otimes \operatorname{sgn} \vec{\omega} \end{pmatrix}$.

Hence

$$B_{\omega}A_{\omega} = \begin{pmatrix} 0 & 0\\ i\,\mathrm{sgn}\,\vec{\omega} & 0 \end{pmatrix}$$

and the Kalman rank condition is satisfied.

伺き イヨト イヨト

Part 4. Global existence results for the compressible NS equations

The linearized Navier-Stokes equations read:

 $\begin{cases} \partial_t a + \operatorname{div} u = 0\\ \partial_t u - \mu \Delta u - \mu' \nabla \operatorname{div} u + \nabla a = 0; \end{cases}$

 $\mu > 0 \text{ and } \nu := \mu + \mu' > 0.$

(日) (四) (日) (日) (日)

We thus get

$$\|(\dot{\Delta}_{j}a, \dot{\Delta}_{j}u)(t)\|_{L^{2}} \leq e^{c\nu t \min(2^{2j}, \nu^{-2})} \|(\dot{\Delta}_{j}a_{0}, \dot{\Delta}_{j}u_{0})\|_{L^{2}}.$$

In low frequencies $2^{j}\nu \leq 1$, we have parabolic smoothing (with diffusion ν) for a and u and the corresponding Lyapunov functional reads

$$\|(a,u)\|_{L^2}^2 + \varepsilon \nu \int_{\mathbb{R}^d} u \cdot \nabla a \, dx$$
 with ε small enough.

In high frequency, we get exponential decay. Parabolic smoothing may be recovered afterward by using the global L^1 -in-time bound for ∇a , and estimates for the Lamé system: indeed

$$\partial_t u - \mu \Delta u - \mu' \nabla \operatorname{div} u = -\nabla a.$$

Part 4. Global existence results for the compressible NS equations

We thus get

$$\|(\dot{\Delta}_j a, \dot{\Delta}_j u)(t)\|_{L^2} \le e^{c\nu t \min(2^{2j}, \nu^{-2})} \|(\dot{\Delta}_j a_0, \dot{\Delta}_j u_0)\|_{L^2}.$$

In low frequencies $2^{j}\nu \leq 1$, we have parabolic smoothing (with diffusion ν) for a and u and the corresponding Lyapunov functional reads

$$\|(a,u)\|_{L^2}^2 + \varepsilon \nu \int_{\mathbb{R}^d} u \cdot \nabla a \, dx$$
 with ε small enough.

In high frequency, we get exponential decay. Parabolic smoothing may be recovered afterward by using the global L^1 -in-time bound for ∇a , and estimates for the Lamé system: indeed

$$\partial_t u - \mu \Delta u - \mu' \nabla \operatorname{div} u = -\nabla a.$$

As for the toy dissipative model, one may include a convection term in the analysis, which eventually leads to the following statement:

Theorem (R.D., 2000)

Assume that P'(1) > 0, and that $a_0 \in \dot{B}_{2,1}^{\frac{d}{2}-1} \cap \dot{B}_{2,1}^{\frac{d}{2}}$ and $u_0 \in \dot{B}_{2,1}^{\frac{d}{2}-1}$ are small enough. Then (9) has a unique global-in-time solution (a, u) with

 $a^\ell, u \in \mathcal{C}_b(\dot{B}_{2,1}^{\frac{d}{2}-1}) \cap L^1(\dot{B}_{2,1}^{\frac{d}{2}+1}) \ \, and \ \, a^h \in \mathcal{C}_b(\dot{B}_{2,1}^{\frac{d}{2}}) \cap L^1(\dot{B}_{2,1}^{\frac{d}{2}}).$

Optimal decay estimates for high frequencies

We now present another approach leading to a global statement in Besov spaces related to L^p ($p \neq 2$).

Equation for the divergence-free part $\mathcal{P}u$ of the velocity:

 $\partial_t \mathcal{P} u - \mu \Delta \mathcal{P} u = 0.$

Effective velocity : $w := Qu + \nu^{-1}(-\Delta)^{-1} \nabla a$. We get

$$\begin{cases} \partial_t \nabla a + \nu^{-1} \nabla a = -\Delta w \\ \partial_t w - \nu \Delta w = \nu^{-1} w - \nu^{-2} (-\Delta)^{-1} \nabla a. \end{cases}$$

Therefore for any $j \in \mathbb{Z}$ and $p \in [1, +\infty]$,

$$\begin{split} \nu \|\dot{\Delta}_{j} \nabla a\|_{L^{\infty}_{t}(L^{p})} + \|\nabla \dot{\Delta}_{j}a\|_{L^{1}_{t}(L^{p})} &\lesssim \nu \|\dot{\Delta}_{j} \nabla a_{0}\|_{L^{p}} + \nu 2^{2j} \|\dot{\Delta}_{j}w\|_{L^{1}_{t}(L^{p})} \\ \|\dot{\Delta}_{j}w\|_{L^{\infty}_{t}(L^{p})} + \nu 2^{2j} \|\dot{\Delta}_{j}w\|_{L^{1}_{t}(L^{p})} &\lesssim \|\dot{\Delta}_{j}w_{0}\|_{L^{p}} \\ + (\nu 2^{j})^{-2} (\nu 2^{2j} \|\dot{\Delta}_{j}w\|_{L^{1}_{t}(L^{p})} + \|\nabla \dot{\Delta}_{j}a\|_{L^{1}_{t}(L^{p})}). \end{split}$$

Hence, if $\nu 2^j$ is large enough,

$$\begin{aligned} \|\nu\dot{\Delta}_{j}\nabla a\|_{L^{\infty}_{t}(L^{p})} + \|\nabla\dot{\Delta}_{j}a\|_{L^{1}_{t}(L^{p})} &\lesssim \nu\|\dot{\Delta}_{j}\nabla a_{0}\|_{L^{p}} + \|\dot{\Delta}_{j}w_{0}\|_{L^{p}} \\ \|\dot{\Delta}_{j}w\|_{L^{\infty}_{t}(L^{p})} + \nu2^{2j}\|\dot{\Delta}_{j}w\|_{L^{1}_{t}(L^{p})} &\lesssim \nu\|\dot{\Delta}_{j}\nabla a_{0}\|_{L^{p}} + \|\dot{\Delta}_{j}w_{0}\|_{L^{p}}. \end{aligned}$$

・ 「 ト ・ ヨ ト ・ ヨ ト

-

Summary

In low frequency, the linearized equations tend to be hyperbolic (two eigenvalues with nonzero imaginary part). Hence it is hopeless to take a L^p framework with $p \neq 2$.

In high frequency, the fundamental observations are that, at the linear level:

- $\mathcal{P}u$ satisfies a heat equation;
- the effective velocity $w := \mathcal{Q}u + \nu^{-1}(-\Delta)^{-1}\nabla a$ has parabolic smoothing;
- *a* has exponential decay.

The only remaining difficulty is that we have to take care of the convection term $u \cdot \nabla a$ in the mass equation so as to avoid a loss of one derivative.

・ロト ・同ト ・ヨト ・ヨト

-

<u>Step 1.</u> Effective velocity The effective velocity $w := Qu + \nu^{-1}G'(0)(-\Delta)^{-1}\nabla a$ satisfies:

$$\partial_t w - \nu \Delta w = -\mathcal{Q}(u \cdot \nabla u) - \mathcal{Q}(J(a)\mathcal{A}u) + (G'(0) - G'(a))\nabla a) - \nu^{-1}G'(0)(-\Delta)^{-1}\nabla((1+a)\operatorname{div} u).$$

The blue terms are quadratic hence small (if we start with small data). The red term has a linear part. So using regularity estimates for the heat equation yields

$$\|w\|_{L^{\infty}(\dot{B}^{\frac{d}{p}}_{p,1})} + \nu\|w\|_{L^{1}(\dot{B}^{\frac{d}{p}}_{p,1})} \lesssim \|w_{0}\|_{\dot{B}^{\frac{d}{p}}_{p,1} - 1} + \nu^{-1}\|\mathcal{Q}u\|_{L^{1}(\dot{B}^{\frac{d}{p}}_{p,1})} + quadratic.$$

The red term has not the right scaling. It has two extra derivatives, hence it is good in high frequencies: if we put the threshold between low and high frequencies at j_0 s.t. $1 \ll 2^{j_0}\nu$ then

$$\nu^{-1} \|\mathcal{Q}u\|_{L^1(\dot{B}_{p,1}^{\frac{d}{p}-1})}^h \leq \nu^{-1} 2^{-2j_0} \|\mathcal{Q}u\|_{L^1(\dot{B}_{p,1}^{\frac{d}{p}+1})}^h \ll \nu \|\mathcal{Q}u\|_{L^1(\dot{B}_{p,1}^{\frac{d}{p}+1})}^h.$$

Hence, because $Qu = w - \nu^{-1}G'(0)(-\Delta)^{-1}\nabla a$,

$$\|w\|_{L^{\infty}(\dot{B}^{\frac{d}{p}}_{p,1})}^{h} + \nu\|w\|_{L^{1}(\dot{B}^{\frac{d}{p}}_{p,1})}^{h} \lesssim \|w_{0}\|_{\dot{B}^{\frac{d}{p}}_{p,1}}^{h} + \nu^{-2}G'(0)\|a\|_{L^{1}(\dot{B}^{\frac{d}{p}}_{p,1})}^{h} + quadratic.$$

The red term is very small compared to $||a||^h \frac{d}{dp}$. $L^1(\dot{B}_{p,1}^p)$. Step 2. Parabolic estimates for $\mathcal{P}u$. Because

$$\partial_t \mathcal{P} u + \mathcal{P}(u \cdot \nabla u) - \mu \mathcal{P} u = -\mathcal{P}(J(a)\mathcal{A} u),$$

we readily have

$$\|\mathcal{P}u\|_{L^{\infty}(\dot{B}^{\frac{d}{p}-1}_{p,1})} + \mu\|\mathcal{P}u\|_{L^{1}(\dot{B}^{\frac{d}{p}+1}_{p,1})} \lesssim \|\mathcal{P}u_{0}\|_{\dot{B}^{\frac{d}{p}}_{p,1}} + \text{quadratic.}$$

(日) (四) (王) (王)

ъ
Step 3. Decay estimates for a. We notice that

 $\partial_t a + u \cdot \nabla a + \nu^{-1} G'(0) a = -a \operatorname{div} u - \operatorname{div} w.$

As G'(0) > 0, estimates for transport equation (with damping) imply if $\|u\|_{L^1(\dot{B}_{p,1}^{\frac{d}{p}+1})}$ is small enough, that

$$\|a\|^{h}_{L^{\infty}_{t}(\dot{B}^{\frac{d}{p}}_{p,1})} + \nu^{-1} \|a\|^{h}_{L^{1}_{t}(\dot{B}^{\frac{d}{p}}_{p,1})} \lesssim \|a_{0}\|^{h}_{\dot{B}^{\frac{d}{p}}_{p,1}} + \|\operatorname{div} w\|^{h}_{L^{1}(\dot{B}^{\frac{d}{p}}_{p,1})} + \operatorname{quadratic.}$$
(17)

Recall that

$$\|w\|^{h}_{L^{\infty}(\dot{B}^{\frac{d}{p}-1}_{p,1})} + \nu\|w\|^{h}_{L^{1}(\dot{B}^{\frac{d}{p}+1}_{p,1})} \lesssim \|w_{0}\|^{h}_{\dot{B}^{\frac{d}{p}-1}_{p,1}} + (\nu 2^{j_{0}})^{-2}\nu^{-1}\|a\|^{h}_{L^{1}(\dot{B}^{\frac{d}{p}}_{p,1})} + \text{small.}$$

$$(18)$$

Hence plugging (17) in (18) and taking j_0 large enough, we deduce that

$$\begin{split} \|w\|^{h}_{L^{\infty}(\dot{B}^{\frac{d}{p}-1}_{p,1})} + \nu\|w\|^{h}_{L^{1}(\dot{B}^{\frac{d}{p}+1}_{p,1})} + \|a\|^{h}_{L^{\infty}_{t}(\dot{B}^{\frac{d}{p}}_{p,1})} + \nu^{-1}\|a\|^{h}_{L^{1}_{t}(\dot{B}^{\frac{d}{p}}_{p,1})} \\ \lesssim \|w_{0}\|^{h}_{\dot{B}^{\frac{d}{p}-1}_{p,1}} + \|a_{0}\|^{h}_{\dot{B}^{\frac{d}{p}}_{p,1}} + quadratic. \end{split}$$

As $Qu = w - \nu^{-1} G'(0) (-\Delta)^{-1} \nabla a$, one may replace w by Qu in the above inequality.

Step 4. Low frequency estimates.

As explained before, we have to restrict to Besov spaces $\dot{B}^s_{2,1}$. By taking advantage of method for partially parabolic systems, we get:

$$\|(a,u)\|^{\ell}_{L^{\infty}_{t}(\dot{B}^{\frac{d}{2}-1}_{2,1})} + \|(a,u)\|^{\ell}_{L^{1}_{t}(\dot{B}^{\frac{d}{2}+1}_{2,1})} \lesssim \|(a_{0},u_{0})\|^{\ell}_{\dot{B}^{\frac{d}{2}-1}_{2,1}} + \text{quadratic.}$$

Step 5. Global estimate.

$$X(t) := \|(a, u)\|_{L^{\infty}_{t}(\dot{B}^{\frac{d}{2}-1}_{2,1}) \cap L^{1}_{t}(\dot{B}^{\frac{d}{2}+1}_{2,1})} + \|a\|^{h} + \|a\|^{h}_{L^{\infty}_{t} \cap L^{1}_{t}(\dot{B}^{\frac{d}{p}}_{p,1})} + \|u\|^{h}_{L^{\infty}_{t}(\dot{B}^{\frac{d}{p}-1}_{p,1}) \cap L^{1}_{t}(\dot{B}^{\frac{d}{p}+1}_{p,1})}.$$

All the nonlinear terms may be bounded by $X^2(t)$ (split them into low and high frequencies) provided p < 2d and $p \leq 4$. We eventually get

$$X \le C(X(0) + X^2).$$
(19)

Now it is clear that as long as

$$2CX(t) \le 1,\tag{20}$$

the above blue inequality ensures that

$$X(t) \le 2CX(0). \tag{21}$$

500

Using a bootstrap argument, one may conclude that if X(0) is small enough then (20) is satisfied as long as the solution exists. Hence the red inequality holds.

Theorem

Let $p \in [2, 2d) \cap [2, 4]$. Assume that P'(1) > 0, $a_0 \in \dot{B}_{p,1}^{\frac{d}{p}}$ and $u_0 \in \dot{B}_{p,1}^{\frac{d}{p}-1}$ and that in addition a_0^ℓ and u_0^ℓ are in $\dot{B}_{2,1}^{\frac{d}{2}-1}$. There exist two constants c and M depending only on d, and on the parameters of the system such that if

$$\|(a_0, u_0)\|_{\dot{B}^{\frac{d}{2}-1}_{2,1}}^{\ell} + \|a_0\|_{\dot{B}^{\frac{d}{p}}_{p,1}}^{h} + \|u_0\|_{\dot{B}^{\frac{d}{p}-1}_{p,1}}^{h} \le c$$

then (9) has a unique global-in-time solution (a, u) with

$$\begin{split} (a,u)^{\ell} &\in \mathcal{C}_b(\dot{B}_{2,1}^{\frac{d}{2}-1}) \cap L^1(\dot{B}_{2,1}^{\frac{d}{2}+1}), \quad a^h \in \mathcal{C}_b(\dot{B}_{p,1}^{\frac{d}{p}}) \cap L^1(\dot{B}_{p,1}^{\frac{d}{p}}), \\ & u^h \in \mathcal{C}_b(\dot{B}_{p,1}^{\frac{d}{p}-1}) \cap L^1(\dot{B}_{p,1}^{\frac{d}{p}+1}). \end{split}$$

The general global existence statement for small perturbations of a stable state

Theorem

Let $p \in [2, 2d) \cap [2, 4]$. Assume that P'(1) > 0, $a_0 \in \dot{B}_{p,1}^{\frac{d}{p}}$ and $u_0 \in \dot{B}_{p,1}^{\frac{d}{p}-1}$ and that in addition a_0^ℓ and u_0^ℓ are in $\dot{B}_{2,1}^{\frac{d}{2}-1}$. There exist two constants c and M depending only on d, and on the parameters of the system such that if

$$\|(a_0, u_0)\|_{\dot{B}^{\frac{d}{2}-1}_{2,1}}^{\ell} + \|a_0\|_{\dot{B}^{\frac{d}{p}}_{p,1}}^{h} + \|u_0\|_{\dot{B}^{\frac{d}{p}-1}_{p,1}}^{h} \le c$$

then (9) has a unique global-in-time solution (a, u) with

$$(a,u)^{\ell} \in \mathcal{C}_{b}(\dot{B}_{2,1}^{\frac{d}{2}-1}) \cap L^{1}(\dot{B}_{2,1}^{\frac{d}{2}+1}), \quad a^{h} \in \mathcal{C}_{b}(\dot{B}_{p,1}^{\frac{d}{p}}) \cap L^{1}(\dot{B}_{p,1}^{\frac{d}{p}}),$$
$$u^{h} \in \mathcal{C}_{b}(\dot{B}_{p,1}^{\frac{d}{p}-1}) \cap L^{1}(\dot{B}_{p,1}^{\frac{d}{p}+1}).$$

- The first global existence result of strong solutions has been established by Matsumura and Nishida in 1980 (high Sobolev regularity).
- The above statement has been first proved independently in a joint work with Charve and by Chen, Miao and Z. Zhang, in 2009.
- Here we adopted Haspot's method (2010).

The general global existence statement for small perturbations of a stable state

Theorem

Let $p \in [2, 2d) \cap [2, 4]$. Assume that P'(1) > 0, $a_0 \in \dot{B}_{p,1}^{\frac{d}{p}}$ and $u_0 \in \dot{B}_{p,1}^{\frac{d}{p}-1}$ and that in addition a_0^ℓ and u_0^ℓ are in $\dot{B}_{2,1}^{\frac{d}{2}-1}$. There exist two constants c and M depending only on d, and on the parameters of the system such that if

$$\|(a_0, u_0)\|_{\dot{B}^{\frac{d}{2}-1}_{2,1}}^{\ell} + \|a_0\|_{\dot{B}^{\frac{d}{p}}_{p,1}}^{h} + \|u_0\|_{\dot{B}^{\frac{d}{p}-1}_{p,1}}^{h} \le c$$

then (9) has a unique global-in-time solution (a, u) with

$$\begin{aligned} (a,u)^{\ell} \in \mathcal{C}_{b}(\dot{B}_{2,1}^{\frac{d}{2}-1}) \cap L^{1}(\dot{B}_{2,1}^{\frac{d}{2}+1}), \quad a^{h} \in \mathcal{C}_{b}(\dot{B}_{p,1}^{\frac{d}{p}}) \cap L^{1}(\dot{B}_{p,1}^{\frac{d}{p}}), \\ u^{h} \in \mathcal{C}_{b}(\dot{B}_{p,1}^{\frac{d}{p}-1}) \cap L^{1}(\dot{B}_{p,1}^{\frac{d}{p}+1}). \end{aligned}$$

• The smallness condition is satisfied for small densities and large highly oscillating velocities: take $u_0^{\varepsilon}: x \mapsto \phi(x) \sin(\varepsilon^{-1}x \cdot \omega) n$ with ω and n in \mathbb{S}^{d-1} and $\phi \in \mathcal{S}(\mathbb{R}^d)$. Then

$$\|u_0^{\varepsilon}\|_{\dot{B}^{\frac{d}{p}-1}_{p,1}} \le C\varepsilon^{1-\frac{d}{p}} \quad \text{if} \ p > d.$$

Hence such data with small enough ε generate global unique solutions.

Fourier analysis Applications Partially dissipative eq. **Global results for comp. NS** approprior occession occessio

We now want to study the convergence of the barotropic Navier-Stokes equations when the Mach number ε tends to 0.

The relevant time scale is $1/\varepsilon$, hence one makes the following rescaling

 $(\rho,u)(t,x)=(\rho^\varepsilon,\varepsilon u^\varepsilon)(\varepsilon t,x)$

and the original system (9) becomes

 $\begin{cases} \partial_t \rho^{\varepsilon} + \operatorname{div}(\rho^{\varepsilon} u^{\varepsilon}) = 0, \\ \partial_t (\rho^{\varepsilon} u^{\varepsilon}) + \operatorname{div}(\rho^{\varepsilon} u^{\varepsilon} \otimes u^{\varepsilon}) - \mu \Delta u^{\varepsilon} - \mu' \nabla \operatorname{div} u^{\varepsilon} + \frac{\nabla P^{\varepsilon}}{\varepsilon^2} = 0. \end{cases}$

In the case of well-prepared data:

 $\rho_0^{\varepsilon} = 1 + \mathcal{O}(\varepsilon^2)$ and u_0^{ε} with div $u_0^{\varepsilon} = \mathcal{O}(\varepsilon)$,

one may use asymptotic expansions to show that the solutions to the above system tend to the solution to the incompressible Navier-Stokes equations when ε goes to 0.

In the case of ill-prepared data, time derivatives are of order ε^{-1} and highly oscillating acoustic waves do have to be considered. Whether they may interact or not is the main problem from a mathematical viewpoint. This is the question that we want to address now in the whole space framework.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ ・ つ へ ()・

So we consider data

 $\rho_0^{\varepsilon} = 1 + \varepsilon b_0$ and u_0

with (b_0, u_0) independent of ε (just to simplify). Note that it is not assumed that $\operatorname{div} u_0 = 0$. We still assume that P'(1) = 1.

Denoting $\rho^{\varepsilon} = 1 + \varepsilon b^{\varepsilon}$, it is found that $(b^{\varepsilon}, u^{\varepsilon})$ satisfies

$$(NSC_{\varepsilon}) \qquad \begin{cases} \partial_t b^{\varepsilon} + \frac{\operatorname{div} u^{\varepsilon}}{\varepsilon} = -\operatorname{div}(b^{\varepsilon} u^{\varepsilon}), \\ \partial_t u^{\varepsilon} + u^{\varepsilon} \cdot \nabla u^{\varepsilon} - \frac{\mathcal{A}u^{\varepsilon}}{1 + \varepsilon b^{\varepsilon}} + (1 + k(\varepsilon b^{\varepsilon})) \frac{\nabla b^{\varepsilon}}{\varepsilon} = 0, \\ (b^{\varepsilon}, u^{\varepsilon})_{|t=0} = (b_0, u_0), \end{cases}$$

with $\mathcal{A} := \mu \Delta + \mu' \nabla \text{div}$ and k a smooth function satisfying k(0) = 0.

According to the previous parts, System (NSC_{ε}) is locally well-posed. We want to study whether u^{ε} tends in some sense to the solution v of the incompressible Navier-Stokes equations:

(NS)
$$\begin{cases} \partial_t v + \mathcal{P}(v \cdot \nabla v) - \mu \Delta v = 0, \\ v_{|t=0} = \mathcal{P}u_0. \end{cases}$$

For simplicity, we restrict to the case of small data (b_0, u_0) . Hence all the results will be global-in-time.

・ 「 ト ・ ヨ ト ・ ヨ ト

The proof of the convergence to the incompressible Navier-Stokes equations comprises four steps:

- **(**) Global existence and uniform estimates for (NSC_{ε}) ;
- **2** Global existence for the corresponding limit system (NS);
- **3** Convergence to 0 for the "compressible part" of the solution, namely $(b^{\varepsilon}, Qu^{\varepsilon})$;

< 回 > < 三 > < 三 >

Step 1. Global existence for (NSC_{ε}) and uniform estimates.

Making the change of functions

$$b(t,x) := \varepsilon b^{\varepsilon}(\varepsilon^2 t, \varepsilon x), \ u(t,x) := \varepsilon u^{\varepsilon}(\varepsilon^2 t, \varepsilon x)$$

we notice that $(b^{\varepsilon}, u^{\varepsilon})$ solves (NSC_{ε}) if and only if (b, u) solves (NSC) with rescaled data $b_0 := \varepsilon b_0(\varepsilon \cdot)$, $u_0 := \varepsilon u_0(\varepsilon \cdot)$ and h^{ε} . Hence the global existence theorem for (NSC) with p = 2 ensures the first part of the theorem. We get a global solution $(b^{\varepsilon}, u^{\varepsilon})$ such that

$$\begin{split} \|b^{\varepsilon}\|^{\ell}_{L^{\infty}(\dot{B}^{\frac{d}{2}-1}_{2,1})\cap L^{1}(\dot{B}^{\frac{d}{2}+1}_{2,1})} + \varepsilon \|b^{\varepsilon}\|^{h}_{L^{\infty}(\dot{B}^{\frac{d}{2}}_{2,1})} + \varepsilon^{-1}\|b^{\varepsilon}\|^{h}_{L^{1}(\dot{B}^{\frac{d}{2}}_{2,1})} \\ + \|u^{\varepsilon}\|_{L^{\infty}(\dot{B}^{\frac{d}{2}-1}_{2,1})\cap L^{1}(\dot{B}^{\frac{d}{2}+1}_{2,1})} &\leq M \big(\|b_{0}\|^{\ell}_{\dot{B}^{\frac{d}{2}-1}_{2,1}} + \varepsilon \|b_{0}\|^{h}_{\dot{B}^{\frac{d}{2}}_{2,1}} + \|u_{0}\|_{\dot{B}^{\frac{d}{2}-1}_{2,1}} \big). \end{split}$$

Warning: here the threshold between low and high frequencies is at ε^{-1} .

Step 2. Global existence for (NS).

As u_0 is small, one may apply the global existence result for small data. We get a (small) solution $v \in C_b(\mathbb{R}^+; \dot{B}_{2,1}^{\frac{d}{2}-1}) \cap L^1(\mathbb{R}^+; \dot{B}_{2,1}^{\frac{d}{2}+1}).$

Step 3. Convergence to zero for the compressible modes $(b^{\varepsilon}, \mathcal{Q}u^{\varepsilon})$.

The functions b and u defined above satisfy

$$\begin{cases} \partial_t b + \operatorname{div} \mathcal{Q}u = F := -\operatorname{div}(bu), \\ \partial_t \mathcal{Q}u + \nabla b = G := -\mathcal{Q}\left(u \cdot \nabla u + \frac{1}{1+b}\mathcal{A}u + K(b)\nabla b\right). \end{cases}$$
(22)

The left-hand side is the acoustic wave equation, which has dispersive properties in the whole space \mathbb{R}^d (with $d \geq 2$). This will be the key to our convergence result.

・ 同 ト ・ ヨ ト ・ ヨ ト

Fourier analysis Applications Partially dissipative eq. Global results for comp. NS

A short digression on dispersive equations and Strichartz estimates

Let $(U(t))_{t \in \mathbb{R}}$ be a group of unitary operators on $L^2(\mathbb{R}^d)$ satisfying the dispersion inequality:

$$||U(t)f||_{L^{\infty}} \leq \frac{C}{|t|^{\sigma}} ||f||_{L^1}$$
 for some $\sigma > 0$.

Example: $\sigma = (d-1)/2$ for the wave equation on \mathbb{R}^d , and $\sigma = d/2$ for the Schrödinger equation.

Interpolating between $L^2 \mapsto L^2$ and $L^1 \mapsto L^\infty$, we deduce that

$$\|U(t)f\|_{L^r} \leq \left(\frac{C}{|t|^\sigma}\right)^{\frac{1}{r'}-\frac{1}{r}} \|f\|_{L^{r'}} \quad \text{for all} \ \ 2\leq r\leq\infty.$$

Definition: A couple $(q,r) \in [2,\infty]^2$ is admissible if $1/q + \sigma/r = \sigma/2$ and $(q,r,\sigma) \neq (2,\infty,1)$.

Theorem (Strichartz estimates)

- **9** For any admissible couple (q,r) we have $||U(t)u_0||_{L^q(L^r)} \leq C||u_0||_{L^2}$;
- $\ensuremath{\mathfrak{O}}$ For any admissible couples (q_1,r_1) and (q_2,r_2) we have

$$\left\| \int_0^t U(t-\tau) f(\tau) \, d\tau \right\|_{L^{q_1}(L^{r_1})} \lesssim \|f\|_{L^{q'_2}(L^{r'_2})}.$$

Remark: compared to Sobolev embedding $H^{d(\frac{1}{2}-\frac{1}{r})} \hookrightarrow L^r$, Strichartz estimates provides a gain of $d(\frac{1}{2}-\frac{1}{r}) = \frac{d}{q\sigma}$ derivative.

The TT^* argument

Lemma (TT^* argument)

Let $T: \mathcal{H} \to B$ a bounded operator from the Hilbert space \mathcal{H} to the Banach space B and $T^{\star}: B' \to \mathcal{H}$ the adjoint operator defined by

$$\forall (x,y) \in B' \times \mathcal{H}, \ (T^*x \mid y)_{\mathcal{H}} = \langle x, \overline{Ty} \rangle_{B',B}.$$

Then we have

$$||TT^{\star}||_{\mathcal{L}(B';B)} = ||T||^{2}_{\mathcal{L}(\mathcal{H};B)} = ||T^{\star}||^{2}_{\mathcal{L}(B';\mathcal{H})}.$$

We take

$$\mathcal{H} = L^2(\mathbb{R}^d), \quad B = L^q(\mathbb{R}; L^r(\mathbb{R}^d)), \quad B' = L^{q'}(\mathbb{R}; L^{r'}(\mathbb{R}^d)) \quad \text{and} \quad T: u_0 \longmapsto U(t)u_0.$$

Hence

$$T^{\star}:\phi\longmapsto \int_{\mathbb{R}}U(-t')\phi(t')\,dt' \quad ext{and} \quad TT^{\star}:\phi\longmapsto igg[t\mapsto\int_{\mathbb{R}}U(t-t')\phi(t')\,dt'igg].$$

イロン イボン イヨン イヨン

= nar

Proving the homogeneous Strichartz estimate

We want to prove $||Tu_0||_{L^q(L^r)} \leq C||u_0||_{L^2}$. According to the TT^* lemma, it is equivalent to

$$\|TT^{\star}\phi\|_{L^{q}(L^{r})} \le C \|\phi\|_{L^{q'}(L^{r'})}.$$
(23)

Now, we have

$$||TT^{\star}\phi(t)||_{L^{r}} \leq \int_{\mathbb{R}} ||U(t-t')\phi(t')||_{L^{r}} dt.$$

So taking advantage of the dispersion inequality $L^{r'} \to L^r$ and of the relation $\sigma(\frac{1}{r'} - \frac{1}{r}) = \frac{2}{q}$, we get

$$||TT^{\star}\phi(t)||_{L^{r}} \leq \int_{\mathbb{R}} \frac{1}{|t-t'|^{\frac{2}{q}}} ||\phi(t')||_{L^{r'}} dt.$$

Applying the Hardy-Littlewood-Sobolev inequality gives (23) if $2 < q < \infty$.

Remarks:

• Endpoint $(q,r) = (\infty, 2)$ stems from the fact that $(U(t))_{t \in \mathbb{R}}$ is unitary on L^2 . Endpoint $(q,r) = (2, 2\sigma/(\sigma-1))$ if $\sigma > 1$ is more involved (Keel & Tao).

² The nonhomogeneous Strichartz inequality follows from similar arguments.

3 In the case of the linear wave or Schrödinger equation, using $(\dot{\Delta}_j)_{j \in \mathbb{Z}}$ allows to get Strichartz estimates involving Besov norms.

Application to the acoustic wave equations

The system

$$\begin{cases} \partial_t b + \operatorname{div} \mathcal{Q}u = F := -\operatorname{div}(bu), \\ \partial_t \mathcal{Q}u + \nabla b = G := -\mathcal{Q}\left(u \cdot \nabla u + \frac{1}{1+b}\mathcal{A}u + K(b)\nabla b\right). \end{cases}$$
(24)

is associated to a group U(t) of unitary operators on $L^2(\mathbb{R}^d)$ which satisfies the dispersion inequality

$$||U(t)(b_0, v_0)||_{L^{\infty}} \le Ct^{-\frac{d-1}{2}} ||(b_0, v_0)||_{L^1}.$$

Hence Strichartz estimates are available for this system if $d \geq 2$.

-

Application to the acoustic wave equations

The system

$$\begin{cases} \partial_t b + \operatorname{div} \mathcal{Q}u = F := -\operatorname{div}(bu), \\ \partial_t \mathcal{Q}u + \nabla b = G := -\mathcal{Q}\left(u \cdot \nabla u + \frac{1}{1+b}\mathcal{A}u + K(b)\nabla b\right). \end{cases}$$
(24)

is associated to a group U(t) of unitary operators on $L^2(\mathbb{R}^d)$ which satisfies the dispersion inequality

$$||U(t)(b_0, v_0)||_{L^{\infty}} \le Ct^{-\frac{d-1}{2}} ||(b_0, v_0)||_{L^1}.$$

Hence Strichartz estimates are available for this system if $d \geq 2$.

Localizing (24) by means of $(\dot{\Delta}_j)_{j\in\mathbb{Z}}$, we get

$$\|(b,\mathcal{Q}u)\|_{\tilde{L}^{r}_{T}(\dot{B}^{\frac{d}{p}-1+\frac{1}{r}}_{p,1})} \lesssim \|(b_{0},\mathcal{Q}u_{0})\|_{\dot{B}^{\frac{d}{2}-1}_{2,1}} + \|(F,G)\|_{L^{1}_{T}(\dot{B}^{\frac{d}{2}-1}_{2,1})}$$

 $\text{whenever } 2 \leq p \leq 2 \bigg(\frac{d-1}{d-3} \bigg), \quad \frac{2}{r} = (d-1) \bigg(\frac{1}{2} - \frac{1}{p} \bigg) \quad \text{and} \quad (r,p,d) \neq (2,\infty,3).$

Combining product laws and the global a priori estimate for (b, u) gives

$$\|(F,G)\|_{L^1(\dot{B}_{2,1}^{\frac{d}{2}-1})} \le CC_0.$$

Application to the acoustic wave equations

Localizing (24) by means of $(\dot{\Delta}_j)_{j\in\mathbb{Z}}$, we get

$$\|(b,\mathcal{Q}u)\|_{\tilde{L}^r_T(\dot{B}^{\frac{d}{p}}_{p,1}-1)} \stackrel{d}{\underset{>}{\leq}} \|(b_0,\mathcal{Q}u_0)\|_{\dot{B}^{\frac{d}{2}}_{2,1}-1} + \|(F,G)\|_{L^1_T(\dot{B}^{\frac{d}{2}}_{2,1}-1)}$$

whenever $2 \leq p \leq 2\left(\frac{d-1}{d-3}\right)$, $\frac{2}{r} = (d-1)\left(\frac{1}{2} - \frac{1}{p}\right)$ and $(r, p, d) \neq (2, \infty, 3)$.

Combining product laws and the global a priori estimate for (b, u) gives

$$\|(F,G)\|_{L^1(\dot{B}_{2,1}^{\frac{d}{2}-1})} \le CC_0.$$

Eventually, resuming to the initial variables, we end up with

$$\|(b^{\varepsilon}, \mathcal{Q}u^{\varepsilon})\|_{\widetilde{L}^{r}(\dot{B}_{p,1}^{\frac{d}{p}-1+\frac{1}{r}})} \leq CC_{0}\varepsilon^{\frac{1}{r}},$$

where

•
$$p = 2(d-1)/(d-3)$$
 and $r = 2$ if $d \ge 4$,

•
$$p \in [2, \infty)$$
 and $r = 2p/(p-2)$ if $d = 3$.

•
$$p \in [2,\infty]$$
 and $r = 4p/(p-2)$ if $d = 2$.

(*) *) *) *)

Step 4. Convergence of the incompressible part.

The vector-field $w^{\varepsilon} := \mathcal{P}u^{\varepsilon} - v$ satisfies

$$\partial_t w^{\varepsilon} - \mu \Delta w^{\varepsilon} = H^{\varepsilon}, \qquad w^{\varepsilon}_{|t=0} = 0,$$
(24)

with

$$H^{\varepsilon} := -\mathcal{P}(w^{\varepsilon} \cdot \nabla v) - \mathcal{P}(u^{\varepsilon} \cdot \nabla w^{\varepsilon}) - \mathcal{P}(\mathcal{Q}u^{\varepsilon} \cdot \nabla v) - \mathcal{P}(u^{\varepsilon} \cdot \nabla \mathcal{Q}u^{\varepsilon}) - \mathcal{P}(J(\varepsilon b^{\varepsilon})\mathcal{A}u^{\varepsilon}).$$

There are three types of (quadratic) terms in H^{ε} :

- The blue terms are linear in w^{ε} , but small because u^{ε} and v are small.
- Owing to $\mathcal{Q}u^{\varepsilon}$, the red terms decay like some power of ε (previous step).
- The green term is small because $J(\varepsilon b^{\varepsilon}) \sim \varepsilon b^{\varepsilon}$.

One has to use appropriate norms, keeping in mind that $\nabla v, \nabla \mathcal{Q}u^{\varepsilon}$ are bounded in e.g. $\tilde{L}^2(\dot{B}_{2,1}^{\frac{d}{2}})$. For instance, in the (nonphysical !) case $d \geq 4$, one has

$$\frac{\|(b^{\varepsilon},\mathcal{Q}u^{\varepsilon})\|}{\tilde{L}^{2}(\dot{B}_{p,1}^{\frac{d}{p}-\frac{1}{2}})} \leq CC_{0}\varepsilon^{\frac{1}{2}} \quad \text{with} \ p = 2(d-1)/(d-3).$$

Estimates for the heat equation ensure that

$$\|w^{\varepsilon}\|_{L^{1}(\dot{B}^{\frac{d}{p}+\frac{1}{2}}_{p,1})} + \|w^{\varepsilon}\|_{L^{\infty}(\dot{B}^{\frac{d}{p}-\frac{3}{2}}_{p,1})} \lesssim \|H^{\varepsilon}\|_{L^{1}(\dot{B}^{\frac{d}{p}-\frac{3}{2}}_{p,1})}$$
(25)

and the above heuristics combined with product laws in Besov spaces leads to

$$\|w^{\varepsilon}\|_{L^{1}(\dot{B}^{\frac{d}{p}+\frac{1}{2}}_{p,1})} + \|w^{\varepsilon}\|_{L^{\infty}(\dot{B}^{\frac{d}{p}-\frac{3}{2}}_{p,1})} \leq CC_{0}\varepsilon^{\frac{1}{2}}.$$

Raphaël Danchin Fourier analysis methods and fluid mechanics

Theorem

There exist $\eta, M > 0$ depending only on d and G, such that if

$$C_0 := \|b_0\|_{\dot{B}_{2,1}^{\frac{d}{2}-1} \cap \dot{B}_{2,1}^{\frac{d}{2}}} + \|u_0\|_{\dot{B}_{2,1}^{\frac{d}{2}}} \le \eta$$
(26)

then the following results hold:

() System (NSC $_{\varepsilon}$) has a unique global solution ($b^{\varepsilon}, u^{\varepsilon}$) with

$$\|b^{\varepsilon}\|_{L^{\infty}(\dot{B}^{\frac{d}{2}-1}_{2,1})\cap L^{2}(\dot{B}^{\frac{d}{2}}_{2,1})} + \varepsilon\|b^{\varepsilon}\|_{L^{\infty}(\dot{B}^{\frac{d}{2}}_{2,1})} + \|u^{\varepsilon}\|_{L^{\infty}(\dot{B}^{\frac{d}{2}-1}_{2,1})\cap L^{1}(\dot{B}^{\frac{d}{2}+1}_{2,1})} \le MC_{0}$$

2 the incompressible Navier-Stokes equations (NS) with data $\mathcal{P}u_0$ have a unique solution v with

$$\|v\|_{L^{\infty}(\dot{B}_{2,1}^{\frac{d}{2}-1})\cap L^{1}(\dot{B}_{2,1}^{\frac{d}{2}+1})} \le MC_{0}$$

⁽²⁾ for any α ∈]0,1/2] if d ≥ 4, α ∈]0,1/2[if d = 3, α ∈]0,1/6] if d = 2, $\mathcal{P}u^{\varepsilon}$ tends to v in $\mathcal{C}(\mathbb{R}^+; \dot{B}_{\infty,1}^{-1-\alpha})$ when ε goes to 0.

(b^ε, Qu^ε) tends to 0 in some space L^r(B^ρ_{p,1}) (the value of r and p depending on the dimension) with an explicit rate of decay.

Fourier analysis Applications Partially dissipative eq. Global results for comp. NS accorrespondence accorr

- Recent related mini courses (+references therein):
 - Wuhan-Beijing, 2005 : available on my webpage.
 - Hammamet, March 2012, http://www.fst.rnu.tn/cimpa/
 - Chambéry, May 2012, http://www.lama.univ-savoie.fr/~ acary-robert/SMF12/Prog.php
 - Textbooks on Fourier analysis for PDEs:
 - Bahouri-Chemin-Danchin, Springer (2012)
 - Chemin, Perfect incompressible fluids, Oxford (1998)
 - T. Runst and W. Sickel: Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations. de Gruyter, 1996.
 - M. Taylor, Tools for PDE. Pseudodifferential operators, paradifferential operators, and layer potentials, AMS, 2000.
 - Partially dissipative systems:
 - Kawashima: PhD thesis
 - Beauchard-Zuazua: Large time asymptotics for partially dissipative hyperbolic systems. Arch. Ration. Mech. Anal., **199** (2011).
 - Lagrangian coordinates:
 - Danchin and Mucha: A Lagrangian approach for solving the incompressible Navier-Stokes equations with variable density, *CPAM*, **65**(10), 2012.
 - Danchin : A Lagrangian approach for the compressible Navier-Stokes equations R Danchin arXiv:1201.6203, 2012

1