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Fourier analysis
o

Motivation for Fourier analysis

Fundamental fact: for spectrally localized functions over R?, derivatives act
almost as homotheties. In effect:

F(Vu)(§) = i6F (u).

Hence, Parseval equality implies that if Supp F(u) C {¢ € R : rA < €] < RA}
then
[[Vu

L2 = Au

L2
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Bernstein inequalities

e Direct Bernstein inequality: Let R > 0. A constant C exists so that, for any
k € N, any couple (p,q) in [1,00]? with ¢ > p > 1 and any function u of LP
with Suppu C B(0,AR) for some A > 0, we have

ktd(f—

1
IV ul g < CFHIA @ ull o

o Reverse Bernstein inequality: Let 0 < r < R. There exists a constant C' so
that for any k € N, p € [1,00] and any function u of LP with
Supp@ C {¢ € R? /rX < |¢] < RA}, we have

Mellull e < CEFY| V| o

Raphaél Danchin Fourier analysis methods and fluid mechanics



Fourier analysis
o
Bernstein inequality for (generalized) heat semi-groups

Assume Suppt C {£€ € R% : 7\ < |£] < RA}. Then for any o € R, there exists c
and C so that for all p € [1,+0o0],

lle=1P1 u| Lo < Ce™ " |lul| -

If p =2 then this is an obvious consequence of the localization of Fu and of
Parseval equality, since

f(e_tlD‘Uu)(f):e_f"&lo}'u(g) and |£] ~ A on Supp Fu.
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Bernstein inequality for (generalized) heat semi-groups

Proposition

Assume Suppd C {£€ € R% : 7\ < |€] < RA}. Then for any o € R, there exists c
and C so that for all p € [1,+0o0],

e P ullLe < Ce™ ™ ||ul| L.

The proof for general p stems from the following lemma:

Let ¢ € CS°(R?) supported in (say) {€ € R? : /2 < [¢| < 2R}. There exist two
positive constants ¢ and C such that for any A > 0, and p € [1,00] we have

H‘ffﬂD‘a¢(>\71D)H1:(LP;LP) < Ce oA,

Proof:
@ Change of scale reduces the proof to the case A = 1;

@ F(e P g(D)u)(€) = (715" 6(£)) F(u)(©)-

© Young inequality reduces the proof to ||F~1 (e*tm”qb({)) 1 < Ce~et.
This follows from standard computations : integration by parts, ...
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The Littlewood-Paley decomposition

Let x be a bump function with Supp x C B(0, %) and x =1 on B(0, %) We set
@(&) = x(£/2) = x(&) so that:

O+ w277 =1 and > @277 =1 if ££0.

JjeN JEZ
The homogeneous dyadic blocks Aj are defined by
Aj:=p(279ID) for jeZ
The homogeneous Littlewood-Paley decomposition for u reads

u= ZAJU (1)
J

That equality holds true in the set &’ of tempered distributions modulo
polynomials only. A way to overcome this is to restrict to the set S;L of tempered
distributions u such that

lim ||Sjullpe =0 with S := x(277D).
J—r—00

Equality (1) holds true in &’ whenever v is in S,.
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Functional spaces

Littlewood Paley decomposition allows to characterize some classical norms or
semi-norms such as:

o homogeneous Sobolev semi-norm: |jul|?

Q

D@1 Aul 2)%;
J

Q

o homogeneous Holder semi-norm: ||u|| o0, ~ sup 297 Ajul| oo .
J

This motivates the following definition of homogeneous Besov spaces:

n

For seR and 1 < p,r < oo, we set

1

. . i . .
lullgs == (szsnAjqup) if T<oo and |lullgs = sup2’®||Aulre.
P, 7 p,00 j

The homogeneous Besov space By ,. 1is the subset of u € S) s.t. |lullgs < oo.
p,T
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Functional spaces

Besov spaces are independent of the Littlewood-Paley decomposition (Aj)jez.
This is a consequence of the following fundamental lemma:

Lemma

Let 0<r < R. Let s€R and 1 <p,r < oco. Let (uj)jez be such that
u = Zjez uj converges in S and Suppu; C 27C(0,7, R) for all j € Z. Then

<o = u:i= Zuj 15 i B;YT(Rd)
JEZL

[ P

and we have HuHB; o~ H2j3||u]-HLp(Rd) o~

If s > 0 then the result is still true under the weaker assumption that
Suppu; C B(0,27R).

.

In other words, for spectrally localized series, proving that the sum is in a Besov
space amounts to getting suitable bounds for the LP norm of each term.
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Functional spaces

Comparison with Lebesgue spaces:

0

0 .
Bp,min(p,?) — LP — Bp,max(p,2)

for any p € (1,00).
We also have ) )
B), »LP— B)  if p=1,00.

Having w in B$ _ means that u has s fractional derivatives in LP:

p,T

Proposition (Characterization by finite differences)

For s €]0,1[ and finite p,r, we have

g, ~ (L(LCUSE) 2) )

Stmilar result holds for p or r infinite.
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Functional spaces

A few classical properties of Besov spaces:

o With our definition, the spaces B;‘T(Rd) are complete if and only if s < d/p,
or s=d/p and r =1.

o The following real interpolation property is fulfilled for all 6 € (0,1):
[B;},,I,BZ?TQ]((;,T) = B,e)ff+(1_0)sl if 1<p,r1,r2,7r <oco and s1 # so.

e Functional embedding: IfseR, 1<p; <ps<oo, 1<7r <rg<oo then

s d d(ﬁ_ﬁ) dy.
Bp1 ry (RY) = sz,rz (R%);
e Fatou property: if (un)nen is a bounded sequence of functions of Bp » with

Un — u in S] then
we By, and |ullg, < Climinfflunlg, .

o Action of Fourier multipliers: For any smooth homogeneous of degree m
function F on Rd \ {0} the operator F(D) maps B . in By, ™. In

particular V : By — /%Ij -
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Maximal regularity estimates for parabolic equations

Consider the heat equation
Otu — Au = f, Ujp=0 = U0

or, more generally,
Owv+ |D|%v =g, Vjt—0 = V0.

We want to establish estimates of the form
10w, D*ull 1 (xy < C(lluollx + 1 fllr1(x)) (2)
10w, D170l L1 x) < C(llvollx + gl L1 (x))- (3)

It is well known that if » € (1,00) and X = LY or W54 for some s € R and
q € (1,00) then, for the heat equation with ug =0,

0su, D?ul| 1r(xy < CllfllLr(x)-

However the inequality fails for the endpoint case r = 1 for those spaces X.

Inequality (2) holds true for any p € [1,00] and s €R, if X = B;1
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Maximal regularity estimates for parabolic equations

Proof for the heat equation (for simplicity):

We start with atAju — AAju = Ajf for any j € Z. Hence, according to
Duhamel’s formula

t
Aj’u,(t) = etAAqu +/0 e(tiT)AAjf(T) dr.

Therefore, taking the LP norm of both sides, we get
t
1A u(®)lle < lle"*AjuollLe +/ e =2 A, £ (7)o dr. (4)
0
According to Bernstein inequality for the heat semi-group, we have

. _ 27 .
e** Azl Lr < Ce™ 27 ||A 2] Lp.

Therefore, applying this inequality and taking the L' or L° norm of both sides
of (4) on [0,¢],

1A5ull e (zo) + 221 Agul iy 2oy < € (Iguollr + 1145 F 13 (10 )-
Multiplying by 27¢ and summing up over j yields

S0 N8 ulge o) Hiull g gz S ol |+ 17155 ) D
J ) ' ' ’

HUHE?G(B;J)
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ooe
Maximal regularity estimates for parabolic equations

More maximal regularity estimates:

o Those results may be somewhat generalized to domains if restricting to
indices (p,s) with —1+1/p<s<1/p and 1< p < co.

o In R?, taking the LP! norm of each ||Ajul|rr over the time interval [0, ]
yields:
bl ez Sluollgs +IF1 a2 for 1<p<p <o
Lo, ? P, me2s, . P2

with HUHEg(BgC) = sza”AjUHL"'(O,t;Lb(Rd))‘ ecz)

Note that time integration has been performed before spectral summation.

o Lamé system: Opu — pAu — p/Vdivu = f in R? with >0 and pu+ 4/ > 0:

. / 2
”u”Z?O(BZ’l) + min(p, p + p')||V UHL%(B;J) < H“OHB};1 + ”f”Ltl(B';,l)'

o Stokes system: Oyu — pAu+ VP = f and divu =0 in R9:

. 2 . . .
”u”L?O(B;,l) + [(Oru, pv vap)“L%(B;J) S HUOHB;l + ”f“L}(B;J)'
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e0
Nonlinear estimates

Consider v and v in two different Besov spaces:
o Does uv make sense 7

o If so, where does uv lie ?

Formally, we have
uv = Tyv + R(u,v) + Tyu (5)

with
Tyv ::ZSj_luAjv and R(u,v) = Z Z AjuAjm.

J Jo i’ =il
The above operator T is called paraproduct whereas R is called remainder.
Relation (5) (the so called Bony’s decomposition) has been introduced by J.-M.
Bony in the early eighties.

and fluid mechanics
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Nonlinear estimates

For any (s,p,7) €R x [1,00]? and t < 0 we have
ITuvllpy S lulnolollzy . ond ITuvllgope S el gy _llolg, -
For any (s1,p1,71) and (s2,p2,72) in R x [1,00]? we have
@ if s1+s2>0, 1/p:=1/p1+1/p2 <1 and 1/r:=1/r1 +1/r2 <1 then

HR(“sv)”Béﬁr*z ~ H“HB’l H HB 2

s,
@ if s1+s2=0, 1/p:=1/p1 +1/p2 <1 and 1/r1 +1/r2 > 1 then

1R, )llgg S lulpz | Ivlpsz -

Idea of proof. The general term defining Tyv and R(u,v) (namely S;_1uAjv
and AjuAv) is spectrally localized in 27C(0,7, R) and 27 B(0, R), respectively.
Hence, according to the “fundamental lemma”, it suffices to establish a suitable
LP estimate for each term. O
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Product laws

Let uw and v be in LN Bf)’r for some s >0 and (p,r) € [1,00]2. Then there
exists a constant C' depending only on d, p and s and such that

H“"’HB;_r < C(Hu||L°° ||’U||B;'T + [Jvl|Loe HuHB;’r)'

Proof:
@ Write Bony’s decomposition uv = Tyv + Tyu + R(u,v);
© Use T': L™ x B3, — B3 ;
@ Use R: Bgo,oo

@ Notice that L — Bgo’oo.

x By, — By if s> 0;

T

d
If p < oo then B;l is a Banach algebra continuously embedded in the set of
continuous functions decaying to 0 at infinity.
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Left composition in Besov spaces

Basic question:

Let u € Bfm and F : R x R smooth. What can be said of F(u) ?
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(o] J
Left composition in Besov spaces

Let F': R — R be a smooth function with F(0) = 0. Then for all (p,r) € [, 00]?

and all s > 0, there exists a constant C' such that for all w € B . N L we have
F(u) € B;, N L and

Fw)l|lps < COllullss
IF @), < Cllull sy .

with C' depending only on ||u||pe~, F, s, p and d.

Sketchy proof: We use Meyer’s first linearization method:

1
F(u) = ZF(SJ-+1u) — F(Su) = ZA]M/() F'(Sju+7Aju)dr.
J J

’LLj

We notice that .
lujlize < CllAjullLe.

Unfortunately, Fu; is not localized in a ball of size 2J. However, we find out that
ID*ujllLe < C27*||Ajull .

Hence everything happens as if the Fu; were well localized. This suffices to
complete the proof.
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Change of variables in Besov spaces

Multiplier space M(X) for the Banach space X = set of distributions f such
that ¥ f is in X whenever v is in X, endowed with the norm

lfll vt xy == sup [ fllx

where the supremum is taken over all functions ¥ in X with norm 1.

Proposition

Let Z be a bi-Lipschitz diffeomorphism of R® and (s,p,q) with 1 < p < co and
—d/p’ < s<d/p (or just —d/p’' <s<d/p if q=1 and just —d/p’ < s <d/p if
g=00). :
Then a— ao Z is a self-map over By . in the following cases:

Q@ s€(0,1) and J,-1, DZ are bounded,

Q sc (—1,0], Jz, DZ~! are bounded and J,_1 is in M(B;/Sq,).

.

Proof.

Case s € (0,1) is based on characterization by finite differences and change of
variables.

Case s € (—1,0) follows by duality. O

v

Remark : Higher order estimates are available under stronger condition over Z:
use chain rule and induction.
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[ Je]
The transport equation

Consider the following transport equation:

) { da+v-Va=feL(0,T); X)

ajg—o = ap € X.

Roughly, if v is a Lipschitz time-dependent vector-field and if X is a
“reasonable” Banach space then we expect (T") to have a unique solution
a € C([0,T); X) satisfying

"t
la®llx < VO (Haoux + [ OO @x dT)
0

with V(1) ;:/0 IVo(r)| Lo dr. ©6)
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[ Je]
The transport equation

Consider the following transport equation:

) { Ota+wv-Va=fe LY 0,T); X)

Gjt=0 = a0 € X.

Roughly, if v is a Lipschitz time-dependent vector-field and if X is a
“reasonable” Banach space then we expect (T') to have a unique solution
a € C([0,T); X) satisfying

"t
la(t)]x < eCV® (HGUHX +/ ‘f’“/“’N\f(T)deT)
0
t
with V(1) ;=/ IVo(r)| oo dr. ©6)
0

Basic example: Hoélder space C9¢.
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[ Je]
The transport equation

Consider the following transport equation:

) { da+v-Va=feL(0,T); X)

ajg—o = ap € X.
Roughly, if v is a Lipschitz time-dependent vector-field and if X is a

“reasonable” Banach space then we expect (T") to have a unique solution
a € C([0,T); X) satisfying

"t
la®llx < VO (Haoux + [ OO @x dT)
0

with V(1) ;:/0 IVo(r)| Lo dr. ©6)

. t
The above result holds true for X = By . with V (t) = / Vo) a
0 3P

whenever 1 <p<p; <o, 1<7r < oo, —min(ﬁ,l%) §s§1+%~
If r > 1 then we need s <1+ d/p1 .
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The transport equation

Sketch of the proof:

Applying Aj to (T') gives
6tAjCL+U'VA]‘(l:Ajf+R]‘ With Rj = [U'V,Aj]a. (7)
Under the above conditions over s,p, the remainder term Rj satisfies

e < Cc;(6)277°||Vo(t)|| L la®llgs ~ with [l(c;(®)ller = 1. (8)

P
By

125 (2)

Applying standard LP estimates for the transport equation (7) yields

divo||pe~ | &
u |Aja||Lp> dr.

t
[Aja®llze < 1Aja0]lLr +/O (IIAijILp +I1Rllze +
Multiplying by 27% then summing up over j yields
t t
so(gs ) S foo(ps ) S 3s 3s 35
lall ooy, < lallz gy < Noollgg + [ 17lgy dr+C [ Vilallsy ar

with [lallzoo 5, ) = [127° 1450l g0 10y |-

Then applying Gronwall’s lemma yields the desired inequality for a. O
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The (homogeneous) incompressible Navier-Stokes equations

The homogeneous incompressible Navier-Stokes equations read:

(NS) { 8Tu+div(u®u) — pAu+ VP =0,
divu = 0.

Here u : [0, T[xR? — R stands for the velocity field, and P : [0, T[xR? — R, for

the pressure. The viscosity p is a given positive number.

If we want to solve the Cauchy problem for (NS) then we have to prescribe some

initial divergence-free velocity field ug.

Introducing the Leray projector over divergence-free vector fields:
P :=1d + V(—-A)~ldiv, System (NS) recasts in

Otu + Pdiv(u ® u) — pAu = 0.
This equation enters in the class of generalized Navier-Stokes equations:

(GNS) Oru+ Q(u,u) — pAu =0

with FQJ (u,v)(€) := Zaif;ﬂhp% ]—'(/u,l" /()Z)(f)-
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The (homogeneous) incompressible Navier-Stokes equations

Scaling invariance for (GNS): for all XA > 0 it is clear that v is a solution if
and only if Thv is a solution with

Tyo(t, z) == Aw(A2t, Az).

Examples of scaling invariance spaces for (GNS):
o C(RT; Hgfl) NL2RT; H%) (Fujita and Kato, 1964);
o C(RT; L%) (Giga-Miyakawa, Kato, (1984) Furioli-Lemarié-Terraneo (1998));
L4
o C(RT; B,
(Cannone-Meyer-Planchon, Kozono-Yamazaki 1994).

d
LAy
)N LY(RT; B, ) and more general Besov spaces

Theorem (global existence for small data)

Ll
Let ug € BY, with divug = 0. Assume that p is finite. There exists ¢ > 0 such
that if
luoll a_, <cp
BY,
then (GNS) has a unique global solution w in the space

~ N o G
X :=L>®@R";BE, )NL*R"Y; B, ).

V.

———_—————————=— =
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The (homogeneous) incompressible Navier-Stokes equations

Mild formulation of (GNS): finding u : RT x R? = R? so that
u(t) = ur(t) + B(u,uw)(t) with

't
up(t) := e uy  and  B(u,v)(t) = — / et =TIAQ(u, v) dr.
Jo
Claim : if g~ 1{jug|| a4_, is small enough then ® : v~ uy, + B(v,v) possesses a
Bl
unique fixed point in the closed ball Bx (0,2C||uo| a_,) of the Banach space X.
BY .
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Applications
[e]e] J

The (homogeneous) incompressible Navier-Stokes equations

Mild formulation of (GNS): finding u : RT x R? — R? so that
w(t) = ur(t) + B(u, w)(t) with

t
up(t) == e""Pug  and  B(u,v)(t) := —/ et E=AQ(u, v) dr.
Jo
Claim : if g~ !|lug|| 4 _, is small enough then ® : v+ ur, + B(v,v) possesses a
BP,.
unique fixed point in the closed ball Bx (0,2C||uo|| 4, ) of the Banach space X.

BY

1. Maximal regularity estimates for the heat equation imply that
lulix = llucll a4y +pllucll 4y <Clluoll ay-
P Ll BI’ BI’

Loo(

Bp.r por ) p.T

2. Continuity results for the paraproduct and remainder = B: X x X — X
whenever p < co. Indeed, for some C = C(d,p,Q), we have

lQCw, V)l a_, < O Hullx vl x-
( )

BE,

Hence
[1B(u,v)||x < Cp~Hullx]lv]lx-
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The (homogeneous) incompressible Navier-Stokes equations

1. Maximal regularity estimates for the heat equation imply that

lurllx = lucll a_y +pllucll apy < Clluoll a_y-
L2 (BJ LY(BY, BY,

2. Continuity results for the paraproduct and remainder = B: X x X — X
whenever p < co. Indeed, for some C = C(d,p,Q), we have

IR, ) a_y <Cu ulx|vllx.
LY(Bgr )

Hence
[1B(u,v)||x < Cp~Hullx]lv]lx-
Therefore || ®(v)||x < Clluoll a_, +C,u_1||v||§( <2C|luo|l a_, if
4 .

B BE,
x <2C|luol| a_, and 4C?%|luo| a4 , < p, and, under the same conditions,
BP 3 P

p,T Bp.r

v

- 1
12(0) = @(w)llx < Cu (IIvllx + lwllx) v = wlix < v = wllx.

Hence @ is a contraction on Bx (0,2C||uo| a_,)-
Bp.
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The density-dependent incompressible Navier-Stokes equations

The system for incompressible nonhomogeneous viscous fluids reads:
Op+u-Vp=0

(INS) p(Otu+u-Vu) — pAu+ VP =0
dive = 0.

For simplicity, we restrict ourselves to the case where the density p of the fluid
goes to 1 at infinity. So we setp =1+ a.

System (INS) is invariant by the rescaling
o(t, ) — p(A\2t, \x), u(t,z) = Au(At, Az).

In the Besov spaces scale, this induces to take data (po = 1+ ao,uo) with

d d
L4 L4
P1 P2
ao € Bp'r; and wuo € Bpg oy -

e To avoid vacuum (and loss of ellipticity), we need a to be bounded away
d
from 0. Notice that B;ll.,«l — L iff r1 = 1. Hence we take rq 1.
e If 75 = 1 then regularity properties of the heat equation give
d
. 1P
u€ Lyp(B)72
regularity of a.

o We take p; = po = p for simplicity.

Raphaél Danchin Fourier analysis methods and fluid mechanics
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Applications
oe
The density-dependent incompressible Navier-Stokes equations

Theorem (Global existence for small data)

. d .4
Let ag € B:l and ug € B;l with divug =0 and 1 < p < 2d. If in addition

laol & +pu"uoll a_, <c
P P

B;n-,l Bp,l

for a small enough ¢ > 0 then (INS) has a unique global solution (a,w) with

. a Ld_q .£+1
aEC(]RJr;B;,l) and uEC(RJr;B;:l )ﬂLl(RJr;B;,l ).
4

Owing to the hyperbolic nature of the density equation, one cannot use the
contracting mapping argument in Banach spaces because there is a loss of one
derivative in the stability estimates. Nevertheless, one may proceed as follows:
e 1) proving a priori estimates in high norm (that is in the space E of the
statement) for a solution;
e 2) proving stability estimates in low norm (with one less derivative);
@ 3) Use functional analysis (Fatou property) to justify that the constructed
solution is in E.

As regards uniqueness, this approach works only for 1 < p < d. For the full range
1 < p < 2d, one has to reformulate the system in Lagrangian coordinates.
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Sketchy proof of existence in the Eulerian framework

Step 1 : A priori estimates in large norm. Estimate a in Cp,(R™; B;l,/f) and (u, VP) in

Co(RT; BYPTN ) x LYRY; BYPTY) with 0yu, V2u € LYRY; BIPTH).

Main ingredients:

@ Estimates in Besov space for the transport equation.
@ The previous maximal regularity estimates for the Stokes equation.
© Product estimates : Bg/lp is a Banach algebra and the product maps

BYP x BYPTH o BYPTaf 1 < p < 2d.

Step 2 : Stability estimates in small norm. The difference & := p2 — p1,
o = uz —uy and VIOP := VPy — VP, between two solutions satisfies

Otdp+ug - Vop=—du-Vp1
p2(0¢du + uz - Vou) — pAdu + VP = —op(drur + (p2uz — pru1) - Vui)

— loss of one derivative in the stability estimates.
‘We need to use that the product maps

d/p—1 Sd/p—1 Sd/p—2
prl X Bp’1 — prl .
But this is true if and only if 1 <p < d and d > 2.
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L]
The Lagrangian approach

Lagrangian change of coordinates

Flow of u = u(t,z):
t
Xultw) =u+ [ ulr Xu(rw) dr
0

Change of coordinates: (t,z) — (t,y) with =z = X (¢,y).

ut,y) = u(t ),

P(t,y) = P(tz).

Chain rule: ~
VyF =VyXy Vi F.

Hence the divergence-free condition recasts in

divy@ = g:= Dy : (Id — A) with A:= (DyX,) "
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Applications
L]
The Lagrangian approach

Lagrangian change of coordinates

Flow of uw = u(t,z):

"t

t
Xulty) =y + /0 w(r, Xu(r,y)) dr = y + /0 a(r,y) dr.

Change of coordinates: (t,z) — (t,y) with = = X, (¢,y).

u(t,y)

P(t,y)

u(t, ),

P(t,x).

Chain rule: B
VyF =VyXy - Vi F.

Hence the divergence-free condition recasts in
divyti = g:= Dya: (Id — A) with A:= (DyXy,) L.

In general, divu need not be 0 for ¢ > 0.
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®00000

The generalized Stokes equations

The momentum equation now reads:

(S):{ oru — pAu+ VP =f

divu = g.

Set u = v +w with w s.t. divw = g. One can take w = —V(—A)"1g. Then v
has to satisfy

v — pAv + VP = f-V(=A)"19,g + uVyg
{ dive = 0.
Needed conditions for g:
o Vge L'(R*;Bs )
o d;g =divR with R € L'(R*; B3 ,).
If so, then we get

1, VPY g 2= Nl oo s,y + 1 @rts 920, VP s

N ||uo||B;)1 + ||fHL1(B;l)‘i‘lﬁHvﬂHLl(B;.l) + HR”Ll(B;_l).

We are interested in the case s =d/p — 1.
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Estimates for g

Recall that g = Dyu : (Id — A) with A = (DyX,)~! and that

DyXu(t) —1d _/ Da(r)dr € BYP.

As B;l/lp is a Banach algebra, if the red term is small enough then one may write

+oo t k
A= (Id + (DyXu —1d)) = 2(71)1“(/ Dﬂdr) :
k=0 0
Hence
Id — A sa/p < ||Da
10 = AWl a7 < 1D 1 g, 7o,
whence

. < ||Dul? . .
HQHLl(O,,,;Bg./lp) < “HLl(U't;Bz_/lp)

Do we have 9;g = divR with R € L'(R™; B (]/p_ ) ?
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Estimates for ¢g (continued)

Magic identity: X, measure preserving implies that
diveu = Dyu : A = divy(Aa).

Hence
Org =divR with R=-0/Au+ (Id — A) dia.

Under the same smallness condition as in the previous slide, one can write

oA=Du S k(—1)k</0t DﬂdT) o

E>1

So finally, if 1 < p < 2d then we get

. ] ]
1Bl garp 1,y 1D s o (1l grps, + 106 sy
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A priori estimates for the Lagrangian INS equations

In Lagrangian coordinates pg is time-independent, hence no loss of derivatives in
the stability estimates.

For the velocity, we have

O — pdivy (A TALVya) + TAL,V,P =0
{po 1t — pdivy (Au” AuVya) uVy with Ay = (Dy X)L

div, (Au2) = 0.
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[e]e]e] le]e]

A priori estimates for the Lagrangian INS equations

In Lagrangian coordinates pg is time-independent, hence no loss of derivatives in
the stability estimates.

For the velocity, we have

Ot — pdivy (AuTALV,T) + TALV,P =0
{ P00 122 Vy( Y ) y with Au:(DyXu)71

divy(Aua) = 0.
This equation rewrites

Ol — pAT + VyP = (1—po)diti+pdivy((AuTAy—1d)Vya) + (Id —=TA,)V, P
divyt = g :=divy((Id — Ay)u) = Du : (Id — Ay).
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[e]e]e] le]e]

A priori estimates for the Lagrangian INS equations

This equation rewrites

Ot — pAt + VyP = (1—po)0sti+pdivy((AuTAy—1d)Vya) + (Id —=TA,)V, P
divyt = g :=divy((Id — Ay)u) = Du: (Id — Ay)
From the above estimates for g, A, and for the Stokes equations, we thus get

t
U 5 ol garps + 020 + [ 10— po)oval sy
P, . P,

with U() 1= [l ga/p-1, + 10 1?0 TPy s,
T, T,
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[e]e]e] le]e]

A priori estimates for the Lagrangian INS equations

This equation rewrites

Ot — pAt+ VyP = (1—po)0¢ti+pdivy((AuTAy—1d)Vya) + (Id —=TA,)V, P
divyt = g:=divy((Id — Ay)u) = Du: (Id — Ay).

From the above estimates for g, A, and for the Stokes equations, we thus get
t
U®#) < luoll gasp—1 +U2@) + | [I(1 = po)dsial| yajp—1 dr
Bpi Jo Bpa

with U(t) := a/p-1) + ||0¢ti, uD?a, VP

[T -

Let M(B, d/p 1) be the multiplier space for B;l’/lp_l. By definition,

1-— Ol casp_1 < (1 — cd/p—1|10t8|| nap—1-
(1 = po) tu||B§(1p ¢ PO)llM(B;fﬁp Ll t“”sﬁ{f 1

So we just need |[(1 — po)|| ca/p—1, < 1 and ||luo|| sa/p—1 < p to close the
J\/l(Bp_l BP-l

)

estimates.
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Implementing the fixed point argument

Let @ : (9,VQ) ~ (4, VP) where (@, VP) stands for the solution to the linear
system

P00t — pdiv (AUTAUVH) +TA,VP =0

div (Aya) = 0,

with A, := (DX,)~! and Xy(t,y) :=y + [ o(r,y) dr.

Step 1. Existence of ®.
If (9,VQ) belongs to a small ball Bg of Eg/p_l and X, is measure preserving
in the “original” Eulerian coordinates then the previous slide implies that the

same holds for (u, VP).
Important: the corresponding set £r is a closed subset of E'g/p_l.

Step 2. Contraction estimates for ®. ~
One just has to write ®(v2, VQ2) — ®(71, VQ1) as a solution to the Stokes
equation and slightly generalize the previous estimates. No loss of derivative here !

Applying the Banach fixed point theorem allows to conclude to the existence of a
solution in Eg.

Step 3. Uniqueness. This is a straightforward modification of Step 2.

Raphaél Danchin Fourier analysis methods and fluid mechanics



Applications
O0000e

Theorem (D. and P. Mucha, 2011)

Let p € [1,2d) and ugp € B[(f/lpil(Rd) with divug = 0. Assume that

po € M(Bz/lpil) There exists a constant ¢ = c(p,d) such that if

[lpo — 1] 4 M71||u0||3d/1p—1 <c
P

MBLPTY
then the Lagrangian (INS) system has a unique global solution (@, VP) in
Eg/pil. Moreover, there exists C' = C(p,d) so that
_ 2 _ _ =
||U||LOQ(B§(1P71> + [[uV=a, 3tu,VP||L1(Bz(1p—1> < CH“(’”B%"*I
and the flow map (po,uo) — (@, VP) is Lipschitz continuous from
MBYPYY x BP0 BY/PT

Remarks

o Local-in-time statement if only po — 1 is small.
e Propogation of interfaces: if d/p —1 < 1/p then one can take po =1+ clp
with ¢ small enough, and D any C' domain.

o Corollary : same statement for the original system in Eulerian coordinates
(except for the continuity of the flow map).

V.

i = = = =
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o

The barotropic compressible Navier-Stokes equations

The barotropic Navier-Stokes equations read :

O¢p + div(pu) =0,
Ot (pu) + div (pu ® u) — pAu — p'Vdivu + VP = 0.

p=p(t,z) € RT (with t € Rt and x € R?) is the density.

°
o u=u(t,z) € R? is the velocity field.
e The pressure P is a given smooth function of p.

e The viscosity coefficients p and p’ satisfy g >0 and v :=p+ ' > 0 and
are constant (for simplicity only).

e Boundary conditions: u decays to zero at infinity and p tends to some
positive constant p at infinity. We take p = 1 for simplicity.
Denoting p =1 + a and assuming that the density is positive everywhere the
barotropic system rewrites
Ota+u-Va=—(1+a)divuy,
Ou — Au = —u - Vu — J(a)Au — VG(a)

with A := pA + p/Vdiv, J(a) :=a/(1+a) and G'(a) = P'(1 +a)/(1+ a).
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Scaling properties

If neglecting the pressure term then the scaling invariance of the system still reads:
p(t,z) = p(\2t, Az), u(t, ) = Au(A2t, Az).

As for the incompressible Navier-Stokes equations, in the Besov spaces scale, this
induces to take data (pg = 1+ ag, ug) with

d 41
aoeB; and UOGB

d

and ag € B?

Solving the compressible Navier-Stokes equations with ug € B " h o1

p,1
such that 1+ ap > 0 (no vacuum assumption).

According to the preceding results on the transport equation and the Lamé
system, we expect that
. d Ld_q
aEC([O,T];B;J) and ueC([O,T];BIf’,1 yn L([0, T); BP1 )

Owing to the hyperbolic nature of the density equation, there is a loss of
one derivative in the stability estimates. Hence it is tempting to use again
Lagrangian coordinates.
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[ 1o}
Local existence in critical spaces : the Lagrangian approach

Given some solution (p,u) to the compressible Navier-Stokes equations, we
introduce X the flow associated to the vector-field u:

t
X(ty) =y + /0 u(r, X(r,y)) dr. (10)

Let p(t,y) := p(t, X (t,y)), u(t,y) =u(t,X(t,vy)), J:=|detDX|, and
A= (Dy X)L,

e Jp is time independent,
e As X need not preserve the Lebesgue measure, the “magic relation” becomes

dive H(z) = DyH(y) - Aly) = J~ ' div (adj (Dy X) H) (y).

e Hence

Joy(Jpa)—pdiv (adj (DX)TAV @) —p'div (adj (DX)TA:Va) + div (adj (DX ) P(p)) = 0.

As before X may be directly computed from u:

X(t,y) =y + /Ot a(r,y) dr.

As Jp = po, we just have to solve the following parabolic type equation for @:
Jpodet — pdiv (adj (DX)TAV )
—w/div (adj (DX)TA : Va) + div (adj (DX)P(p)) = 0.  (11)
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oe
Local existence in critical spaces : the Lagrangian approach

Theorem

e
Let p € [1,2d) (with d >2) and uo be a vector-field in B, . Assume that the

initial density po is positive and satisfies ag := (pg — 1) € Bﬁl. Then the above

d
equation has a unique local solution (p,u) with a € C([0,T]; B} ;) and

.4 .44
w € C([0,T]; By ;)N LA (0,7 By, ). Moreover, the flow map (ao,uo) — (a,w) is
Lipschitz continuous.

In Eulerian coordinates, this result recasts in:

Under the above assumptions, the barotropic Navier-Stokes equations have a
unique local solution (p,w) with the above regularity.

If working directly on the barotropic compressible Navier-Stokes equations in
Eulerian coordinates, then uniqueness may be proved only under the stronger
condition that p < d.
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Proof with the Lagrangian approach

To simplify the presentation, we assume that ag := pp — 1 is small enough. The
three ingredients are

o Regularity estimates for the Lamé system;
o Flow estimates in Besov spaces,

o The Banach fixed point theorem.
Let E,(T) := {a € C([0,T]; B” Yy / 8va, V2a € L1(0, T; B"7 1. Define a map
P : 0+ u on Ep(T) where @ stands for the solution to

Ou — pAu — (A + p)Vdiva = 11 (9, 0) + 2pdiv Iz (0, 0) + AdivI3(0,0) — divIa (D)
with
adj (DXy)D 4, (w)—D(w)
adj (DXy)P(J5  po).

11(17,11)) = (1 - pko)at’lI) 12(177117)
I3(5,@) = diva,® adj (DX,)—divw Id  14()

Any fixed point of ® is a solution in Ep(T") to (11). We claim that the existence
of such points is a consequence of the standard Banach fixed point theorem in a
suitable closed ball of Ep(T).
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Estimates for the Lamé system

We first need to prove suitable a priori estimates for the Lamé system, that is, the
linearized velocity equation (neglecting the pressure term). This system reads:

Oru — pAu — (A + p)Vdivu = f, Ujg—o = Uo (12)
with ¢ >0 and v:= X+ 2 > 0.

Apply the projector P over divergence-free vector-fields, or Q the projector over
potential vector fields. We get

OtPu— pAPu=Pf and 0:Qu—vAQu = Qf.
Hence applying the estimates for the heat equation yields in particular:

There exists a constant C' depending only on p/v and \/v such that if
up € By 1 and f € LY (RT; B;_l) then (12) has a unique solution u in

C(RT;BS,)NLY(RT; B3 ) and

lll ay 0o minGe ) V2l a, <C(luol a1 4, )
S P 1P S P Ll > P

Ly (B, Li(By By By )
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Estimates for the Lamé system

Estimates for Iy, I, I3 and I4.

Throughout we assume that

T
/' IDoll 4 dt << (13)
J BP

3P
In order to bound I;(v,w), we decompose it into

Ii(v,w) = (1 = Jy)0tw — ap(l + (Jy — 1))0rw  with ag := po — 1.

d
Hence, product laws, definition of M( ) and flow estimates imply
(11 (v, w)]| a_y <C(laoll ~ a_y +IDvll o )Owl a4, -
Lp(BYy ) M(B), LI.(BY, Lip(BYy )
Similarly, we have

(172 (v, w)l a +||13(va)|| a SCO[Dvf| 4 ||Dw| a
L} (Bpl) (BP1) LIT(B;IZI) L (Bpl)
As regards the pressure term I4(v), we use the fact that under assumption (13),
we have, by virtue of Proposition 1.4 and of flow estimates

L2« <C(1+|Dv| )(1+Haoll
LE(BY x (B

a ).
p
p.1) Lp(Byy) Bya
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Estimates for the Lamé system

Stability of a small enough ball by ®.

We introduce uj, the solution to
Orur, — pAuyp — (A + p)Vdivuyg =0, ur|t=0 = uo.
Claim: if R and T are small enough then
v E BEP(T)(uLvR) = u€ BEP(T)(UL:R)~
Indeed @ :=u — ur, satisfies w(0) =0 and

Ou — pAU — (A + p)Vdiva = I (v, v) 4+ 2pdiv iz (v, v) + AdivI3(v,v) — divIs(v).
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[e]e] o)
Estimates for the Lamé system

Stability of a small enough ball by ®.

We introduce uj, the solution to
Orur, — pAup, — (A + p)Vdivuy =0, ur|t=0 = uo.
Claim: if R and T are small enough then
v € BE,,(T)(ULvR) = u € BEP(T)(ULvR)-
Indeed @ := u — uy, satisfies %(0) =0 and
0t — pAU — (A + p)Vdiva = I (v, v) + 2pdiviz (v, v) + AdivI3(v,v) — divIa(v).
So regularity estimates for Lamé system imply that

3

lallg, ) S DM@l oy +TIa@) 4
Jj=1 L%—*<B;j’1 ) L%(Bﬁl)

Raphaél Danchin Fourier analysis methods and fluid mechanics



Applications
[e]e] o)

Estimates for the Lamé system

Stability of a small enough ball by ®.

We introduce uj, the solution to
urlt=0 = uo.

Orur, — pAur, — (A + p)Vdivur =0,

Claim: if R and T are small enough then
v € Bg,(r)(ur, R) = u € By, (1) (ur, R).

Indeed @ := u — uy, satisfies @(0) =0 and
Ou — pAU — (A + p)Vdiva = I (v, v) 4+ 2pdiv iz (v, v) + AdivI3(v,v) — divIs(v).
Using the previous inequalities for Ij(v,v) and that v € BEF(T)(’U,L7 R), we get

+R)(R+[0wur]l 4, )
P
)

Il g,y < C((laoll  ay +IDurll 4
M(BL LL(BP ) LB,

HIDurl? 4 + R4 T+ faoll ).

LlT(BIf’J) BY

Hence there exists a small constant n = n(d, p) such that if
<,

!
P

llaoll
MBE )

and if R,T have been chosen small enough then w is in Bg, (1) (ur,R).
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oooe
Estimates for the Lamé system

Contraction properties for ® on B B, (1) (uL, R).

Let v1 and v2 in BEP(T)(ULvR) and u1 := ®(v1) and wg := P(v2). The
equation satisfied by ou := ug — u; reads

Otdu — pAdu — (A + p)Vdivou = f1 + 8f2 + divifs + 2udivéfs + Adivéfs
with 0f1 == (1 — poJ2)ddu, &fa := —po(Ja2 — J1)su1,
8f3 := adj (DX1)P(poJ; ') — adj (DX2) P(poJ5 '),
0fa = adj (DX2)D 4, (u2) — adj (DX1)D 4, (u1) — D(du),
8fs == adj (DX2)TAs : Vug — adj (DX1)TA1 : Vug — divéuld.

Bounding du stems from the maximal regularity estimates: we get

2 5
Iullg,ery S DNl oy +TUSfI 0 + D MSfll a
i—1 T(Br LE(BY) =4 Ly(B) 1)
For instance we have
lofsll oy STQA+laoll o )ID&] 4
LE B, ) By Lp(Bg )

We eventually find that if , R and T then
1 .
lloull g, () < iHM‘HE,,(Ty

Banach theorem ensures that & has a unique fixed point in BEP(T) (ur,R).
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Comments on the global existence issue

Aim: proving a global existence result for small data for the barotropic
Navier-Stokes equation

ota+u-Va=—(14+a)divu,
(NSC) { ‘ (1+a)

Otu — Au = —u - Vu — J(a)Au — VG(a),
in the spirit of those for the incompressible Navier-Stokes equation.

Above we saw that just assuming that

llaoll a4 +lluoll a_, <1
p,1 B:l
is not enough because the pressure term (which has not the right-scaling) entails
a linear growth in time in the estimates. In effect, in order to bound the term
I4(0) == adj (DX,)P(Jy ' po), we just wrote
L2l o <T@ o <CTQA+|Dv| 4 )(A+laoll a ).
1 P P 1 P B

L® :

d
P
7 (By1 Lp(B, p,1

L (B 4

We have to include the pressure term in the linearized system. This will be done
in Eulerian coordinates, in the next section.
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Partially dissipative eq.
o

Part III. Partially dissipative or parabolic linear systems

We focus on linear systems of the type

dw + A(D)w + B(D)w = 0 (14)

with w : Rt x RY — R™, and
o A(D) = (Ai;j(D))1<i,j<n with A;;(D) homogeneous Fourier multiplier of

degree «,
o B(D) = (B;;(D))1<i,j<n with B;;(D) homogeneous Fourier multiplier of

degree 3.
We assume in addition that A(D) is antisymmetric:

Re ((A(§)n) -n) =0 forall (&n) € RY x C",
and that B(D) satisfies the following ellipticity property :

1€]P Re ((B(&)n) - n) > k|B(&)n]?  for all (&,1) € RY x C™

where kK is a positive real number.
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Examples

o A partially dissipative symmetric linear one-dimensional system:

A>0.

Oru 4+ Ozv =0
Ov + Ozpu + Av = 0;

The general conditions are fulfilled with d =1, n =2, a=1, =0 and
k=A"1

o The linearized barotropic Navier-Stokes equations :

>0 and p+pu >0.

Ora + divu =0
Oru — pAu — p'Vdivu + Va = 05

The general conditions are fulfilled with n =d+ 1, a =1, =2 and
k = cv~! (with ¢ depending only on u/v).
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The general solution formula

Set A, :=p “A(€) and B, :=rp PB(£) with p:=|¢| and w:=¢&/[¢].
Therefore
O (t, &) + E(E)D(t,€) =0 with E(£) := p®Aw + £ 'p°Ba.

Hence

B
(.9 = (@) exp (-2

(k™ P Au + Bw)>7
Let 2o := wWo(€), 2z(7) = @(t, &) with 7:= (tp”)/k, and ¢ := kp®~? We have
2(7) =20 exp<77(gAw + BW)>

Hence one may restrict our attention to the case « =1, =0 and x =1 (that is
first order antisymmetric terms and partial dissipation). Indeed

Re ((Aun)-n) =0 and Re((Bwn)-n) > |Bwn|? forall (w,n) €St xC™
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€r—1 small positive parameters, define the Lyapunov functional:

For e4,---,

n—1

L(7) := |2(7)|? + min(g, 0 1) Z ex Re (BoAE™'2) - (BuAE2)).
k=1

As 2’ + (0Au+Buw)z =0, Re((Awn)n) =0 and Re ((Bwn)-n) > |Bun|? we get

n—1
L'(1) + 2Re ((Bwz) - 2) + min(1, 0%) Z | Bw AL 2)?
k=1
n—1
= —min(o, g*1>{Zek(Re ((BuAE By z)- (BwAb;zH(BwALi*lz)-(BwAb;sz)))}
k=1
n—1
— min(1, ¢?) Z ek Re ((BwAfflewz) . (BWA’:,JHZ)).
k=1
One may take €q,--- ,e5_1 so small as, for all w € S~ ! and p > 0,
’ min(1, 0%) = k 2 2
L)+ == > enlBuAlz(r)P <0 and L= |z
k=0

Setting N 1= min, cgn—1 E;’;Ol er|BwAEn|?, we end up with

L(t) < 67’1' min(l.gz)NW‘r‘L(O)v
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Assumption: min ) N, > 0.

This entails the following decay inequality:
[@(t, §)| < 2|@o(€)
The above assumption is equivalent to the Kalman rank condition:

B
B, Ay

cfcnfi min(\g\s.hﬁz\{\2“7‘3)[,. (15)

T has rank n
BA”71
w
or to the Shizuta- Kawashima condition:
ker B, N {eigenvectors of A} = {0}.
From (15), using Parseval equality, we get
. . s 0iB L 260(2a—B)F .. .
lAaw®llz2 < 2lAzwoll e~ ™n@ w222 MNh o jez (16)

Taking advantage of Duhamel’s formula, we may afford to have a right-hand side
f in the linear system: Inequality (16) implies that

HAjwllLtoc(m)Jrfflmin(2j57 N22j<2°h‘”> I1Ajwllzy 22y S 1Ajwoll L2HIA; fllLy(L2)-

This means that there is a gain of max(8,2a — 8) (resp. min(3,2a — 8)) in low
frequencies (resp. high frequencies) when performing a L!-in-time integration.
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Application to a partially dissipative system

Otu + 9zv =0
A>0

OtV + Ogu + v = 0;

The corresponding matrices A, and B, read

- 0 1sgnw ) _ (0 0Y.
Aw*(isgnw 0 ) and Bw*(() 1)

Ellipticity condition is satisfied with xk = A~1 and 8 = 0.In addition,

0 0
BoAw = (z sgnw 0) '

Therefore the Kalman rank condition is satisfied.

The threshold between low and high frequencies is at A. The corresponding
Lyapunov functional reads (for small enough ¢):

||(u,v)Hi2 + 6)\_1/]Rv81u dx in low frequencies

||(u,v)H%z + E/\/RU |D|~28,u da in high frequencies.

There is parabolic smoothing with diffusion A~! on the whole solution (u,v) in
low frequency, and exponential decay with parameter A for high frequencies.
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Partially dissipative system with convection

For A and B two given functions, consider

Oru+Adru + Ozv =0
Otv+BOzv + Ozu + Av = 0.

Applying Aj to the system, we get

0D jutSj—1A0xAju+ 8280 = Ry(A,u)
atAj’U+S]',1B63;Aj’L‘ + 8IAJ’LL =+ )\A]"U = Rj(B, U)

where the terms R;(A,u) and R;(B,v) may be estimated as follows:

> IR (Cow)| g2 < C277#|VC| g lwllgg i —d/2<s<d/2
N B ’
J 2,1
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Partially dissipative eq.
L]

Partially dissipative system with convection

For A and B two given functions, consider

Oru+Adzu + Ozv =0
Otv+BOzv + Ozu + Av = 0.

Applying Aj to the system, we get

6t4ju+s_7, 1 AZ);L-A_,-U, + QIAJU = RJ (A, u)
6tAjv+Sj,1B(‘ir,Ajr + QIAJ’LL =+ )\A]"U = Rj(B7 U)

where the terms R;(A,u) and R;(B,v) may be estimated as follows:

STIRH(Cw)le < C2 VO g Jwllyy i —dj2<s<d/2,

4
J BQ,]

For the localized system, the relevant Lyapunov functionals read:

1A u, A]-U)HZL2 +6>\’1/Ajv Oz Ajudx if 27 <A
R

1(Aju, Ajo)2, +€>\/Ajv|D\_28mAjudm it 27 > A
R
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Partially dissipative eq.
L]

Partially dissipative system with convection

For A and B two given functions, consider

Oru+A0u + Ozv =0
Otv+BOzv + Orgu + Av = 0.

For the localized system, the relevant Lyapunov functionals read:

1(Aju, AjU)HQLz +ext /AjvﬁzAjudx if 27 <A
JR

(A u, Ajo)l2, +5A/RAjv|D\—QaIAjudx it 27 > A
Taking ¢ small enough (independently of A and B) yields
1A, A7) (D)l 2 + min(\ A2 (A g, Ago) 3 2 < c(n(Ajm,Ajvo)HLz

ot ot . .
+/0 I(R; (A, w), By (B,v))]l 2 dr+/0 (A, VB)|| oo | (A ju, Ago) 2 dr),
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L]

Partially dissipative system with convection

For A and B two given functions, consider

Oru+Adzu + Ozv =0
Otv+BOyv + Ozu + Av = 0.

Taking e small enough (independently of A and B) yields
I8, 850002 -+ min(A A2 (By, 850l 1 < € (180,850 2
t 't ) )
+ [N A B (B dr+ [ ITATB e By, 50l 2 ),
whence, for —d/2 < s < d/2,
‘ 2 4 h
IOl +3 [ (A2l oo+ 0l ) ar

t
<c(lwo )l + [ VA8

3

g 1)l 55 dT)-
2,1

Similar estimates may be proved in any Besov space Bgr with |o| < d/2.
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Part 4. Global existence results for the compressible NS equations

The linearized Navier-Stokes equations read:

Ora +divu =0

>0 and v:=p+pu >0
Oru — pAu — p'Vdivu + Va = 0; K ps
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Global result

Part 4. Global existence results for the compressible NS equations

The linearized Navier-Stokes equations read:

>0 and v:i=p+pu’ >0.

Ora +divu =0
Oru — pAu — p'Vdivu + Va = 0;

We may apply the former results with n =d+1, a=1, =2, k =v L.

Let = p/v and ' = p//v. We have

B 0 isgna ) _ (0 0
Aw = <iTSgncU 0 ) and - Be, = (0 alg+ (n+ ') sgn@ @ sgncﬁ)

0 0
BuAy = <isgn5) 0)

and the Kalman rank condition is satisfied.

Hence
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Part 4. Global existence results for the compressible NS equations

The linearized Navier-Stokes equations read:

Ora +divu =0 ,
pu>0 and v:=p+p > 0.

Oru — pAu — p'Vdivu + Va = 0;

We thus get

A A vt min (227,072 A
1(Aja, Aju)()]| L2 < e ™D 1(Ajag, Ajuo)| 2.

<1

[n low frequencies 27 < 1, we have parabolic smoothing (with diffusion v) for a
and u and the corresponding Lyapunov functional reads

(@ w122 +5,,/)

RO

u-Vadr with ¢ small enough.
1

In high frequency, we get exponential decay. Parabolic smoothing may be
recovered afterward by using the global L!-in-time bound for Va, and estimates
for the Lamé system: indeed

Ou — pAu — ' Vdivu = —Va.

Raphaél Danchin Fourier analysis methods and fluid mechanics



Global results for comp. NS

Part 4. Global existence results for the compressible NS equations

We thus get
. . . . 25 -2 . .
I(Aja, Aju)(@)l L2 < e ™0 (A a0, Ajuo)| 2
[n low frequencies 27v < 1, we have parabolic smoothing (with diffusion v) for a
and u and the corresponding Lyapunov functional reads

l(a, u)HfZ + 51// U Vadx with ¢ small enough.
]'R(

In high frequency, we get exponential decay. Parabolic smoothing may be
recovered afterward by using the global L!-in-time bound for Va, and estimates
for the Lamé system: indeed

Ou — pAu — /' Vdivu = —Va.

As for the toy dissipative model, one may include a convection term in the
analysis, which eventually leads to the following statement:

Theorem (R.D., 2000)

. d_ . d . d_
Assume that P'(1) >0, and that ao € By, 'n B3, and uo € By, ' are small
enough. Then (9) has a unique global-in-time solution (a,u) with

) 2 F=1 S h % s
a,u€C(Bs; )NL(Bgy ) and a" €Cp(B3)NL (Bs,).
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Optimal decay estimates for high frequencies

We now present another approach leading to a global statement in Besov spaces
related to LP (p # 2).

Equation for the divergence-free part Pu of the velocity:
OtPu — pAPu = 0.
Effective velocity : w := Qu + v~ }(—A)"1Va. We get
Va+rv—1Va=—Aw
{ Ow —vAw = v~ lw —v2(-A)"Va.
Therefore for any j € Z and p € [1, +0),
vIIA;VallLge ey +IIVAjall L1 oy S vIA;VaollLe +02% | A wl L1 10

1AjwllLge ey + v227 | Ajwl 1 (o) SN A wollLe
+(v27) 72 (1227 || A jw

L;(Lp>+HVAja”L}(Lp))-
Hence, if v27 is large enough,
IvA;VallLge Lry + IVA all L1 1oy S VIIA;Vaolle + | Ajwol e

1A 0l L2 oy 122 | &gl 1 (1) S VIA; Vaollze + | Ajwollze.
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Summary

In low frequency, the linearized equations tend to be hyperbolic (two eigenvalues
with nonzero imaginary part). Hence it is hopeless to take a LP framework with

p # 2.

In high frequency, the fundamental observations are that, at the linear level:
e Pu satisfies a heat equation;
o the effective velocity w := Qu + v~ 1(=A)~!Va has parabolic smoothing;
e a has exponential decay.

The only remaining difficulty is that we have to take care of the convection term
u - Va in the mass equation so as to avoid a loss of one derivative.
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Step 1. Effective velocity
The effective velocity w := Qu + v~ 'G'(0)(—=A)~'Va satisfies:

Orw — vAw = —Q(u - Vu) — Q(J(a)Au)
+(G'(0) — G'(a))Va)—r ™G (0)(—A)"IV((1 + a)divu).

The blue terms are quadratic hence small (if we start with small data). The red
term has a linear part. So using regularity estimates for the heat equation yields

lwll oy +vlwl  apy Slwoll a_,+v7HQull 4, +quadratic.
Loo(BP P P

o
1 ) Ll(Bp.l By Ll(Bp.l )

The red term has not the right scaling. It has two extra derivatives, hence it is
good in high frequencies: if we put the threshold between low and high frequencies
at jo s.t. 1 < 2J0v then

vaUQull® 4o SvTRTEoQult L <vlQult 4
LY B, ) LY(BY,y ) LU(BYy )

Hence, because Qu = w — v~ 1G'(0)(—=A)"1Va,

h h
loll® gy Avllel™ gy,

< ||w0th i71+u72(¥’(())HaHh 4 _, t+ quadratic.
Loc(Bljﬂl ) Ll(BpJ ) p

p,1 LI(B:J )
The red term is very small compared to ||lal|®
LY(BP )

D,
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Global results for comp.

Step 2. Parabolic estimates for Pu.

—P(J(a) Au),

Because
OtPu+ P(u-Vu) — pPu =

we readily have
[[Puo|| 4 _,+ quadratic.
5 P

Pul oy +plPul 4y, S
I‘X(B:,l ’11(3;1 By

and fluid mechanics

Raphaé&l Danchin Fourier analysis metho



Global results for comp. NS

Step 3. Decay estimates for a.
We notice that

da+u-Vat+r 'G'(0)a = —adivu — divw.

As G’(0) > 0, estimates for transport equation (with damping) imply if

(|| d,, Iissmall enough, that
YBY )
lal™ 4 v Mlal" 4 Sllaol 4+ lldive|® 4 tquadratic.  (17)
LEBr) LEBE) By LYBg Y
Recall that
L S . S llwoll™ o, + @270) 20 al/® 4 + small.
LX(BP . ) Ll(Bp ) Blfl L1(B7’l)
(18)
Hence plugging (17) in (18) and taking jo large enough, we deduce that
fol® o, Avlel® el . el
LB ) LBy ) L (BYy) Ly (Bya)

< JJwo | a_, t llaol|™ 4 + quadratic.
BJ By
As Qu=w —v~1G'(0)(—=A)~"1Va, one may replace w by Qu in the above
inequality.
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Step 4. Low frequency estimates.

As explained before, we have to restrict to Besov spaces B§ ;- By taking
advantage of method for partially parabolic systems, we get:

Ha,a)ll® 4 +ll@wl® 4, Sll(ao,uo)ll’ 4+ quadratic.
Ly (B3 ) H(BF B3,
Step 5. Global estimate.
= ’ .4 L4y d “ d_ diy
X(t) = (a0 Hlal® .l ,
Ly B3y INLi(Bg, LENLE(B]Y) L (B, INLE(B], )

All the nonlinear terms may be bounded by X?2(t) (split them into low and high
frequencies) provided p < 2d and p < 4. We eventually get

X < C(X(0)+ X?). (19)
Now it is clear that as long as
20X(t) <1, (20)
the above blue inequality ensures that

X (t) < 2CX(0). (21)

Using a bootstrap argument, one may conclude that if X (0) is small enough then
(20) is satisfied as long as the solution exists. Hence the red inequality holds. [
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o

The general global existence statement for small perturbations of a stable state

Theorem

. d .4
Let p € [2,2d) N [2,4]. Assume that P’( ) >0, a0 € By; and uo € By; and

=il
that in addition “0 and “0 are in B2 1 - There exist two constants ¢ and M
depending only on d, and on the pammeters of the system such that if

(a0, uo)I® 4_, +llaoll” & +lluoll” 4_, <c
Bja B;fy.l B;gjl

then (9) has a unique global-in-time solution (a,u) with

L g il Aa A h % 1 %
(a,u)” €Cp(B5y )NL (B3, ), a"€C(B,)NL (B]),

d

o il S Ea
u € Cy(BE, )NLNBE, ).
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o

The general global existence statement for small perturbations of a stable state

Theorem

L& Q&
Let p € [2,2d) N [2,4]. Assume that P'(1) >0, ao € B, and uo € By, and

.d_q
that in addition af) and uf) are in 322_1 . There exist two constants ¢ and M
depending only on d, and on the parameters of the system such that if

I{a0, uo)lI® 4 _, +llaoll” & + lluoll” 4 _, <c
. : .4

2 P
By B,m p,1

then (9) has a unique global-in-time solution (a,u) with

¢ a5 =1 1,55+l h o 155
(a,w)* €Co(BE, )NLY(BE, ), a"eC(BF,)NLY(B},),
o E—il &
u" € Cy(BE, )N LY (BE

+1
p,1 1 Ja

o The first global existence result of strong solutions has been established by
Matsumura and Nishida in 1980 (high Sobolev regularity).

o The above statement has been first proved independently in a joint work with
Charve and by Chen, Miao and Z. Zhang, in 2009.

o Here we adopted Haspot’s method (2010).
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o

The general global existence statement for small perturbations of a stable state

orem

& o @il
Let p € [2,2d) N [2,4]. Assume that P'(1) >0, ao € By, and uo € B}, and

.41
that in addition a{’) and uf) are in BQ{1 . There exist two constants ¢ and M
depending only on d, and on the parameters of the system such that if

(a0, uo)|l” g4t laoll™ 4+ lluol® 4 _, <

B. P P
2,1 B]Ll Bp.l

then (9) has a unique global-in-time solution (a,u) with

Ceey BT nLi B heCy(BP )N LN(BY
(azu) S b( 2,1 )ﬂ ( 2,1 )1 (S b( p’l)m ( p,1)7
.4 .44
u"eCy(BE, )NLY(BE, ).

o The smallness condition is satisfied for small densities and large highly
oscillating velocities: take u§ : z — ¢(z)sin(e "'z - w)n with w and n in
S?1 and ¢ € S(R?). Then

_d
sl 2, <ce' T if p>d

Bp-,l

Hence such data with small enough ¢ generate global unique solutions.
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The incompressible limit issue

We now want to study the convergence of the barotropic Navier-Stokes equations
when the Mach number ¢ tends to 0.

The relevant time scale is 1/&, hence one makes the following rescaling
(9 w)(t,7) = (5%, %) (et, 2)
and the original system (9) becomes

Orp® + div(pfu®) =0,

1

P
O (p°uf) + div(p°u® @ uf) — pAu® — ' Vdivu® + V”Q

=0.

In the case of well-prepared data:
p5=14+0(?) and wu§ with divu§ = O(e),

one may use asymptotic expansions to show that the solutions to the above
system tend to the solution to the incompressible Navier-Stokes equations when ¢
goes to 0.

In the case of ill-prepared data, time derivatives are of order e~ ! and highly
oscillating acoustic waves do have to be considered. Whether they may interact or
not is the main problem from a mathematical viewpoint. This is the question that
we want to address now in the whole space framework.

Raphaé&l Danchin Fourier analysis methods and fluid mechanics



Global results for comp.
o] ]

The incompressible limit issue

So we consider data
pg =14+¢eby and wug

with (bo,uo) independent of € (just to simplify). Note that it is not assumed
that divug = 0. We still assume that P’/(1) = 1.

Denoting p€ = 1+ €b®, it is found that (b°,u®) satisfies

div u®

Bub® + = —div(b°u®),
c g )
(NSC.) s +uf -Vt — 2 4 (k) Y — o,
1+ ebs e

(b%, u£)|t=0 = (bo, o),
with A := uA + p/Vdiv and k a smooth function satisfying k(0) = 0.

According to the previous parts, System (NSC:) is locally well-posed. We want
to study whether u® tends in some sense to the solution v of the incompressible
Navier-Stokes equations:

(NS) { Ov+P(v- Vo) — plAv =0,

vjt=0 = Puo.

For simplicity, we restrict to the case of small data (bg,up). Hence all the results
will be global-in-time.
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Scheme of the proof

The proof of the convergence to the incompressible Navier-Stokes equations
comprises four steps:

@ Global existence and uniform estimates for (NSC;);

@ Global existence for the corresponding limit system (NS);

@ Convergence to 0 for the “compressible part” of the solution, namely
(6%, Que);

@ Convergence of Pu® to the solution v of (NS).
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Step 1. Global existence for (NSC;) and uniform estimates.

Making the change of functions
b(t, x) := eb®(e2t,ex), u(t, ) := eu®(e%t,ex)

we notice that (b,u®) solves (NSC:) if and only if (b,u) solves (NSC) with
rescaled data bg := ebg(e-), uo := eup(e-) and h®.Hence the global existence
theorem for (NSC) with p = 2 ensures the first part of the theorem. We get a
global solution (b%,uf) such that

[ gy, el g e
Loe(Byy ONLN(BZ, ) Le(B3,) LH(B3,)
+Hu5|| ay <M(lboll® 4 | +ellboll g +lluoll a_,)-
(B2 1 ) Ll(Bz ) 22,1 B22,1 322.1

Warning: here the threshold between low and high frequencies is at 1.

Step 2. Global existence for (NS).
As wug is small, one may apply the global existence result for small data. We get a
d

(small) solution v € Cy(RT; B, ) NLY(RT; B} Jr1).
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Step 3. Convergence to zero for the compressible modes (b°, Qu®).
The functions b and w defined above satisfy
Otb + divQu = F := —div (bu),

, 1 (22)
9HQu+Vb=G:=—-Q (u Y+ Au + K(b)Vb) .

The left-hand side is the acoustic wave equation, which has dispersive properties in
the whole space R¢ (with d > 2). This will be the key to our convergence result.
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A short digression on dispersive equations and Strichartz estimates

Let (U(t))ter be a group of unitary operators on L?(R?) satisfying the dispersion
inequality:

C
<

IOl <

[[fll1 for some o > 0.
Example: o = (d —1)/2 for the wave equation on R?, and ¢ = d/2 for the
Schrodinger equation.

Interpolating between L? — L? and L' — L*°, we deduce that

1

1
C\+ 7
0@z < (705) " Ul forall 27 <o,

Definition: A couple (q,7) € [2,00]? is admissible if 1/¢ + o/r = ¢/2 and

(q,7,0) # (2,00,1).

Theorem (Strichartz estimates)

@ For any admissible couple (q,7) we have ||U(t)uol|pa(rr) < Clluollp2;

@ For any admissible couples (q1,71) and (q2,72) we have

HAf Ut—r7)f(r) dTHqu ) < ”fHI,’I'z(/,""z)'

Remark: compared to Sobolev embedding Hd(%_%) — L", Strichartz estimates

provides a gain of d(% - %) = q% derivative.
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The TT* argument

Lemma (TT* argument)

Let T : H — B a bounded operator from the Hilbert space H to the Banach space
B and T* : B — H the adjoint operator defined by

V(z,y) € B' x H, (T*z | y)u = <$7T7y>3’,3

Then we have
”TT*HIL(B’;B) = ”T”%(’H;B) = ”T*”%(B’;H)‘

We take
H=L2(RY), B=LIYR;L"(RY), B' =LY R;L" (R%) and T :uo— U(t)uo.

Hence

d)»—)/U ot')dt' and TT*:¢+— {tl—> [tb"(tft’)q‘)(t/)dt’}.
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Proving the homogeneous Strichartz estimate

We want to prove ||Tuol|pa(rry < Cllugl|z2. According to the TT* lemma, it is
equivalent to

HTT*¢||LG(L7‘) < C||¢HLq’(L7")' (23)
Now, we have

ITT*$(0)|| e < /R UG — )o(E) | - dt.

So taking advantage of the dispersion inequality L™ — L" and of the relation

o(% — %) = %, we get

1
ITT* 6(8) | < /R “—gww)uy/ dt.

_ t’\
Applying the Hardy-Littlewood-Sobolev inequality gives (23) if 2 < ¢ < oo.

Remarks:

@ Endpoint (g¢,7) = (00, 2) stems from the fact that (U(t))ter is unitary on
L2. Endpoint (q,7) = (2,20/(c—1)) if 0 > 1 is more involved (Keel & Tao).

@ The nonhomogeneous Strichartz inequality follows from similar arguments.

© In the case of the linear wave or Schrédinger equation, using (Aj)]'gz allows
to get Strichartz estimates involving Besov norms.
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[o]e] Jele]

Application to the acoustic wave equations

The system
Otb + divQu = F := —div (bu),

. (24)
8 Qu+Vb=G:=—Q (u Vit g Au+ K(b)Vb) .

is associated to a group U(t) of unitary operators on L?(R?) which satisfies the
dispersion inequality

d—1
U (#)(bo; vo)[lLee < Ct™ = |[(bo, vo)ll 1 -

Hence Strichartz estimates are available for this system if d > 2.
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[o]e] Jele]

Application to the acoustic wave equations

The system
Otb + divQu = F := —div (bu),

) L ) (24)
1 Qu+ Vb=G:=—-Q (u Y+ gy Au+ K(b)Vb) .

is associated to a group U(t) of unitary operators on L?(R?) which satisfies the
dispersion inequality
d—
2

1
U #) (b0, vo)llLee < Ct™ "2 | (bo, vo) 1 -

Hence Strichartz estimates are available for this system if d > 2.

Localizing (24) by means of (Aj);cz, we get
1@l 4 yor SN0, Quo)ll g, +IEG)]

Lip(By 4 ) B3,

d
.S —1
B2

2,

d—1 2 1 1
whenever 2 <p < 2(7), - =(d—- 1)(7 — 7) and (r,p,d) # (2,00,3).
d—3 T 2 p

Combining product laws and the global a priori estimate for (b,u) gives

IEGN, g < o

I
Lt (BZ‘l
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[o]e] Jele]

Application to the acoustic wave equations

Localizing (24) by means of (A;);ez, we get

e, @l a i1 S I(bo, Quo)ll 4y +||(F7G)HL1 4,

= 2
LBy, B3 7Bz )

d—1 2 1 1

whenever 2 < p < 2<7), - =(d- 1)(7 — 7) and (r,p,d) # (2,00, 3).
d—3 r 2 p

Combining product laws and the global a priori estimate for (b,u) gives

NEOI e, <CCo.
Ll 2

(Bs1
Eventually, resuming to the initial variables, we end up with

I, Qu)l . a_y,1 < CCoer,
L"(B;,1 ™)
where
e p=2(d—1)/(d—3) and r =2 if d > 4,
e p€[2,00) and r=2p/(p—2) if d =3,
o p€[2,00] and r =4p/(p—2) if d =2.
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Step 4. Convergence of the incompressible part.
) satisfies
wrt:() =0, (24)

The vector-field w® := Pu® —1
Opw® — pAw® = HE,

with
H* := —P(w®-Vv) — P(u®-Vw®)—P(Qu° - Vv) — P(u® - VOu)—P (J(eb%)Au®) .

There are three types of (quadratic) terms in H€:
@ The blue terms are linear in w®, but small because u® and v are small.

e Owing to Quf, the red terms decay like some power of € (previous step).

o The green term is small because J(eb®) ~ eb®.
One has to use appropriate norms, keeping in mind that Vv, VOu® are bounded

~, . d
in e.g. L?(BZ2,). For instance, in the (nonphysical !) case d > 4, one has
with p=2(d—1)/(d - 3).

1
(6%, Qu)[|  a_1 < CCoe?
2P, ?)
Estimates for the heat equation ensure that
ol ay Tl ag SIETL a g (25)
LY(BY, °) Le(BY, 7)) LY(BY, )
and the above heuristics combined with product laws in Besov spaces leads to
c c 1
flw®l I a_3 < CCpe2.
2 S P 2
Le=(Br, %)

d
1(BP
L (Bp.l )
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[o]e]e]e] ]

Theorem

There exist n, M > 0 depending only on d and G, such that if

Co:=lboll a y, a + HUOH <n (26)
B2 2

31 MBs, B3,

then the following results hold:
@ System (NSC:) has a unique global solution (b,uf) with

1%l 4y a Fellll g4+l

L4 . 4 4., <MC
L2 (B, )NL2(BZ,) L>®(BZ ) L (B3, )le(B2 )

@ the incompressible Navier-Stokes equations (NS) with data Puo have a
unique solution v with

v d_ d S]WC()
I ”Loo(Bg T

Q@ for any a €]0,1/2] if d>4, a€]0,1/2[ if d =3, a €]0,1/6] if d=2, Pu®
tends to v in C(RT; B;{f“) when € goes to 0.

@ (b7, Quf) tends to 0 in some space L’"(B;l) (the value of r and p
depending on the dimension) with an explicit rate of decay.

v
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