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Motivation for Fourier analysis

Fundamental fact: for spectrally localized functions over Rd, derivatives act
almost as homotheties. In effect:

F(∇u)(ξ) = iξF(u).

Hence, Parseval equality implies that if SuppF(u) ⊂ {ξ ∈ Rd : rλ ≤ |ξ| ≤ Rλ}
then

‖∇u‖L2 ≈ λ‖u‖L2 .
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Bernstein inequalities

Direct Bernstein inequality: Let R > 0. A constant C exists so that, for any
k ∈ N , any couple (p, q) in [1,∞]2 with q ≥ p ≥ 1 and any function u of Lp

with Supp û ⊂ B(0, λR) for some λ > 0, we have

‖∇ku‖Lq ≤ Ck+1λ
k+d( 1

p
− 1
q

)‖u‖Lp .

Reverse Bernstein inequality: Let 0 < r < R. There exists a constant C so
that for any k ∈ N, p ∈ [1,∞] and any function u of Lp with
Supp û ⊂ {ξ ∈ Rd / rλ ≤ |ξ| ≤ Rλ}, we have

λk‖u‖Lp ≤ Ck+1‖∇ku‖Lp .
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Bernstein inequality for (generalized) heat semi-groups

Proposition

Assume Supp û ⊂ {ξ ∈ Rd : rλ ≤ |ξ| ≤ Rλ}. Then for any σ ∈ R, there exists c
and C so that for all p ∈ [1,+∞],

‖e−t|D|
σ
u‖Lp ≤ Ce−ctλ

σ
‖u‖Lp .

If p = 2 then this is an obvious consequence of the localization of Fu and of
Parseval equality, since

F
(
e−t|D|

σ
u
)
(ξ) = e−t|ξ|

σ
Fu(ξ) and |ξ| ∼ λ on SuppFu.
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Bernstein inequality for (generalized) heat semi-groups

Proposition

Assume Supp û ⊂ {ξ ∈ Rd : rλ ≤ |ξ| ≤ Rλ}. Then for any σ ∈ R, there exists c
and C so that for all p ∈ [1,+∞],

‖e−t|D|
σ
u‖Lp ≤ Ce−ctλ

σ
‖u‖Lp .

The proof for general p stems from the following lemma:

Lemma

Let φ ∈ C∞0 (Rd) supported in (say) {ξ ∈ Rd : r/2 ≤ |ξ| ≤ 2R}. There exist two
positive constants c and C such that for any λ > 0, and p ∈ [1,∞] we have

‖e−t|D|
σ
φ(λ−1D)‖L(Lp;Lp) ≤ Ce−ctλ

σ
.

Proof:

1 Change of scale reduces the proof to the case λ = 1;

2 F(e−t|D|
σ
φ(D)u)(ξ) =

(
e−t|ξ|

σ
φ(ξ)

)
F(u)(ξ).

3 Young inequality reduces the proof to ‖F−1
(
e−t|ξ|

σ
φ(ξ)

)
‖L1 ≤ Ce−ct.

This follows from standard computations : integration by parts, . . .
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The Littlewood-Paley decomposition

Let χ be a bump function with Suppχ ⊂ B(0, 4
3

) and χ ≡ 1 on B(0, 3
4

). We set
ϕ(ξ) = χ(ξ/2)− χ(ξ) so that:

χ(ξ) +
∑
j∈N

ϕ(2−jξ) = 1 and
∑
j∈Z

ϕ(2−jξ) = 1 if ξ 6= 0.

The homogeneous dyadic blocks ∆̇j are defined by

∆̇j := ϕ(2−jD) for j ∈ Z.

The homogeneous Littlewood-Paley decomposition for u reads

u =
∑
j

∆̇ju. (1)

That equality holds true in the set S′ of tempered distributions modulo
polynomials only. A way to overcome this is to restrict to the set S′h of tempered
distributions u such that

lim
j→−∞

‖Ṡju‖L∞ = 0 with Ṡj := χ(2−jD).

Equality (1) holds true in S′ whenever u is in S′h.
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Functional spaces

Littlewood Paley decomposition allows to characterize some classical norms or
semi-norms such as:

homogeneous Sobolev semi-norm: ‖u‖2
Ḣs
≈
∑
j

(2js‖∆̇ju‖L2 )2 ;

homogeneous Hölder semi-norm: ‖u‖Ċ0,r ≈ sup
j

2jr‖∆̇ju‖L∞ .

This motivates the following definition of homogeneous Besov spaces:

Definition

For s ∈ R and 1 ≤ p, r ≤ ∞, we set

‖u‖Ḃsp,r :=

(∑
j

2rjs‖∆̇ju‖rLp
) 1
r

if r <∞ and ‖u‖Ḃsp,∞ := sup
j

2js‖∆̇ju‖Lp .

The homogeneous Besov space Ḃsp,r is the subset of u ∈ S′h s.t. ‖u‖Ḃsp,r <∞.
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Functional spaces

Besov spaces are independent of the Littlewood-Paley decomposition (∆̇j)j∈Z.
This is a consequence of the following fundamental lemma:

Lemma

Let 0 < r < R. Let s ∈ R and 1 ≤ p, r ≤ ∞. Let (uj)j∈Z be such that
u :=

∑
j∈Z uj converges in S′h and Supp ûj ⊂ 2jC(0, r, R) for all j ∈ Z. Then∥∥∥2js‖uj‖Lp(Rd)

∥∥∥
`r(Z)

<∞ =⇒ u :=
∑
j∈Z

uj is in Ḃsp,r(Rd)

and we have ‖u‖Ḃsp,r ≈
∥∥∥2js‖uj‖Lp(Rd)

∥∥∥
`r(Z)

.

If s > 0 then the result is still true under the weaker assumption that
Supp ûj ⊂ B(0, 2jR) .

In other words, for spectrally localized series, proving that the sum is in a Besov
space amounts to getting suitable bounds for the Lp norm of each term.
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Functional spaces

Comparison with Lebesgue spaces:

Ḃ0
p,min(p,2) ↪→ Lp ↪→ Ḃ0

p,max(p,2) for any p ∈ (1,∞).

We also have
Ḃ0
p,1 ↪→ Lp ↪→ Ḃ0

p,∞ if p = 1,∞.

Having u in Ḃsp,r means that u has s fractional derivatives in Lp :

Proposition (Characterization by finite differences)

For s ∈]0, 1[ and finite p, r, we have

‖u‖Ḃsp,r ≈
(∫

Rd

(∫
Rd

(
|u(y)− u(x)

|y − x|s

)p dy

|y − x|d

) r
p

dx

) 1
r

·

Similar result holds for p or r infinite.
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Functional spaces

A few classical properties of Besov spaces:

With our definition, the spaces Ḃsp,r(Rd) are complete if and only if s < d/p,
or s = d/p and r = 1.

The following real interpolation property is fulfilled for all θ ∈ (0, 1) :

[Ḃs1p,r1 , Ḃ
s2
p,r2

](θ,r) = Ḃ
θs2+(1−θ)s1
p,r if 1 ≤ p, r1, r2, r ≤ ∞ and s1 6= s2.

Functional embedding: If s ∈ R, 1 ≤ p1 ≤ p2 ≤ ∞, 1 ≤ r1 ≤ r2 ≤ ∞ then

Ḃsp1,r1 (Rd) ↪→ Ḃ
s−d( 1

p1
− 1
p2

)

p2,r2 (Rd) ;

Fatou property: if (un)n∈N is a bounded sequence of functions of Ḃsp,r with
un ⇀ u in S′h then

u ∈ Ḃsp,r and ‖u‖Ḃsp,r ≤ C lim inf ‖un‖Ḃsp,r .

Action of Fourier multipliers: For any smooth homogeneous of degree m
function F on Rd \ {0} the operator F (D) maps Ḃsp,r in Ḃs−mp,r . In

particular ∇ : Ḃsp,r −→ Ḃs−1
p,r .
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Maximal regularity estimates for parabolic equations

Consider the heat equation

∂tu−∆u = f, u|t=0 = u0

or, more generally,
∂tv + |D|σv = g, v|t=0 = v0.

We want to establish estimates of the form

‖∂tu,D2u‖L1(X) ≤ C
(
‖u0‖X + ‖f‖L1(X)

)
(2)

‖∂tv, |D|σv‖L1(X) ≤ C
(
‖v0‖X + ‖g‖L1(X)

)
. (3)

It is well known that if r ∈ (1,∞) and X = Lq or Ẇ s,q for some s ∈ R and
q ∈ (1,∞) then, for the heat equation with u0 ≡ 0,

‖∂tu,D2u‖Lr(X) ≤ C‖f‖Lr(X).

However the inequality fails for the endpoint case r = 1 for those spaces X.

Theorem

Inequality (2) holds true for any p ∈ [1,∞] and s ∈ R, if X = Ḃsp,1.
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Maximal regularity estimates for parabolic equations

Proof for the heat equation (for simplicity):

We start with ∂t∆̇ju−∆∆̇ju = ∆̇jf for any j ∈ Z. Hence, according to
Duhamel’s formula

∆̇ju(t) = et∆∆̇ju0 +

∫ t

0
e(t−τ)∆∆̇jf(τ) dτ.

Therefore, taking the Lp norm of both sides, we get

‖∆̇ju(t)‖Lp ≤ ‖et∆∆̇ju0‖Lp +

∫ t

0
‖e(t−τ)∆∆̇jf(τ)‖Lp dτ. (4)

According to Bernstein inequality for the heat semi-group, we have

‖eλ∆∆̇jz‖Lp ≤ Ce−cλ22j
‖∆̇jz‖Lp .

Therefore, applying this inequality and taking the L1 or L∞ norm of both sides
of (4) on [0, t],

‖∆̇ju‖L∞t (Lp) + 22j‖∆̇ju‖L1
t (Lp) ≤ C

(
‖∆̇ju0‖Lp + ‖∆̇jf‖L1

t (Lp)

)
.

Multiplying by 2js and summing up over j yields∑
j

2js‖∆̇ju‖L∞t (Lp)︸ ︷︷ ︸
‖u‖

L̃∞t (Ḃsp,1)

+‖u‖
L1
t (Ḃs+2

p,1 )
. ‖u0‖Ḃsp,1 + ‖f‖L1

t (Ḃsp,1).
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Maximal regularity estimates for parabolic equations

More maximal regularity estimates:

Those results may be somewhat generalized to domains if restricting to
indices (p, s) with −1 + 1/p < s < 1/p and 1 < p <∞.

In Rd, taking the Lρ1 norm of each ‖∆̇ju‖Lp over the time interval [0, t]
yields:

‖u‖
L̃
ρ1
t (Ḃ

s+ 2
ρ1

p,r )

. ‖u0‖Ḃsp,1 + ‖f‖
L̃
ρ2
t (Ḃ

s−2+ 2
ρ2

p,r )

for 1 ≤ ρ2 ≤ ρ1 ≤ ∞

with ‖v‖
L̃at (Ḃσ

b,c
)

:=
∥∥∥2jσ‖∆̇jv‖La(0,t;Lb(Rd))

∥∥∥
`c(Z)

.

Note that time integration has been performed before spectral summation.

Lamé system: ∂tu− µ∆u− µ′∇divu = f in Rd with µ > 0 and µ+ µ′ > 0 :

‖u‖
L̃∞t (Ḃsp,1)

+ min(µ, µ+ µ′)‖∇2u‖L1
t (Ḃsp,1) . ‖u0‖Ḃsp,1 + ‖f‖L1

t (Ḃsp,1).

Stokes system: ∂tu− µ∆u+∇P = f and divu = 0 in Rd :

‖u‖
L̃∞t (Ḃsp,1)

+ ‖(∂tu, µ∇2u,∇P )‖L1
t (Ḃsp,1) . ‖u0‖Ḃsp,1 + ‖f‖L1

t (Ḃsp,1).

Raphaël Danchin Fourier analysis methods and fluid mechanics



Fourier analysis Applications Partially dissipative eq. Global results for comp. NS

Nonlinear estimates

Consider u and v in two different Besov spaces:

Does uv make sense ?

If so, where does uv lie ?

Formally, we have
uv = Tuv +R(u, v) + Tvu (5)

with
Tuv :=

∑
j

Ṡj−1u ∆̇jv and R(u, v) :=
∑
j

∑
|j′−j|≤1

∆̇ju ∆̇j′v.

The above operator T is called paraproduct whereas R is called remainder.
Relation (5) (the so called Bony’s decomposition) has been introduced by J.-M.
Bony in the early eighties.

Raphaël Danchin Fourier analysis methods and fluid mechanics



Fourier analysis Applications Partially dissipative eq. Global results for comp. NS

Nonlinear estimates

Proposition

For any (s, p, r) ∈ R× [1,∞]2 and t < 0 we have

‖Tuv‖Ḃsp,r . ‖u‖L∞‖v‖Ḃsp,r and ‖Tuv‖Ḃs+tp,r
. ‖u‖Ḃt∞,∞‖v‖Ḃsp,r .

For any (s1, p1, r1) and (s2, p2, r2) in R× [1,∞]2 we have

if s1 + s2 > 0, 1/p := 1/p1 + 1/p2 ≤ 1 and 1/r := 1/r1 + 1/r2 ≤ 1 then

‖R(u, v)‖
Ḃ
s1+s2
p,r

. ‖u‖Ḃs1p1,r1
‖v‖Ḃs2p2,r2

;

if s1 + s2 = 0, 1/p := 1/p1 + 1/p2 ≤ 1 and 1/r1 + 1/r2 ≥ 1 then

‖R(u, v)‖Ḃ0
p,∞

. ‖u‖Ḃs1p1,r1
‖v‖Ḃs2p2,r2

.

Idea of proof. The general term defining Tuv and R(u, v) (namely Ṡj−1u ∆̇jv

and ∆̇ju∆̇jv ) is spectrally localized in 2jC(0, r, R) and 2jB(0, R), respectively.
Hence, according to the “fundamental lemma”, it suffices to establish a suitable
Lp estimate for each term.
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Product laws

Corollary

Let u and v be in L∞ ∩ Ḃsp,r for some s > 0 and (p, r) ∈ [1,∞]2. Then there
exists a constant C depending only on d, p and s and such that

‖uv‖Ḃsp,r ≤ C
(
‖u‖L∞‖v‖Ḃsp,r + ‖v‖L∞‖u‖Ḃsp,r

)
.

Proof:

1 Write Bony’s decomposition uv = Tuv + Tvu+R(u, v) ;

2 Use T : L∞ × Ḃsp,r → Ḃsp,r ;

3 Use R : Ḃ0
∞,∞ × Ḃsp,r → Ḃsp,r if s > 0 ;

4 Notice that L∞ ↪→ Ḃ0
∞,∞.

Corollary

If p <∞ then Ḃ
d
p

p,1 is a Banach algebra continuously embedded in the set of
continuous functions decaying to 0 at infinity.
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Left composition in Besov spaces

Basic question:

Let u ∈ Ḃsp,r and F : R× R smooth. What can be said of F (u) ?
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Left composition in Besov spaces

Proposition

Let F : R→ R be a smooth function with F (0) = 0. Then for all (p, r) ∈ [1,∞]2

and all s > 0 , there exists a constant C such that for all u ∈ Ḃsp,r ∩ L∞ we have

F (u) ∈ Ḃsp,r ∩ L∞ and
‖F (u)‖Ḃsp,r ≤ C‖u‖Ḃsp,r

with C depending only on ‖u‖L∞ , F, s, p and d.

Sketchy proof: We use Meyer’s first linearization method:

F (u) =
∑
j

F (Ṡj+1u)− F (Ṡju) =
∑
j

∆̇ju

∫ 1

0
F ′(Ṡju+ τ∆̇ju) dτ︸ ︷︷ ︸

uj

.

We notice that
‖uj‖Lp ≤ C‖∆̇ju‖Lp .

Unfortunately, Fuj is not localized in a ball of size 2j . However, we find out that

‖Dkuj‖Lp ≤ C2jk‖∆̇ju‖Lp .

Hence everything happens as if the Fuj were well localized. This suffices to
complete the proof.
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Change of variables in Besov spaces

Multiplier space M(X) for the Banach space X = set of distributions f such
that ψf is in X whenever ψ is in X, endowed with the norm

‖f‖M(X) := sup ‖ψf‖X

where the supremum is taken over all functions ψ in X with norm 1.

Proposition

Let Z be a bi-Lipschitz diffeomorphism of Rd and (s, p, q) with 1 ≤ p <∞ and
−d/p′ < s < d/p (or just −d/p′ < s ≤ d/p if q = 1 and just −d/p′ ≤ s < d/p if
q =∞).
Then a 7→ a ◦ Z is a self-map over Ḃsp,q in the following cases:

1 s ∈ (0, 1) and JZ−1 , DZ are bounded,

2 s ∈ (−1, 0], JZ , DZ
−1 are bounded and JZ−1 is in M(Ḃ−s

p′,q′ ) .

Proof.

Case s ∈ (0, 1) is based on characterization by finite differences and change of
variables.

Case s ∈ (−1, 0) follows by duality.

Remark : Higher order estimates are available under stronger condition over Z :
use chain rule and induction.
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The transport equation

Consider the following transport equation:

(T )

{
∂ta+ v · ∇a = f ∈ L1([0, T );X)

a|t=0 = a0 ∈ X.

Roughly, if v is a Lipschitz time-dependent vector-field and if X is a
“reasonable” Banach space then we expect (T ) to have a unique solution
a ∈ C([0, T );X) satisfying

‖a(t)‖X ≤ eCV (t)

(
‖a0‖X +

∫ t

0
e−CV (τ)‖f(τ)‖X dτ

)
with V (t) :=

∫ t

0
‖∇v(τ)‖L∞ dτ. (6)

Theorem

The above result holds true for X = Ḃsp,r with V (t) =

∫ t

0
‖∇v(τ)‖

Ḃ

d
p1
p1,1

dτ

whenever 1 ≤ p ≤ p1 ≤ ∞, 1 ≤ r ≤ ∞, −min
(
d
p1
, d
p′

)
≤ s ≤ 1 + d

p1
·

If r > 1 then we need s < 1 + d/p1 .
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The transport equation

Consider the following transport equation:

(T )

{
∂ta+ v · ∇a = f ∈ L1([0, T );X)

a|t=0 = a0 ∈ X.

Roughly, if v is a Lipschitz time-dependent vector-field and if X is a
“reasonable” Banach space then we expect (T ) to have a unique solution
a ∈ C([0, T );X) satisfying

‖a(t)‖X ≤ eCV (t)

(
‖a0‖X +

∫ t

0
e−CV (τ)‖f(τ)‖X dτ

)
with V (t) :=

∫ t

0
‖∇v(τ)‖L∞ dτ. (6)

Basic example: Hölder space C0,ε.

Theorem

The above result holds true for X = Ḃsp,r with V (t) =

∫ t

0
‖∇v(τ)‖

Ḃ

d
p1
p1,1

dτ

whenever 1 ≤ p ≤ p1 ≤ ∞, 1 ≤ r ≤ ∞, −min
(
d
p1
, d
p′

)
≤ s ≤ 1 + d

p1
·

If r > 1 then we need s < 1 + d/p1 .
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The transport equation

Consider the following transport equation:

(T )

{
∂ta+ v · ∇a = f ∈ L1([0, T );X)

a|t=0 = a0 ∈ X.

Roughly, if v is a Lipschitz time-dependent vector-field and if X is a
“reasonable” Banach space then we expect (T ) to have a unique solution
a ∈ C([0, T );X) satisfying

‖a(t)‖X ≤ eCV (t)

(
‖a0‖X +

∫ t

0
e−CV (τ)‖f(τ)‖X dτ

)
with V (t) :=

∫ t

0
‖∇v(τ)‖L∞ dτ. (6)

Theorem

The above result holds true for X = Ḃsp,r with V (t) =

∫ t

0
‖∇v(τ)‖

Ḃ

d
p1
p1,1

dτ

whenever 1 ≤ p ≤ p1 ≤ ∞, 1 ≤ r ≤ ∞, −min
(
d
p1
, d
p′

)
≤ s ≤ 1 + d

p1
·

If r > 1 then we need s < 1 + d/p1 .
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The transport equation

Sketch of the proof:

Applying ∆̇j to (T ) gives

∂t∆̇ja+ v · ∇∆̇ja = ∆̇jf + Ṙj with Ṙj := [v · ∇, ∆̇j ]a. (7)

Under the above conditions over s, p , the remainder term Ṙj satisfies

‖Ṙj(t)‖Lp ≤ Ccj(t)2−js‖∇v(t)‖
Ḃ

d
p1
p1,1

‖a(t)‖Ḃsp,r with ‖(cj(t)‖`r = 1. (8)

Applying standard Lp estimates for the transport equation (7) yields

‖∆̇ja(t)‖Lp ≤ ‖∆̇ja0‖Lp +

∫ t

0

(
‖∆̇jf‖Lp + ‖Ṙj‖Lp +

‖divv‖L∞
p

‖∆̇ja‖Lp
)
dτ.

Multiplying by 2js then summing up over j yields

‖a‖L∞t (Ḃsp,r) ≤ ‖a‖L̃∞t (Ḃsp,r)
≤ ‖a0‖Ḃsp,r +

∫ t

0
‖f‖Ḃsp,r dτ + C

∫ t

0
V ′‖a‖Ḃsp,r dτ

with ‖a‖
L̃∞t (Ḃsp,r)

:=
∥∥2js‖∆̇ja‖L∞t (Lp)

∥∥
`r
.

Then applying Gronwall’s lemma yields the desired inequality for a.
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The (homogeneous) incompressible Navier-Stokes equations

The homogeneous incompressible Navier-Stokes equations read:

(NS)

{
∂tu+ div(u⊗ u)− µ∆u+∇P = 0,

divu = 0.

Here u : [0, T [×Rd → Rd stands for the velocity field, and P : [0, T [×Rd → R, for
the pressure. The viscosity µ is a given positive number.
If we want to solve the Cauchy problem for (NS) then we have to prescribe some
initial divergence-free velocity field u0.

Introducing the Leray projector over divergence-free vector fields:
P := Id +∇(−∆)−1div , System (NS) recasts in

∂tu+ Pdiv(u⊗ u)− µ∆u = 0.

This equation enters in the class of generalized Navier-Stokes equations:

(GNS) ∂tu+Q(u, u)− µ∆u = 0

with FQj(u, v)(ξ) :=
∑

αj,m,n,pk,`

ξn ξp ξm

|ξ|2
F(uk v`)(ξ).
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The (homogeneous) incompressible Navier-Stokes equations

Scaling invariance for (GNS): for all λ > 0 it is clear that v is a solution if
and only if Tλv is a solution with

Tλv(t, x) := λv(λ2t, λx).

Examples of scaling invariance spaces for (GNS) :

C(R+; Ḣ
d
2
−1) ∩ L2(R+; Ḣ

d
2 ) (Fujita and Kato, 1964);

C(R+;Ld) (Giga-Miyakawa, Kato, (1984) Furioli-Lemarié-Terraneo (1998));

C(R+; Ḃ
d
p
−1

p,1 ) ∩ L1(R+; Ḃ
d
p

+1

p,1 ) and more general Besov spaces

(Cannone-Meyer-Planchon, Kozono-Yamazaki 1994).

Theorem (global existence for small data)

Let u0 ∈ Ḃ
d
p
−1

p,r with divu0 = 0. Assume that p is finite. There exists c > 0 such
that if

‖u0‖
Ḃ

d
p
−1

p,r

≤ cµ

then (GNS) has a unique global solution u in the space

X := L̃∞(R+; Ḃ
d
p
−1

p,r ) ∩ L̃1(R+; Ḃ
d
p

+1

p,r ).
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The (homogeneous) incompressible Navier-Stokes equations

Mild formulation of (GNS) : finding u : R+ × Rd → Rd so that

u(t) = uL(t) + B(u, u)(t) with

uL(t) := eµt∆u0 and B(u, v)(t) := −
∫ t

0
eµ(t−τ)∆Q(u, v) dτ.

Claim : if µ−1‖u0‖
Ḃ

d
p
−1

p,r

is small enough then Φ : v 7→ uL + B(v, v) possesses a

unique fixed point in the closed ball B̄X(0, 2C‖u0‖
Ḃ

d
p
−1

p,r

) of the Banach space X.
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The (homogeneous) incompressible Navier-Stokes equations

Mild formulation of (GNS) : finding u : R+ × Rd → Rd so that

u(t) = uL(t) + B(u, u)(t) with

uL(t) := eµt∆u0 and B(u, v)(t) := −
∫ t

0
eµ(t−τ)∆Q(u, v) dτ.

Claim : if µ−1‖u0‖
Ḃ

d
p
−1

p,r

is small enough then Φ : v 7→ uL + B(v, v) possesses a

unique fixed point in the closed ball B̄X(0, 2C‖u0‖
Ḃ

d
p
−1

p,r

) of the Banach space X.

1. Maximal regularity estimates for the heat equation imply that

‖uL‖X := ‖uL‖
L̃∞(Ḃ

d
p
−1

p,r )

+ µ‖uL‖
L̃1(Ḃ

d
p
+1

p,r )

≤ C‖u0‖
Ḃ

d
p
−1

p,r

.

2. Continuity results for the paraproduct and remainder =⇒ B : X ×X → X
whenever p <∞. Indeed, for some C = C(d, p,Q) , we have

‖Q(u, v)‖
L̃1(Ḃ

d
p
−1

p,r )

≤ Cµ−1‖u‖X‖v‖X .

Hence
‖B(u, v)‖X ≤ Cµ−1‖u‖X‖v‖X .
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The (homogeneous) incompressible Navier-Stokes equations

1. Maximal regularity estimates for the heat equation imply that

‖uL‖X := ‖uL‖
L̃∞(Ḃ

d
p
−1

p,r )

+ µ‖uL‖
L̃1(Ḃ

d
p
+1

p,r )

≤ C‖u0‖
Ḃ

d
p
−1

p,r

.

2. Continuity results for the paraproduct and remainder =⇒ B : X ×X → X
whenever p <∞. Indeed, for some C = C(d, p,Q) , we have

‖Q(u, v)‖
L̃1(Ḃ

d
p
−1

p,r )

≤ Cµ−1‖u‖X‖v‖X .

Hence
‖B(u, v)‖X ≤ Cµ−1‖u‖X‖v‖X .

Therefore ‖Φ(v)‖X ≤ C‖u0‖
Ḃ

d
p
−1

p,r

+ Cµ−1‖v‖2X ≤ 2C‖u0‖
Ḃ

d
p
−1

p,r

if

‖v‖X ≤ 2C‖u0‖
Ḃ

d
p
−1

p,r

and 4C2‖u0‖
Ḃ

d
p
−1

p,r

≤ µ, and, under the same conditions,

‖Φ(v)− Φ(w)‖X ≤ Cµ−1(‖v‖X + ‖w‖X)‖v − w‖X ≤
1

2
‖v − w‖X .

Hence Φ is a contraction on B̄X(0, 2C‖u0‖
Ḃ

d
p
−1

p,r

).
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The density-dependent incompressible Navier-Stokes equations

The system for incompressible nonhomogeneous viscous fluids reads:

(INS)


∂tρ+ u · ∇ρ = 0

ρ(∂tu+ u · ∇u)− µ∆u+∇P = 0

divu = 0.

For simplicity, we restrict ourselves to the case where the density ρ of the fluid
goes to 1 at infinity. So we setρ = 1 + a.

System (INS) is invariant by the rescaling

ρ(t, x)→ ρ(λ2t, λx), u(t, x)→ λu(λ2t, λx).

In the Besov spaces scale, this induces to take data (ρ0 = 1 + a0, u0) with

a0 ∈ Ḃ
d
p1
p1,r1 and u0 ∈ Ḃ

d
p2
−1

p2,r2 .

To avoid vacuum (and loss of ellipticity), we need a to be bounded away

from 0. Notice that Ḃ
d
p1
p1,r1 ↪→ L∞ iff r1 = 1. Hence we take r1 = 1.

If r2 = 1 then regularity properties of the heat equation give

u ∈ L1
T (Ḃ

d
p2

+1

p2,1
). This is exactly what we need to transport the Besov

regularity of a.

We take p1 = p2 = p for simplicity.
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The density-dependent incompressible Navier-Stokes equations

Theorem (Global existence for small data)

Let a0 ∈ Ḃ
d
p

p,1 and u0 ∈ Ḃ
d
p
−1

p,1 with divu0 = 0 and 1 ≤ p < 2d . If in addition

‖a0‖
Ḃ

d
p
p,1

+ µ−1‖u0‖
Ḃ

d
p
−1

p,1

≤ c

for a small enough c > 0 then (INS) has a unique global solution (a, u) with

a ∈ C(R+; Ḃ
d
p

p,1) and u ∈ C(R+; Ḃ
d
p
−1

p,1 ) ∩ L1(R+; Ḃ
d
p

+1

p,1 ).

Owing to the hyperbolic nature of the density equation, one cannot use the
contracting mapping argument in Banach spaces because there is a loss of one
derivative in the stability estimates. Nevertheless, one may proceed as follows:

1) proving a priori estimates in high norm (that is in the space E of the
statement) for a solution;

2) proving stability estimates in low norm (with one less derivative);

3) Use functional analysis (Fatou property) to justify that the constructed
solution is in E.

As regards uniqueness, this approach works only for 1 ≤ p ≤ d. For the full range
1 ≤ p < 2d, one has to reformulate the system in Lagrangian coordinates.
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Sketchy proof of existence in the Eulerian framework

Step 1 : A priori estimates in large norm. Estimate a in Cb(R+; Ḃ
d/p
p,1 ) and (u,∇P ) in

Cb(R+; Ḃ
d/p−1
p,1 )×L1(R+; Ḃ

d/p−1
p,1 ) with ∂tu,∇2u ∈ L1(R+; Ḃ

d/p−1
p,1 ).

Main ingredients:
1 Estimates in Besov space for the transport equation.
2 The previous maximal regularity estimates for the Stokes equation.

3 Product estimates : Ḃ
d/p
p,1 is a Banach algebra and the product maps

Ḃ
d/p
p,1 × Ḃ

d/p−1
p,1 → Ḃ

d/p−1
p,1 if 1 ≤ p < 2d.

Step 2 : Stability estimates in small norm. The difference δρ := ρ2 − ρ1,
δu := u2 − u1 and ∇δP := ∇P2 −∇P1 between two solutions satisfies{

∂tδρ+ u2 · ∇δρ = −δu · ∇ρ1

ρ2(∂tδu+ u2 · ∇δu)− µ∆δu+∇δP = −δρ(∂tu1 + (ρ2u2 − ρ1u1) · ∇u1)

=⇒ loss of one derivative in the stability estimates.
We need to use that the product maps

Ḃ
d/p−1
p,1 × Ḃd/p−1

p,1 → Ḃ
d/p−2
p,1 .

But this is true if and only if 1 ≤ p < d and d > 2.
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The Lagrangian approach

Lagrangian change of coordinates

Flow of u = u(t, x) :

Xu(t, y) = y +

∫ t

0
u(τ,Xu(τ, y)) dτ

= y +

∫ t

0
ū(τ, y) dτ.

Change of coordinates: (t, x) −→ (t, y) with x = Xu(t, y).

ū(t, y) = u(t, x),

P̄ (t, y) = P (t, x).

Chain rule:
∇yF̄ = ∇yXu · ∇xF.

Hence the divergence-free condition recasts in

divyū = g := Dyū : (Id −A) with A := (DyXu)−1.
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The Lagrangian approach

Lagrangian change of coordinates

Flow of u = u(t, x) :

Xu(t, y) = y +

∫ t

0
u(τ,Xu(τ, y)) dτ = y +

∫ t

0
ū(τ, y) dτ.

Change of coordinates: (t, x) −→ (t, y) with x = Xu(t, y).

ū(t, y) = u(t, x),

P̄ (t, y) = P (t, x).

Chain rule:
∇yF̄ = ∇yXu · ∇xF.

Hence the divergence-free condition recasts in

divyū = g := Dyū : (Id −A) with A := (DyXu)−1.

In general, div ū need not be 0 for t > 0.
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The generalized Stokes equations

The momentum equation now reads:

(S) :

{
∂tu− µ∆u+∇P = f

divu = g.

Set u = v + w with w s.t. divw = g. One can take w = −∇(−∆)−1g. Then v
has to satisfy {

∂tv − µ∆v +∇P = f−∇(−∆)−1∂tg + µ∇g
divv = 0.

Needed conditions for g :

∇g ∈ L1(R+; Ḃsp,1)

∂tg = divR with R ∈ L1(R+; Ḃsp,1).

If so, then we get

‖(u,∇P )‖Esp := ‖u‖L∞(Ḃsp,1) + ‖(∂tu, µ∇2u,∇P )‖L1(Ḃsp,1)

. ‖u0‖Ḃsp,1 + ‖f‖L1(Ḃsp,1)+µ‖∇g‖L1(Ḃsp,1) + ‖R‖L1(Ḃsp,1).

We are interested in the case s = d/p− 1 .
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Estimates for g

Recall that g = Dyū : (Id −A) with A = (DyXu)−1 and that

DyXu(t)− Id =

∫ t

0
Dū(τ) dτ ∈ Ḃd/pp,1 .

As Ḃ
d/p
p,1 is a Banach algebra, if the red term is small enough then one may write

A = (Id + (DyXu − Id )) =

+∞∑
k=0

(−1)k
(∫ t

0
Dū dτ

)k
·

Hence
‖Id −A(t)‖

Ḃ
d/p
p,1

. ‖Dū‖
L1(0,t;Ḃ

d/p
p,1 )

,

whence

‖g‖
L1(0,t;Ḃ

d/p
p,1 )

. ‖Dū‖2
L1(0,t;Ḃ

d/p
p,1 )

.

Do we have ∂tg = divR with R ∈ L1(R+; Ḃ
d/p−1
p,1 ) ?
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Estimates for g (continued)

Magic identity: Xu measure preserving implies that

divxu = Dyū : A = divy(Aū).

Hence
∂tg = divR with R = −∂tA ū+ (Id −A) ∂tū.

Under the same smallness condition as in the previous slide, one can write

∂tA = Dū
∑
k≥1

k(−1)k
(∫ t

0
Dū dτ

)k−1

·

So finally, if 1 ≤ p < 2d then we get

‖R‖
L1(Ḃ

d/p−1
p,1 )

. ‖Dū‖
L1(Ḃ

d/p
p,1 )

(
‖ū‖

L∞(Ḃ
d/p−1
p,1 )

+ ‖∂tū‖
L1(Ḃ

d/p−1
p,1 )

)
.
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A priori estimates for the Lagrangian INS equations

In Lagrangian coordinates ρ0 is time-independent, hence no loss of derivatives in
the stability estimates.

For the velocity, we have{
ρ0∂tū− µ divy(AuTAu∇yū) + TAu∇yP̄ = 0

divy(Auū) = 0.
with Au = (DyXu)−1
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A priori estimates for the Lagrangian INS equations

In Lagrangian coordinates ρ0 is time-independent, hence no loss of derivatives in
the stability estimates.

For the velocity, we have{
ρ0∂tū− µ divy(AuTAu∇yū) + TAu∇yP̄ = 0

divy(Auū) = 0.
with Au = (DyXu)−1

This equation rewrites{
∂tū− µ∆ū+∇yP̄ = (1−ρ0)∂tū+µ divy((AuTAu−Id )∇yū) + (Id−TAu)∇yP̄
divyū = g := divy((Id −Au)ū) = Dū : (Id −Au).
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A priori estimates for the Lagrangian INS equations

This equation rewrites{
∂tū− µ∆ū+∇yP̄ = (1−ρ0)∂tū+µ divy((AuTAu−Id )∇yū) + (Id−TAu)∇yP̄
divyū = g := divy((Id −Au)ū) = Dū : (Id −Au).

From the above estimates for g, Au and for the Stokes equations, we thus get

U(t) . ‖u0‖
Ḃ
d/p−1
p,1

+ U2(t) +

∫ t

0
‖(1− ρ0)∂tū‖

Ḃ
d/p−1
p,1

dτ

with U(t) := ‖ū‖
L∞(0,t;Ḃ

d/p−1
p,1 )

+ ‖∂tū, µD2ū,∇P̄‖
L1(0,t;Ḃ

d/p−1
p,1 )

.
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A priori estimates for the Lagrangian INS equations

This equation rewrites{
∂tū− µ∆ū+∇yP̄ = (1−ρ0)∂tū+µ divy((AuTAu−Id )∇yū) + (Id−TAu)∇yP̄
divyū = g := divy((Id −Au)ū) = Dū : (Id −Au).

From the above estimates for g, Au and for the Stokes equations, we thus get

U(t) . ‖u0‖
Ḃ
d/p−1
p,1

+ U2(t) +

∫ t

0
‖(1− ρ0)∂tū‖

Ḃ
d/p−1
p,1

dτ

with U(t) := ‖ū‖
L∞(0,t;Ḃ

d/p−1
p,1 )

+ ‖∂tū, µD2ū,∇P̄‖
L1(0,t;Ḃ

d/p−1
p,1 )

.

Let M(Ḃ
d/p−1
p,1 ) be the multiplier space for Ḃ

d/p−1
p,1 . By definition,

‖(1− ρ0)∂tū‖
Ḃ
d/p−1
p,1

≤ ‖(1− ρ0)‖
M(Ḃ

d/p−1
p,1 )

‖∂tū‖
Ḃ
d/p−1
p,1

.

So we just need ‖(1− ρ0)‖
M(Ḃ

d/p−1
p,1 )

� 1 and ‖u0‖
Ḃ
d/p−1
p,1

� µ to close the

estimates.
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Implementing the fixed point argument

Let Φ : (v̄,∇Q̄) 7→ (ū,∇P̄ ) where (ū,∇P̄ ) stands for the solution to the linear
system {

ρ0∂tū− µ div(AvTAv∇ū) + TAv∇P̄ = 0

div(Avū) = 0,

with Av := (DXv)−1 and Xv(t, y) := y +
∫ t
0 v̄(τ, y) dτ.

Step 1. Existence of Φ.

If (v̄,∇Q̄) belongs to a small ball BR of E
d/p−1
p and Xv is measure preserving

in the “original” Eulerian coordinates then the previous slide implies that the
same holds for (ū,∇P̄ ).

Important: the corresponding set ER is a closed subset of E
d/p−1
p .

Step 2. Contraction estimates for Φ.
One just has to write Φ(v̄2,∇Q̄2)− Φ(v̄1,∇Q̄1) as a solution to the Stokes
equation and slightly generalize the previous estimates. No loss of derivative here !

Applying the Banach fixed point theorem allows to conclude to the existence of a
solution in ER.

Step 3. Uniqueness. This is a straightforward modification of Step 2.
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Theorem (D. and P. Mucha, 2011)

Let p ∈ [1, 2d) and u0 ∈ Ḃd/p−1
p,1 (Rd) with divu0 = 0. Assume that

ρ0 ∈M(Ḃ
d/p−1
p,1 ). There exists a constant c = c(p, d) such that if

‖ρ0 − 1‖
M(Ḃ

d/p−1
p,1 )

+ µ−1‖u0‖
Ḃ
d/p−1
p,1

≤ c

then the Lagrangian (INS) system has a unique global solution (ū,∇P̄ ) in

E
d/p−1
p . Moreover, there exists C = C(p, d) so that

‖ū‖
L∞(Ḃ

d/p−1
p,1 )

+ ‖µ∇2ū, ∂tū,∇P̄‖
L1(Ḃ

d/p−1
p,1 )

≤ C‖u0‖
Ḃ
d/p−1
p,1

and the flow map (ρ0, u0) 7−→ (ū,∇P̄ ) is Lipschitz continuous from

M(Ḃ
d/p−1
p,1 )× Ḃd/p−1

p,1 to E
d/p−1
p .

Remarks

Local-in-time statement if only ρ0 − 1 is small.

Propogation of interfaces: if d/p− 1 < 1/p then one can take ρ0 = 1 + c1D
with c small enough, and D any C1 domain.

Corollary : same statement for the original system in Eulerian coordinates
(except for the continuity of the flow map).
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The barotropic compressible Navier-Stokes equations

The barotropic Navier-Stokes equations read :{
∂tρ+ div(ρu) = 0,

∂t(ρu) + div (ρu⊗ u)− µ∆u− µ′∇div u+∇P = 0.
(9)

ρ = ρ(t, x) ∈ R+ (with t ∈ R+ and x ∈ Rd ) is the density.

u = u(t, x) ∈ Rd is the velocity field.

The pressure P is a given smooth function of ρ.

The viscosity coefficients µ and µ′ satisfy µ > 0 and ν := µ+ µ′ > 0 and
are constant (for simplicity only).

Boundary conditions: u decays to zero at infinity and ρ tends to some
positive constant ρ̄ at infinity. We take ρ̄ = 1 for simplicity.

Denoting ρ = 1 + a and assuming that the density is positive everywhere the
barotropic system rewrites{

∂ta+ u · ∇a = −(1 + a)divu,

∂tu−Au = −u · ∇u− J(a)Au−∇G(a)

with A := µ∆ + µ′∇div , J(a) := a/(1 + a) and G′(a) = P ′(1 + a)/(1 + a).

Raphaël Danchin Fourier analysis methods and fluid mechanics



Fourier analysis Applications Partially dissipative eq. Global results for comp. NS

Scaling properties

If neglecting the pressure term then the scaling invariance of the system still reads:

ρ(t, x)→ ρ(λ2t, λx), u(t, x)→ λu(λ2t, λx).

As for the incompressible Navier-Stokes equations, in the Besov spaces scale, this
induces to take data (ρ0 = 1 + a0, u0) with

a0 ∈ Ḃ
d
p

p,1 and u0 ∈ Ḃ
d
p
−1

p,1 .

Goal:

Solving the compressible Navier-Stokes equations with u0 ∈ Ḃ
d
p
−1

p,1 and a0 ∈ Ḃ
d
p

p,1

such that 1 + a0 > 0 (no vacuum assumption).

According to the preceding results on the transport equation and the Lamé
system, we expect that

a ∈ C([0, T ]; Ḃ
d
p

p,1) and u ∈ C([0, T ]; Ḃ
d
p
−1

p,1 ) ∩ L1([0, T ]; Ḃ
d
p

+1

p,1 ).

Owing to the hyperbolic nature of the density equation, there is a loss of
one derivative in the stability estimates. Hence it is tempting to use again
Lagrangian coordinates.
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Local existence in critical spaces : the Lagrangian approach

Given some solution (ρ, u) to the compressible Navier-Stokes equations, we
introduce X the flow associated to the vector-field u :

X(t, y) = y +

∫ t

0
u(τ,X(τ, y)) dτ. (10)

Let ρ̄(t, y) := ρ(t,X(t, y)), ū(t, y) = u(t,X(t, y)), J := | detDX|, and
A := (DyX)−1.

Jρ̄ is time independent,
As X need not preserve the Lebesgue measure, the “magic relation” becomes

divxH(x) = DyH̄(y) ·A(y) = J−1divy(adj (DyX)H̄)(y).

Hence

J∂t(Jρ̄ū)−µdiv
(
adj (DX)TA∇yū

)
−µ′div

(
adj (DX)TA:∇ū

)
+ div

(
adj (DX)P (ρ̄)

)
= 0.

As before X may be directly computed from ū :

X(t, y) = y +

∫ t

0
ū(τ, y) dτ.

As Jρ̄ = ρ0, we just have to solve the following parabolic type equation for ū :

Jρ̄0∂tū− µ div
(
adj (DX)TA∇yū

)
−µ′div

(
adj (DX)TA : ∇ū

)
+ div

(
adj (DX)P (ρ̄)

)
= 0. (11)
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Local existence in critical spaces : the Lagrangian approach

Theorem

Let p ∈ [1, 2d) (with d ≥ 2) and u0 be a vector-field in Ḃ
d
p
−1

p,1 . Assume that the

initial density ρ0 is positive and satisfies a0 := (ρ0 − 1) ∈ Ḃ
d
p

p,1. Then the above

equation has a unique local solution (ρ̄, ū) with ā ∈ C([0, T ]; Ḃ
d
p

p,1) and

ū ∈ C([0, T ]; Ḃ
d
p

p,1)∩L1(0, T ; Ḃ
d
p

+1

p,1 ). Moreover, the flow map (a0, u0) 7−→ (ā, ū) is
Lipschitz continuous.

In Eulerian coordinates, this result recasts in:

Theorem

Under the above assumptions, the barotropic Navier-Stokes equations have a
unique local solution (ρ, u) with the above regularity.

Remark

If working directly on the barotropic compressible Navier-Stokes equations in
Eulerian coordinates, then uniqueness may be proved only under the stronger
condition that p ≤ d.
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Proof with the Lagrangian approach

To simplify the presentation, we assume that a0 := ρ0 − 1 is small enough. The
three ingredients are

Regularity estimates for the Lamé system;

Flow estimates in Besov spaces,

The Banach fixed point theorem.

Let Ep(T ) :=
{
ū ∈ C([0, T ]; Ḃ

d
p
−1

p,1 ) / ∂tū,∇2ū ∈ L1(0, T ; Ḃ
d
p
−1

p,1

}
. Define a map

Φ : v̄ 7→ ū on Ep(T ) where ū stands for the solution to

∂tū− µ∆ū− (λ+ µ)∇div ū = I1(v̄, v̄) + 2µdivI2(v̄, v̄) + λdivI3(v̄, v̄)− divI4(v̄)

with

I1(v̄, w̄) = (1− ρ0Jv)∂tw̄ I2(v̄, w̄) = adj (DXv)DAv (w̄)−D(w̄)

I3(v̄, w̄) = divAv w̄ adj (DXv)−div w̄ Id I4(v̄) = adj (DXv)P (J−1
v ρ0).

Any fixed point of Φ is a solution in Ep(T ) to (11). We claim that the existence
of such points is a consequence of the standard Banach fixed point theorem in a
suitable closed ball of Ep(T ).
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Estimates for the Lamé system

We first need to prove suitable a priori estimates for the Lamé system, that is, the
linearized velocity equation (neglecting the pressure term). This system reads:

∂tu− µ∆u− (λ+ µ)∇divu = f, u|t=0 = u0 (12)

with µ > 0 and ν := λ+ 2µ > 0.

Apply the projector P over divergence-free vector-fields, or Q the projector over
potential vector fields. We get

∂tPu− µ∆Pu = Pf and ∂tQu− ν∆Qu = Qf.

Hence applying the estimates for the heat equation yields in particular:

There exists a constant C depending only on µ/ν and λ/ν such that if
u0 ∈ Ḃsp,1 and f ∈ L1(R+; Ḃsp,1) then (12) has a unique solution u in

C(R+; Ḃsp,1) ∩ L1(R+; Ḃsp,1) and

‖u‖
L̃∞t (Ḃ

d
p
−1

p,1 )

+ ‖∂tu,min(µ, ν)∇2u‖
L1
t (Ḃ

d
p
−1

p,1 )

≤ C
(
‖u0‖

Ḃ

d
p
−1

p,1

+ ‖f‖
L1
t (Ḃ

d
p
−1

p,1 )

)
.
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Estimates for the Lamé system

Estimates for I1, I2, I3 and I4 .

Throughout we assume that ∫ T

0
‖Dv‖

Ḃ

d
p
p,1

dt�< 1. (13)

In order to bound I1(v, w), we decompose it into

I1(v, w) = (1− Jv)∂tw − a0(1 + (Jv − 1))∂tw with a0 := ρ0 − 1.

Hence, product laws, definition of M(Ḃ
d
p
−1

p,1 ) and flow estimates imply

‖I1(v, w)‖
L1
T

(Ḃ

d
p
−1

p,1 )

≤ C
(
‖a0‖

M(Ḃ

d
p
−1

p,1 )

+ ‖Dv‖
L1
T

(Ḃ

d
p
p,1)

)
‖∂tw‖

L1
T

(Ḃ

d
p
−1

p,1 )

.

Similarly, we have

‖I2(v, w)‖
L1
T

(Ḃ

d
p
p,1)

+ ‖I3(v, w)‖
L1
T

(Ḃ

d
p
p,1)

≤ C‖Dv‖
L1
T

(Ḃ

d
p
p,1)

‖Dw‖
L1
T

(Ḃ

d
p
p,1)

.

As regards the pressure term I4(v) , we use the fact that under assumption (13),
we have, by virtue of Proposition 1.4 and of flow estimates

‖I4(v)‖
L∞
T

(Ḃ

d
p
p,1)

≤ C
(
1 + ‖Dv‖

L1
T

(Ḃ

d
p
p,1)

)(
1 + ‖a0‖

Ḃ

d
p
p,1

)
.
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Estimates for the Lamé system

Stability of a small enough ball by Φ.

We introduce uL the solution to

∂tuL − µ∆uL − (λ+ µ)∇divuL = 0, uL|t=0 = u0.

Claim: if R and T are small enough then

v ∈ B̄Ep(T )(uL, R) =⇒ u ∈ B̄Ep(T )(uL, R).

Indeed ũ := u− uL satisfies ũ(0) = 0 and

∂tũ− µ∆ũ− (λ+ µ)∇div ũ = I1(v, v) + 2µdivI2(v, v) + λdivI3(v, v)− divI4(v).
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Estimates for the Lamé system

Stability of a small enough ball by Φ.

We introduce uL the solution to

∂tuL − µ∆uL − (λ+ µ)∇divuL = 0, uL|t=0 = u0.

Claim: if R and T are small enough then

v ∈ B̄Ep(T )(uL, R) =⇒ u ∈ B̄Ep(T )(uL, R).

Indeed ũ := u− uL satisfies ũ(0) = 0 and

∂tũ− µ∆ũ− (λ+ µ)∇div ũ = I1(v, v) + 2µdivI2(v, v) + λdivI3(v, v)− divI4(v).

So regularity estimates for Lamé system imply that

‖ũ‖Ep(T ) .
3∑
j=1

‖Ij(v, v)‖
L1
T

(Ḃ

d
p
−1

p,1 )

+ T‖I4(v)‖
L∞
T

(Ḃ

d
p
p,1)

.

Raphaël Danchin Fourier analysis methods and fluid mechanics



Fourier analysis Applications Partially dissipative eq. Global results for comp. NS

Estimates for the Lamé system

Stability of a small enough ball by Φ.

We introduce uL the solution to

∂tuL − µ∆uL − (λ+ µ)∇divuL = 0, uL|t=0 = u0.

Claim: if R and T are small enough then

v ∈ B̄Ep(T )(uL, R) =⇒ u ∈ B̄Ep(T )(uL, R).

Indeed ũ := u− uL satisfies ũ(0) = 0 and

∂tũ− µ∆ũ− (λ+ µ)∇div ũ = I1(v, v) + 2µdivI2(v, v) + λdivI3(v, v)− divI4(v).

Using the previous inequalities for Ij(v, v) and that v ∈ B̄Ep(T )(uL, R), we get

‖ũ‖Ep(T ) ≤ C
((
‖a0‖

M(Ḃ

d
p
−1

p,1 )

+ ‖DuL‖
L1
T

(Ḃ

d
p
p,1)

+R
)
(R+ ‖∂tuL‖

L1
T

(Ḃ

d
p
−1

p,1 )

)

+‖DuL‖2
L1
T

(Ḃ

d
p
p,1)

+R2 + T (1 + ‖a0‖
Ḃ

d
p
p,1

)
)
.

Hence there exists a small constant η = η(d, p) such that if

‖a0‖
M(Ḃ

d
p
−1

p,1 )

≤ η,

and if R, T have been chosen small enough then u is in B̄Ep(T )(uL, R).
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Estimates for the Lamé system

Contraction properties for Φ on B̄Ep(T )(uL, R).

Let v1 and v2 in B̄Ep(T )(uL, R) and u1 := Φ(v1) and u2 := Φ(v2). The
equation satisfied by δu := u2 − u1 reads

∂tδu− µ∆δu− (λ+ µ)∇divδu = δf1 + δf2 + divδf3 + 2µdivδf4 + λdivδf5

with δf1 := (1− ρ0J2)∂tδu, δf2 := −ρ0(J2 − J1)∂tu1,

δf3 := adj (DX1)P (ρ0J
−1
1 )− adj (DX2)P (ρ0J

−1
2 ),

δf4 := adj (DX2)DA2
(u2)− adj (DX1)DA1

(u1)−D(δu),

δf5 := adj (DX2)TA2 : ∇u2 − adj (DX1)TA1 : ∇u1 − divδu Id .

Bounding δu stems from the maximal regularity estimates: we get

‖δu‖Ep(T ) .
2∑
i=1

‖δfi‖
L1
T

(Ḃ

d
p
−1

p,1 )

+ T‖δf3‖
L∞
T

(Ḃ

d
p
p,1)

+

5∑
i=4

‖δfi‖
L1
T

(Ḃ

d
p
p,1)

.

For instance we have

‖δf3‖
L∞
T

(Ḃ

d
p
−1

p,1 )

. T (1 + ‖a0‖
Ḃ

d
p
p,1

)‖Dδv‖
L1
T

(Ḃ

d
p
p,1)

.

We eventually find that if η, R and T then

‖δu‖Ep(T ) ≤
1

2
‖δv‖Ep(T ).

Banach theorem ensures that Φ has a unique fixed point in B̄Ep(T )(uL, R).
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Comments on the global existence issue

Aim: proving a global existence result for small data for the barotropic
Navier-Stokes equation

(NSC)

{
∂ta+ u · ∇a = −(1 + a)divu,

∂tu−Au = −u · ∇u− J(a)Au−∇G(a),

in the spirit of those for the incompressible Navier-Stokes equation.

Above we saw that just assuming that

‖a0‖
Ḃ

d
p
p,1

+ ‖u0‖
Ḃ

d
p
−1

p,1

� 1

is not enough because the pressure term (which has not the right-scaling) entails
a linear growth in time in the estimates. In effect, in order to bound the term
I4(v̄) := adj (DXv)P (J−1

v ρ0), we just wrote

‖I4(v)‖
L1
T

(Ḃ

d
p
p,1)

≤ T‖I4(v)‖
L∞
T

(Ḃ

d
p
p,1)

≤ CT
(
1 + ‖Dv‖

L1
T

(Ḃ

d
p
p,1)

)(
1 + ‖a0‖

Ḃ

d
p
p,1

)
.

We have to include the pressure term in the linearized system. This will be done
in Eulerian coordinates, in the next section.
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Part III. Partially dissipative or parabolic linear systems

We focus on linear systems of the type

∂tw +A(D)w +B(D)w = 0 (14)

with w : R+ × Rd → Rn, and

A(D) = (Aij(D))1≤i,j≤n with Aij(D) homogeneous Fourier multiplier of
degree α,

B(D) = (Bij(D))1≤i,j≤n with Bij(D) homogeneous Fourier multiplier of
degree β.

We assume in addition that A(D) is antisymmetric:

Re ((A(ξ)η) · η) = 0 for all (ξ, η) ∈ Rd × Cn,

and that B(D) satisfies the following ellipticity property :

|ξ|β Re ((B(ξ)η) · η) ≥ κ|B(ξ)η|2 for all (ξ, η) ∈ Rd × Cn

where κ is a positive real number.
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Examples

A partially dissipative symmetric linear one-dimensional system:{
∂tu+ ∂xv = 0

∂tv + ∂xu+ λv = 0;
λ > 0.

The general conditions are fulfilled with d = 1, n = 2, α = 1, β = 0 and
κ = λ−1,

The linearized barotropic Navier-Stokes equations :{
∂ta+ divu = 0

∂tu− µ∆u− µ′∇divu+∇a = 0;
µ > 0 and µ+ µ′ > 0.

The general conditions are fulfilled with n = d+ 1, α = 1, β = 2 and
κ = cν−1 (with c depending only on µ/ν ).
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The general solution formula

Set Aω := ρ−αA(ξ) and Bω := κρ−βB(ξ) with ρ := |ξ| and ω := ξ/|ξ|.

Therefore

∂tŵ(t, ξ) + E(ξ)ŵ(t, ξ) = 0 with E(ξ) := ραAω + κ−1ρβBω .

Hence

ŵ(t, ξ) = ŵ0(ξ) exp

(
−
tρβ

κ

(
κρα−βAω +Bω

))
,

Let z0 := ŵ0(ξ), z(τ) = ŵ(t, ξ) with τ := (tρβ)/κ, and % := κρα−β We have

z(τ) := z0 exp
(
−τ(%Aω +Bω)

)
Hence one may restrict our attention to the case α = 1, β = 0 and κ = 1 (that is
first order antisymmetric terms and partial dissipation). Indeed

Re ((Aωη) · η) = 0 and Re ((Bωη) · η) ≥ |Bωη|2 for all (ω, η) ∈ Sd−1 × Cn.
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For ε1, · · · , εk−1 small positive parameters, define the Lyapunov functional:

L(τ) := |z(τ)|2 + min(%, %−1)

n−1∑
k=1

εk Re
(
(BωA

k−1
ω z) · (BωAkωz)

)
.

As z′ + (%Aω+Bω)z = 0, Re ((Aωη)·η) = 0 and Re ((Bωη)·η) ≥ |Bωη|2 we get

L′(τ) + 2 Re
(
(Bωz) · z

)
+ min(1, %2)

n−1∑
k=1

εk|BωAkωz|2

= −min(%, %−1)

{n−1∑
k=1

εk

(
Re
(
(BωA

k−1
ω Bωz)· (BωAkωz)+(BωA

k−1
ω z)·(BωAkωBωz)

))}

−min(1, %2)

n−1∑
k=1

εk Re
(
(BωA

k−1
ω Bωz) · (BωAk+1

ω z)
)
.

One may take ε0, · · · , εk−1 so small as, for all ω ∈ Sd−1 and ρ > 0,

L′(τ) +
min(1, %2)

2

n−1∑
k=0

εk|BωAkωz(τ)|2 ≤ 0 and L ≈ |z|2.

Setting Nω := minη∈Sn−1

∑n−1
k=0 εk|BωA

k
ωη|2, we end up with

L(t) ≤ e−
1
4

min(1,%2)NωτL(0).
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Assumption: min
ω∈Sd−1

Nω > 0.

This entails the following decay inequality:

|ŵ(t, ξ)| ≤ 2|ŵ0(ξ)| e−cκ
−1 min(|ξ|β ,κ2|ξ|2α−β)t. (15)

The above assumption is equivalent to the Kalman rank condition:
Bω

BωAω
· · ·

BAn−1
ω

 has rank n

or to the Shizuta-Kawashima condition:

kerBω ∩ {eigenvectors of Aω} = {0}.

From (15), using Parseval equality, we get

‖∆̇jw(t)‖L2 ≤ 2‖∆̇jw0‖L2e−min(2jβ ,κ22(2α−β)j)κ−1t for all j ∈ Z. (16)

Taking advantage of Duhamel’s formula, we may afford to have a right-hand side
f in the linear system: Inequality (16) implies that

‖∆̇jw‖L∞t (L2)+κ
−1min

(
2jβ, κ22j(2α−β)

)
‖∆̇jw‖L1

t (L2) . ‖∆̇jw0‖L2+‖∆̇jf‖L1
t (L2).

This means that there is a gain of max(β, 2α− β) (resp. min(β, 2α− β) ) in low
frequencies (resp. high frequencies) when performing a L1 -in-time integration.
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Application to a partially dissipative system

{
∂tu+ ∂xv = 0

∂tv + ∂xu+ λv = 0;
λ > 0

The corresponding matrices Aω and Bω read

Aω =

(
0 i sgnω

i sgnω 0

)
and Bω =

(
0 0
0 1

)
·

Ellipticity condition is satisfied with κ = λ−1 and β = 0. In addition,

BωAω =

(
0 0

i sgnω 0

)
·

Therefore the Kalman rank condition is satisfied.

The threshold between low and high frequencies is at λ. The corresponding
Lyapunov functional reads (for small enough ε ):

‖(u, v)‖2
L2 + ελ−1

∫
R
v∂xu dx in low frequencies

‖(u, v)‖2
L2 + ελ

∫
R
v |D|−2∂xu dx in high frequencies.

There is parabolic smoothing with diffusion λ−1 on the whole solution (u, v) in
low frequency, and exponential decay with parameter λ for high frequencies.
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Partially dissipative system with convection

For A and B two given functions, consider{
∂tu+A∂xu+ ∂xv = 0
∂tv+B∂xv + ∂xu+ λv = 0.

Applying ∆̇j to the system, we get{
∂t∆̇ju+Ṡj−1A∂x∆̇ju+ ∂x∆̇jv = Rj(A, u)

∂t∆̇jv+Ṡj−1B∂x∆̇jv + ∂x∆̇ju+ λ∆̇jv = Rj(B, v)

where the terms Rj(A, u) and Rj(B, v) may be estimated as follows:∑
j

‖Ṙj(C,w)‖L2 ≤ C2−js‖∇C‖
Ḃ
d
2
2,1

‖w‖Ḃs2,1 if − d/2 < s ≤ d/2.
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Partially dissipative system with convection

For A and B two given functions, consider{
∂tu+A∂xu+ ∂xv = 0
∂tv+B∂xv + ∂xu+ λv = 0.

Applying ∆̇j to the system, we get{
∂t∆̇ju+Ṡj−1A∂x∆̇ju+ ∂x∆̇jv = Rj(A, u)

∂t∆̇jv+Ṡj−1B∂x∆̇jv + ∂x∆̇ju+ λ∆̇jv = Rj(B, v)

where the terms Rj(A, u) and Rj(B, v) may be estimated as follows:∑
j

‖Ṙj(C,w)‖L2 ≤ C2−js‖∇C‖
Ḃ
d
2
2,1

‖w‖Ḃs2,1 if − d/2 < s ≤ d/2.

For the localized system, the relevant Lyapunov functionals read:

‖(∆̇ju, ∆̇jv)‖2
L2 + ελ−1

∫
R

∆̇jv ∂x∆̇ju dx if 2j ≤ λ

‖(∆̇ju, ∆̇jv)‖2
L2 + ελ

∫
R

∆̇jv |D|−2∂x∆̇ju dx if 2j > λ.
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Partially dissipative system with convection

For A and B two given functions, consider{
∂tu+A∂xu+ ∂xv = 0
∂tv+B∂xv + ∂xu+ λv = 0.

For the localized system, the relevant Lyapunov functionals read:

‖(∆̇ju, ∆̇jv)‖2
L2 + ελ−1

∫
R

∆̇jv ∂x∆̇ju dx if 2j ≤ λ

‖(∆̇ju, ∆̇jv)‖2
L2 + ελ

∫
R

∆̇jv |D|−2∂x∆̇ju dx if 2j > λ.

Taking ε small enough (independently of A and B ) yields

‖(∆̇ju, ∆̇jv)(t)‖L2 + min(λ, λ−122j)‖(∆̇ju, ∆̇jv)‖L1
t (L2) ≤ C

(
‖(∆̇ju0, ∆̇jv0)‖L2

+

∫ t

0
‖(Rj(A, u), Rj(B, v))‖L2 dτ +

∫ t

0
‖(∇A,∇B)‖L∞‖(∆̇ju, ∆̇jv)‖L2 dτ

)
,
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Partially dissipative system with convection

For A and B two given functions, consider{
∂tu+A∂xu+ ∂xv = 0
∂tv+B∂xv + ∂xu+ λv = 0.

Taking ε small enough (independently of A and B ) yields

‖(∆̇ju, ∆̇jv)(t)‖L2 + min(λ, λ−122j)‖(∆̇ju, ∆̇jv)‖L1
t (L2) ≤ C

(
‖(∆̇ju0, ∆̇jv0)‖L2

+

∫ t

0
‖(Rj(A, u), Rj(B, v))‖L2 dτ +

∫ t

0
‖(∇A,∇B)‖L∞‖(∆̇ju, ∆̇jv)‖L2 dτ

)
,

whence, for −d/2 < s ≤ d/2,

‖(u, v)(t)‖Ḃs2,1 + λ

∫ t

0

(
λ−2‖(u, v)‖`

Ḃs+2
2,1

+ ‖(u, v)‖h
Ḃs2,1

)
dτ

≤ C
(
‖(u0, v0)‖Ḃs2,1+

∫ t

0
‖∇(A,B)‖

Ḃ
d
2
2,1

‖(u, v)‖Ḃs2,1 dτ
)
·

Similar estimates may be proved in any Besov space Ḃσ2,r with |σ| < d/2.
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Part 4. Global existence results for the compressible NS equations

The linearized Navier-Stokes equations read:{
∂ta+ divu = 0

∂tu− µ∆u− µ′∇divu+∇a = 0;
µ > 0 and ν := µ+ µ′ > 0.
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Part 4. Global existence results for the compressible NS equations

The linearized Navier-Stokes equations read:{
∂ta+ divu = 0

∂tu− µ∆u− µ′∇divu+∇a = 0;
µ > 0 and ν := µ+ µ′ > 0.

We may apply the former results with n = d+ 1, α = 1, β = 2, κ = ν−1 .

Let µ̃ = µ/ν and µ̃′ = µ′/ν. We have

Aω =

(
0 i sgn ~ω

iTsgn ~ω 0

)
and Bω =

(
0 0
0 µ̃Id + (µ̃+ µ̃′) sgn ~ω ⊗ sgn ~ω

)
·

Hence

BωAω =

(
0 0

i sgn ~ω 0

)
and the Kalman rank condition is satisfied.
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Part 4. Global existence results for the compressible NS equations

The linearized Navier-Stokes equations read:{
∂ta+ divu = 0

∂tu− µ∆u− µ′∇divu+∇a = 0;
µ > 0 and ν := µ+ µ′ > 0.

We thus get

‖(∆̇ja, ∆̇ju)(t)‖L2 ≤ ecνtmin(22j ,ν−2)‖(∆̇ja0, ∆̇ju0)‖L2 .

In low frequencies 2jν ≤ 1, we have parabolic smoothing (with diffusion ν ) for a
and u and the corresponding Lyapunov functional reads

‖(a, u)‖2
L2 + εν

∫
Rd
u · ∇a dx with ε small enough.

In high frequency, we get exponential decay. Parabolic smoothing may be
recovered afterward by using the global L1 -in-time bound for ∇a, and estimates
for the Lamé system: indeed

∂tu− µ∆u− µ′∇divu = −∇a.
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Part 4. Global existence results for the compressible NS equations

We thus get

‖(∆̇ja, ∆̇ju)(t)‖L2 ≤ ecνtmin(22j ,ν−2)‖(∆̇ja0, ∆̇ju0)‖L2 .

In low frequencies 2jν ≤ 1, we have parabolic smoothing (with diffusion ν ) for a
and u and the corresponding Lyapunov functional reads

‖(a, u)‖2
L2 + εν

∫
Rd
u · ∇a dx with ε small enough.

In high frequency, we get exponential decay. Parabolic smoothing may be
recovered afterward by using the global L1 -in-time bound for ∇a, and estimates
for the Lamé system: indeed

∂tu− µ∆u− µ′∇divu = −∇a.

As for the toy dissipative model, one may include a convection term in the
analysis, which eventually leads to the following statement:

Theorem (R.D., 2000)

Assume that P ′(1) > 0, and that a0 ∈ Ḃ
d
2
−1

2,1 ∩ Ḃ
d
2
2,1 and u0 ∈ Ḃ

d
2
−1

2,1 are small

enough. Then (9) has a unique global-in-time solution (a, u) with

a`, u ∈ Cb(Ḃ
d
2
−1

2,1 ) ∩ L1(Ḃ
d
2

+1

2,1 ) and ah ∈ Cb(Ḃ
d
2
2,1) ∩ L1(Ḃ

d
2
2,1).
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Optimal decay estimates for high frequencies

We now present another approach leading to a global statement in Besov spaces
related to Lp (p 6= 2).

Equation for the divergence-free part Pu of the velocity:

∂tPu− µ∆Pu = 0.

Effective velocity : w := Qu+ ν−1(−∆)−1∇a. We get{
∂t∇a+ ν−1∇a = −∆w

∂tw − ν∆w = ν−1w − ν−2(−∆)−1∇a.

Therefore for any j ∈ Z and p ∈ [1,+∞],

ν‖∆̇j∇a‖L∞t (Lp)+‖∇∆̇ja‖L1
t (Lp) . ν‖∆̇j∇a0‖Lp+ν22j‖∆̇jw‖L1

t (Lp)

‖∆̇jw‖L∞t (Lp)+ ν22j‖∆̇jw‖L1
t (Lp).‖∆̇jw0‖Lp

+(ν2j)−2
(
ν22j‖∆̇jw‖L1

t (Lp)+‖∇∆̇ja‖L1
t (Lp)

)
.

Hence, if ν2j is large enough,

‖ν∆̇j∇a‖L∞t (Lp) + ‖∇∆̇ja‖L1
t (Lp) . ν‖∆̇j∇a0‖Lp + ‖∆̇jw0‖Lp

‖∆̇jw‖L∞t (Lp)+ν22j‖∆̇jw‖L1
t (Lp) . ν‖∆̇j∇a0‖Lp + ‖∆̇jw0‖Lp .
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Summary

In low frequency, the linearized equations tend to be hyperbolic (two eigenvalues
with nonzero imaginary part). Hence it is hopeless to take a Lp framework with
p 6= 2.

In high frequency, the fundamental observations are that, at the linear level:

Pu satisfies a heat equation;

the effective velocity w := Qu+ ν−1(−∆)−1∇a has parabolic smoothing;

a has exponential decay.

The only remaining difficulty is that we have to take care of the convection term
u · ∇a in the mass equation so as to avoid a loss of one derivative.
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Step 1. Effective velocity

The effective velocity w := Qu+ ν−1G′(0)(−∆)−1∇a satisfies:

∂tw − ν∆w = −Q(u · ∇u)−Q(J(a)Au)

+(G′(0)−G′(a))∇a)−ν−1G′(0)(−∆)−1∇((1 + a)divu).

The blue terms are quadratic hence small (if we start with small data). The red
term has a linear part. So using regularity estimates for the heat equation yields

‖w‖
L∞(Ḃ

d
p
−1

p,1 )

+ν‖w‖
L1(Ḃ

d
p
+1

p,1 )

. ‖w0‖
Ḃ

d
p
−1

p,1

+ν−1‖Qu‖
L1(Ḃ

d
p
−1

p,1 )

+quadratic.

The red term has not the right scaling. It has two extra derivatives, hence it is
good in high frequencies: if we put the threshold between low and high frequencies
at j0 s.t. 1� 2j0ν then

ν−1‖Qu‖h
L1(Ḃ

d
p
−1

p,1 )

≤ ν−12−2j0‖Qu‖h
L1(Ḃ

d
p
+1

p,1 )

� ν‖Qu‖h
L1(Ḃ

d
p
+1

p,1 )

.

Hence, because Qu = w − ν−1G′(0)(−∆)−1∇a,

‖w‖h
L∞(Ḃ

d
p
−1

p,1 )

+ν‖w‖h
L1(Ḃ

d
p
+1

p,1 )

. ‖w0‖h
Ḃ

d
p
−1

p,1

+ν−2G′(0)‖a‖h
L1(Ḃ

d
p
−2

p,1 )

+ quadratic.

The red term is very small compared to ‖a‖h
L1(Ḃ

d
p
p,1)

.
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Step 2. Parabolic estimates for Pu.
Because

∂tPu+ P(u · ∇u)− µPu = −P(J(a)Au),

we readily have

‖Pu‖
L∞(Ḃ

d
p
−1

p,1 )

+ µ‖Pu‖
L1(Ḃ

d
p
+1

p,1 )

. ‖Pu0‖
Ḃ

d
p
−1

p,1

+ quadratic.
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Step 3. Decay estimates for a.
We notice that

∂ta+ u · ∇a+ν−1G′(0)a = −adivu− divw.

As G′(0) > 0, estimates for transport equation (with damping) imply if
‖u‖

L1(Ḃ

d
p
+1

p,1 )

is small enough, that

‖a‖h
L∞t (Ḃ

d
p
p,1)

+ν−1‖a‖h
L1
t (Ḃ

d
p
p,1)

. ‖a0‖h
Ḃ

d
p
p,1

+ ‖divw‖h
L1(Ḃ

d
p
p,1)

+quadratic. (17)

Recall that

‖w‖h
L∞(Ḃ

d
p
−1

p,1 )

+ν‖w‖h
L1(Ḃ

d
p
+1

p,1 )

. ‖w0‖h
Ḃ

d
p
−1

p,1

+ (ν2j0 )−2ν−1‖a‖h
L1(Ḃ

d
p
p,1)

+ small.

(18)
Hence plugging (17) in (18) and taking j0 large enough, we deduce that

‖w‖h
L∞(Ḃ

d
p
−1

p,1 )

+ν‖w‖h
L1(Ḃ

d
p
+1

p,1 )

+ ‖a‖h
L∞t (Ḃ

d
p
p,1)

+ ν−1‖a‖h
L1
t (Ḃ

d
p
p,1)

. ‖w0‖h
Ḃ

d
p
−1

p,1

+ ‖a0‖h
Ḃ

d
p
p,1

+ quadratic.

As Qu = w − ν−1G′(0)(−∆)−1∇a, one may replace w by Qu in the above
inequality.
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Step 4. Low frequency estimates.

As explained before, we have to restrict to Besov spaces Ḃs2,1 . By taking
advantage of method for partially parabolic systems, we get:

‖(a, u)‖`
L∞t (Ḃ

d
2
−1

2,1 )

+ ‖(a, u)‖`
L1
t (Ḃ

d
2
+1

2,1 )

. ‖(a0, u0)‖`
Ḃ
d
2
−1

2,1

+ quadratic.

Step 5. Global estimate.

X(t) := ‖(a, u)‖`
L∞t (Ḃ

d
2
−1

2,1 )∩L1
t (Ḃ

d
2
+1

2,1 )

+‖a‖h
L∞t ∩L

1
t (Ḃ

d
p
p,1)

+‖u‖h
L∞t (Ḃ

d
p
−1

p,1 )∩L1
t (Ḃ

d
p
+1

p,1 )

.

All the nonlinear terms may be bounded by X2(t) (split them into low and high
frequencies) provided p < 2d and p ≤ 4. We eventually get

X ≤ C
(
X(0) +X2). (19)

Now it is clear that as long as

2CX(t) ≤ 1, (20)

the above blue inequality ensures that

X(t) ≤ 2CX(0). (21)

Using a bootstrap argument, one may conclude that if X(0) is small enough then
(20) is satisfied as long as the solution exists. Hence the red inequality holds.
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The general global existence statement for small perturbations of a stable state

Theorem

Let p ∈ [2, 2d) ∩ [2, 4]. Assume that P ′(1) > 0, a0 ∈ Ḃ
d
p

p,1 and u0 ∈ Ḃ
d
p
−1

p,1 and

that in addition a`0 and u`0 are in Ḃ
d
2
−1

2,1 . There exist two constants c and M
depending only on d, and on the parameters of the system such that if

‖(a0, u0)‖`
Ḃ
d
2
−1

2,1

+ ‖a0‖h
Ḃ

d
p
p,1

+ ‖u0‖h
Ḃ

d
p
−1

p,1

≤ c

then (9) has a unique global-in-time solution (a, u) with

(a, u)` ∈ Cb(Ḃ
d
2
−1

2,1 ) ∩ L1(Ḃ
d
2

+1

2,1 ), ah ∈ Cb(Ḃ
d
p

p,1) ∩ L1(Ḃ
d
p

p,1),

uh ∈ Cb(Ḃ
d
p
−1

p,1 ) ∩ L1(Ḃ
d
p

+1

p,1 ).
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The general global existence statement for small perturbations of a stable state

Theorem

Let p ∈ [2, 2d) ∩ [2, 4]. Assume that P ′(1) > 0, a0 ∈ Ḃ
d
p

p,1 and u0 ∈ Ḃ
d
p
−1

p,1 and

that in addition a`0 and u`0 are in Ḃ
d
2
−1

2,1 . There exist two constants c and M
depending only on d, and on the parameters of the system such that if

‖(a0, u0)‖`
Ḃ
d
2
−1

2,1

+ ‖a0‖h
Ḃ

d
p
p,1

+ ‖u0‖h
Ḃ

d
p
−1

p,1

≤ c

then (9) has a unique global-in-time solution (a, u) with

(a, u)` ∈ Cb(Ḃ
d
2
−1

2,1 ) ∩ L1(Ḃ
d
2

+1

2,1 ), ah ∈ Cb(Ḃ
d
p

p,1) ∩ L1(Ḃ
d
p

p,1),

uh ∈ Cb(Ḃ
d
p
−1

p,1 ) ∩ L1(Ḃ
d
p

+1

p,1 ).

The first global existence result of strong solutions has been established by
Matsumura and Nishida in 1980 (high Sobolev regularity).

The above statement has been first proved independently in a joint work with
Charve and by Chen, Miao and Z. Zhang, in 2009.

Here we adopted Haspot’s method (2010).
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Theorem

Let p ∈ [2, 2d) ∩ [2, 4]. Assume that P ′(1) > 0, a0 ∈ Ḃ
d
p

p,1 and u0 ∈ Ḃ
d
p
−1

p,1 and

that in addition a`0 and u`0 are in Ḃ
d
2
−1

2,1 . There exist two constants c and M
depending only on d, and on the parameters of the system such that if

‖(a0, u0)‖`
Ḃ
d
2
−1

2,1

+ ‖a0‖h
Ḃ

d
p
p,1

+ ‖u0‖h
Ḃ

d
p
−1

p,1

≤ c

then (9) has a unique global-in-time solution (a, u) with

(a, u)` ∈ Cb(Ḃ
d
2
−1

2,1 ) ∩ L1(Ḃ
d
2

+1

2,1 ), ah ∈ Cb(Ḃ
d
p

p,1) ∩ L1(Ḃ
d
p

p,1),

uh ∈ Cb(Ḃ
d
p
−1

p,1 ) ∩ L1(Ḃ
d
p

+1

p,1 ).

The smallness condition is satisfied for small densities and large highly
oscillating velocities: take uε0 : x 7→ φ(x) sin(ε−1x · ω)n with ω and n in
Sd−1 and φ ∈ S(Rd). Then

‖uε0‖
Ḃ

d
p
−1

p,1

≤ Cε1−
d
p if p > d.

Hence such data with small enough ε generate global unique solutions.
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The incompressible limit issue

We now want to study the convergence of the barotropic Navier-Stokes equations
when the Mach number ε tends to 0.

The relevant time scale is 1/ε, hence one makes the following rescaling

(ρ, u)(t, x) = (ρε, εuε)(εt, x)

and the original system (9) becomes ∂tρε + div(ρεuε) = 0,

∂t(ρ
εuε) + div(ρεuε ⊗ uε)− µ∆uε − µ′∇div uε +

∇P ε

ε2
= 0.

In the case of well-prepared data:

ρε0 = 1 +O(ε2) and uε0 with div uε0 = O(ε),

one may use asymptotic expansions to show that the solutions to the above
system tend to the solution to the incompressible Navier-Stokes equations when ε
goes to 0.

In the case of ill-prepared data, time derivatives are of order ε−1 and highly
oscillating acoustic waves do have to be considered. Whether they may interact or
not is the main problem from a mathematical viewpoint. This is the question that
we want to address now in the whole space framework.
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The incompressible limit issue

So we consider data
ρε0 = 1 + εb0 and u0

with (b0, u0) independent of ε (just to simplify). Note that it is not assumed
that divu0 = 0. We still assume that P ′(1) = 1.

Denoting ρε = 1 + εbε , it is found that (bε, uε) satisfies

(NSCε)


∂tb

ε +
div uε

ε
= −div(bεuε),

∂tu
ε + uε · ∇uε −

Auε

1 + εbε
+ (1+k(εbε))

∇bε

ε
= 0,

(bε, uε)|t=0 = (b0, u0),

with A := µ∆ + µ′∇div and k a smooth function satisfying k(0) = 0.

According to the previous parts, System (NSCε) is locally well-posed. We want
to study whether uε tends in some sense to the solution v of the incompressible
Navier-Stokes equations:

(NS)

{
∂tv + P(v · ∇v)− µ∆v = 0,

v|t=0 = Pu0.

For simplicity, we restrict to the case of small data (b0, u0). Hence all the results
will be global-in-time.

Raphaël Danchin Fourier analysis methods and fluid mechanics



Fourier analysis Applications Partially dissipative eq. Global results for comp. NS

Scheme of the proof

The proof of the convergence to the incompressible Navier-Stokes equations
comprises four steps:

1 Global existence and uniform estimates for (NSCε) ;

2 Global existence for the corresponding limit system (NS) ;

3 Convergence to 0 for the “compressible part” of the solution, namely
(bε,Quε) ;

4 Convergence of Puε to the solution v of (NS).
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Step 1. Global existence for (NSCε) and uniform estimates.

Making the change of functions

b(t, x) := εbε(ε2t, εx), u(t, x) := εuε(ε2t, εx)

we notice that (bε, uε) solves (NSCε) if and only if (b, u) solves (NSC) with
rescaled data b0 := εb0(ε·), u0 := εu0(ε·) and hε.Hence the global existence
theorem for (NSC) with p = 2 ensures the first part of the theorem. We get a
global solution (bε, uε) such that

‖bε‖`
L∞(Ḃ

d
2
−1

2,1 )∩L1(Ḃ
d
2
+1

2,1 )

+ ε‖bε‖h
L∞(Ḃ

d
2
2,1)

+ ε−1‖bε‖h
L1(Ḃ

d
2
2,1)

+‖uε‖
L∞(Ḃ

d
2
−1

2,1 )∩L1(Ḃ
d
2
+1

2,1 )
≤M

(
‖b0‖`

Ḃ
d
2
−1

2,1

+ ε‖b0‖h
Ḃ
d
2
2,1

+ ‖u0‖
Ḃ
d
2
−1

2,1

)
.

Warning: here the threshold between low and high frequencies is at ε−1.

Step 2. Global existence for (NS) .

As u0 is small, one may apply the global existence result for small data. We get a

(small) solution v ∈ Cb(R+; Ḃ
d
2
−1

2,1 ) ∩ L1(R+; Ḃ
d
2

+1

2,1 ).
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Step 3. Convergence to zero for the compressible modes (bε,Quε).

The functions b and u defined above satisfy ∂tb+ divQu = F := −div(bu),

∂tQu+∇b = G := −Q
(
u · ∇u+ 1

1+b
Au+K(b)∇b

)
.

(22)

The left-hand side is the acoustic wave equation, which has dispersive properties in
the whole space Rd (with d ≥ 2). This will be the key to our convergence result.
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A short digression on dispersive equations and Strichartz estimates
Let (U(t))t∈R be a group of unitary operators on L2(Rd) satisfying the dispersion
inequality:

‖U(t)f‖L∞ ≤
C

|t|σ
‖f‖L1 for some σ > 0.

Example: σ = (d− 1)/2 for the wave equation on Rd, and σ = d/2 for the
Schrödinger equation.

Interpolating between L2 7→ L2 and L1 7→ L∞, we deduce that

‖U(t)f‖Lr ≤
(
C

|t|σ

) 1
r′−

1
r

‖f‖
Lr
′ for all 2 ≤ r ≤ ∞.

Definition: A couple (q, r) ∈ [2,∞]2 is admissible if 1/q + σ/r = σ/2 and
(q, r, σ) 6= (2,∞, 1).

Theorem (Strichartz estimates)

1 For any admissible couple (q, r) we have ‖U(t)u0‖Lq(Lr) ≤ C‖u0‖L2 ;

2 For any admissible couples (q1, r1) and (q2, r2) we have∥∥∥∫ t

0
U(t− τ)f(τ) dτ

∥∥∥
Lq1 (Lr1 )

. ‖f‖
L
q′2 (L

r′2 )
·

Remark: compared to Sobolev embedding Hd( 1
2
− 1
r

) ↪→ Lr, Strichartz estimates
provides a gain of d( 1

2
− 1
r

) = d
qσ

derivative.
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The TT ? argument

Lemma (TT ? argument)

Let T : H → B a bounded operator from the Hilbert space H to the Banach space
B and T ? : B′ →H the adjoint operator defined by

∀(x, y) ∈ B′ ×H, (T ?x | y)H = 〈x, Ty〉B′,B .

Then we have
‖TT ?‖L(B′;B) = ‖T‖2L(H;B) = ‖T ?‖2L(B′;H).

We take

H = L2(Rd), B = Lq(R;Lr(Rd)), B′ = Lq
′
(R;Lr

′
(Rd)) and T : u0 7−→ U(t)u0.

Hence

T ? : φ 7−→
∫
R
U(−t′)φ(t′) dt′ and TT ? : φ 7−→

[
t 7→

∫
R
U(t− t′)φ(t′) dt′

]
.
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Proving the homogeneous Strichartz estimate

We want to prove ‖Tu0‖Lq(Lr) ≤ C‖u0‖L2 . According to the TT ? lemma, it is
equivalent to

‖TT ?φ‖Lq(Lr) ≤ C‖φ‖Lq′ (Lr′ ). (23)

Now, we have

‖TT ?φ(t)‖Lr ≤
∫
R
‖U(t− t′)φ(t′)‖Lr dt.

So taking advantage of the dispersion inequality Lr
′ → Lr and of the relation

σ( 1
r′ −

1
r

) = 2
q
, we get

‖TT ?φ(t)‖Lr ≤
∫
R

1

|t− t′|
2
q

‖φ(t′)‖
Lr
′ dt.

Applying the Hardy-Littlewood-Sobolev inequality gives (23) if 2 < q <∞.

Remarks:

1 Endpoint (q, r) = (∞, 2) stems from the fact that (U(t))t∈R is unitary on
L2. Endpoint (q, r) = (2, 2σ/(σ−1)) if σ > 1 is more involved (Keel & Tao).

2 The nonhomogeneous Strichartz inequality follows from similar arguments.

3 In the case of the linear wave or Schrödinger equation, using (∆̇j)j∈Z allows
to get Strichartz estimates involving Besov norms.
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Application to the acoustic wave equations

The system  ∂tb+ divQu = F := −div(bu),

∂tQu+∇b = G := −Q
(
u · ∇u+ 1

1+b
Au+K(b)∇b

)
.

(24)

is associated to a group U(t) of unitary operators on L2(Rd) which satisfies the
dispersion inequality

‖U(t)(b0, v0)‖L∞ ≤ Ct−
d−1
2 ‖(b0, v0)‖L1 .

Hence Strichartz estimates are available for this system if d ≥ 2 .
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Application to the acoustic wave equations

The system  ∂tb+ divQu = F := −div(bu),

∂tQu+∇b = G := −Q
(
u · ∇u+ 1

1+b
Au+K(b)∇b

)
.

(24)

is associated to a group U(t) of unitary operators on L2(Rd) which satisfies the
dispersion inequality

‖U(t)(b0, v0)‖L∞ ≤ Ct−
d−1
2 ‖(b0, v0)‖L1 .

Hence Strichartz estimates are available for this system if d ≥ 2 .

Localizing (24) by means of (∆̇j)j∈Z, we get

‖(b,Qu)‖
L̃r
T

(Ḃ

d
p
−1+ 1

r
p,1 )

. ‖(b0,Qu0)‖
Ḃ
d
2
−1

2,1

+ ‖(F,G)‖
L1
T

(Ḃ
d
2
−1

2,1 )

whenever 2 ≤ p ≤ 2

(
d− 1

d− 3

)
,

2

r
= (d− 1)

(1

2
−

1

p

)
and (r, p, d) 6= (2,∞, 3).

Combining product laws and the global a priori estimate for (b, u) gives

‖(F,G)‖
L1(Ḃ

d
2
−1

2,1 )
≤ CC0.
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Application to the acoustic wave equations

Localizing (24) by means of (∆̇j)j∈Z, we get

‖(b,Qu)‖
L̃r
T

(Ḃ

d
p
−1+ 1

r
p,1 )

. ‖(b0,Qu0)‖
Ḃ
d
2
−1

2,1

+ ‖(F,G)‖
L1
T

(Ḃ
d
2
−1

2,1 )

whenever 2 ≤ p ≤ 2

(
d− 1

d− 3

)
,

2

r
= (d− 1)

(1

2
−

1

p

)
and (r, p, d) 6= (2,∞, 3).

Combining product laws and the global a priori estimate for (b, u) gives

‖(F,G)‖
L1(Ḃ

d
2
−1

2,1 )
≤ CC0.

Eventually, resuming to the initial variables, we end up with

‖(bε,Quε)‖
L̃r(Ḃ

d
p
−1+ 1

r
p,1 )

≤ CC0ε
1
r ,

where

p = 2(d− 1)/(d− 3) and r = 2 if d ≥ 4 ,

p ∈ [2,∞) and r = 2p/(p−2) if d = 3,

p ∈ [2,∞] and r = 4p/(p−2) if d = 2.
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Step 4. Convergence of the incompressible part.

The vector-field wε := Puε − v satisfies

∂tw
ε − µ∆wε = Hε, wε|t=0 = 0, (24)

with

Hε := −P(wε ·∇v)− P(uε ·∇wε)−P(Quε · ∇v)− P(uε · ∇Quε)−P (J(εbε)Auε) .

There are three types of (quadratic) terms in Hε :

The blue terms are linear in wε, but small because uε and v are small.
Owing to Quε, the red terms decay like some power of ε (previous step).
The green term is small because J(εbε) ∼ εbε.

One has to use appropriate norms, keeping in mind that ∇v,∇Quε are bounded

in e.g. L̃2(Ḃ
d
2
2,1). For instance, in the (nonphysical !) case d ≥ 4, one has

‖(bε,Quε)‖
L̃2(Ḃ

d
p
− 1

2
p,1 )

≤ CC0ε
1
2 with p = 2(d− 1)/(d− 3).

Estimates for the heat equation ensure that

‖wε‖
L1(Ḃ

d
p
+1

2
p,1 )

+ ‖wε‖
L∞(Ḃ

d
p
− 3

2
p,1 )

. ‖Hε‖
L1(Ḃ

d
p
− 3

2
p,1 )

(25)

and the above heuristics combined with product laws in Besov spaces leads to

‖wε‖
L1(Ḃ

d
p
+1

2
p,1 )

+ ‖wε‖
L∞(Ḃ

d
p
− 3

2
p,1 )

≤ CC0ε
1
2 .
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Theorem

There exist η,M > 0 depending only on d and G, such that if

C0 := ‖b0‖
Ḃ
d
2
−1

2,1 ∩B
d
2
2,1

+ ‖u0‖
Ḃ
d
2
2,1

≤ η (26)

then the following results hold:

1 System (NSCε) has a unique global solution (bε, uε) with

‖bε‖
L∞(Ḃ

d
2
−1

2,1 )∩L2(Ḃ
d
2
2,1)

+ε‖bε‖
L∞(Ḃ

d
2
2,1)

+‖uε‖
L∞(Ḃ

d
2
−1

2,1 )∩L1(Ḃ
d
2
+1

2,1 )
≤MC0

2 the incompressible Navier-Stokes equations (NS) with data Pu0 have a
unique solution v with

‖v‖
L∞(Ḃ

d
2
−1

2,1 )∩L1(Ḃ
d
2
+1

2,1 )
≤MC0

3 for any α ∈]0, 1/2] if d ≥ 4 , α ∈]0, 1/2[ if d = 3, α ∈]0, 1/6] if d = 2 , Puε
tends to v in C(R+; Ḃ−1−α

∞,1 ) when ε goes to 0.

4 (bε,Quε) tends to 0 in some space Lr(Ḃσp,1) (the value of r and p

depending on the dimension) with an explicit rate of decay.
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