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Lecture 1 – Contents

1. Weak solution to the Navier–Stokes equations. Basic properties.
Energy inequality andstrong energy inequality.

Interior regularity under Serrin’s condition.

2. Suitable weak solutionto the Navier–Stokes equations.Generalized energy
inequality. The notion of aregular or singular point of a suitable weak solution.

Results of Caffarelli–Kohn–Nirenberg, Taniuchi, Lin, Ladyzhenskaya–Seregin,
Wolf.

Equivalence of some definitions.

The1–dimensional Hausdorff measure of the set of possible singular points.

3. A brief survey of known criteria for regularity at the space–time point(x0, t0)
(from Serrin, Caffarelli–Kohn–Nirenberg to some recent results).

4. Principles of proofs of some recently obtained criteria.
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1. Weak solution to the Navier–Stokes equations

Ω . . . a domain inR3 with a Lipschitz–continuous boundary

T > 0, QT := Ω× (0, T )

We deal withthe Navier–Stokes initial–boundary value problemfor viscous in-
compressible fluid

∂tv + v · ∇v = −∇p+ ν∆v + f in QT , (1.1)

div v = 0 in QT , (1.2)

v = 0 on∂Ω× (0, T ), (1.3)

v = v0 in Ω× {0}. (1.4)

(H. Navier 1824, G. Stokes1845)
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First qualitative results on the existence of solutions:J. Leray in the 30–ties of
the 20th century.

Leray introduced the notion of theweak solution of the boundary–value problem
(1.1)–(1.4). (In fact, Leray studied the caseΩ = R

3. The case of a bounded domain
Ω was treated byE. Hopf in 1951.)

A weak solution to problem (1.1)–(1.4). Let v0 ∈ L2
σ(Ω) and f ∈ L2(QT ). A

vector functionv ∈ L2(0, T ; W1,2
0 (Ω)) ∩ L∞(0, T ; L2

σ(Ω)) is said to be aweak
solutionof the problem (1.1)–(1.4) if for allφ ∈ C∞0,σ

(
Ω× [0, T )

)
:∫ T

0

∫
Ω

[
v · ∂tφ− ν∇v : ∇φ− v · ∇v · φ

]
dx dt

= −
∫ T

0

∫
Ω

f · φ dx dt−
∫

Ω
v0 · φ( . , 0) dx. (1.5)
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Remark: function spaceLq
σ(Ω). Let C∞0,σ(Ω) be the linear space of all infinitely

differentiable divergence–free vector functions inΩ with a compact support inΩ.

For 1 ≤ q ≤ ∞, we denote byLq
σ(Ω) the closure ofC∞0,σ(Ω) in Lq(Ω).

Remark: characterization of the spaceLq
σ(Ω). Assume thatΩ has a locally Lips-

chitzian boundary and1 < q <∞. LetLq
div(Ω) be the space of functionsv ∈ Lq(Ω)

such thatdiv v ∈ Lq(Ω). One can prove that

1) The spaceC∞(Ω) is dense inLq
div(Ω).

2) The mappingγn : v 7→ v ·n defined onC∞(Ω) can be extended to a continuous
linear mapping fromLq

div(Ω) toW−1/q,q(∂Ω).

The spaceLq
σ(Ω) can now be characterized as a space of functions fromLq

div(Ω),
whose divergence equals zero inΩ (in the sense of distributions) and such thatγnv =
0 (the zero element ofW−1/q,q(∂Ω)).
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Lemma 1 (Hopf 1951, Prodi 1959, Serrin 1963).The weak solutionv to problem
(1.1)–(1.4) can be redefined on a set of zero Lebesgue measure so thatv( . , t) ∈
L2(Ω) for all t ∈ [0, T ) and for allφ ∈ C∞0,σ

(
Ω× [0, T )

)
:∫ t

0

∫
Ω

[
v · ∂τφ− ν∇v : ∇φ− v · ∇v · φ

]
dx dτ

= −
∫ t

0

∫
Ω

f · φ dx dτ +

∫
Ω

v( . , t) · φ( . , t) dx−
∫

Ω
v0 · φ( . , 0) dx. (1.6)

Principle of the proof: We use aC1 functionθh as on the figure. We use (1.6) with
φ(x, τ) θh(τ) instead ofφ(x, τ), and we consider the limit forh→ 0.

-

6

1

τ

θh(τ)

0 t t+ h
�
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Theorem 1 (existence of a weak solution – Leray 1934, Hopf 1951, et al).Let Ω
be a domain inR3, T > 0, v0 ∈ L2

σ(Ω) and f ∈ L2(QT ). Then there exists at least
one weak solutionv to problem (1.1)–(1.4). The solution satisfies

• the energy inequality (EI)

‖v( . , t)‖2
2+2ν

∫ t

0
‖∇v( . , τ)‖2

2 dτ

≤ ‖v0‖2
2 + 2

∫ t

0

(
v( . , τ), f( . , τ)

)
2 dτ (1.7)

for all t ∈ [t, T ),

• lim
t→0+

‖v( . , t)− v0‖2 = 0.

Open questions:

• Does each weak solution satisfy (EI), or even the energy equality (EE)?

• Is the weak solution unique?

• Is the weak solution regular provided thatv0 andf are regular?
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(EI) does not exclude e.g. this
behaviour of the kinetic energy
E(t) := ‖v( . , t)‖2:

-

6

0 t

e
u

u
E(t)

The inequality, which excludes the growth ofE(t), is the so calledstrong energy
inequality(SEI):

‖v( . , t)‖2
2+2ν

∫ t

s

‖∇v( . , τ)‖2
2 dτ

≤ ‖v( . , s)‖2
2 + 2

∫ t

s

(
v( . , τ), f( . , τ)

)
2 dτ (1.8)

for a.a.s ∈ [0, T ) and allt ∈ [s, T ).

Question: Does the solution, provided by Theorem 1, satisfy (SEI)?
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Partial answers regarding (EE): Serrin (1963): If v ∈ Lr(0, T ; Ls(Ω)), where
2/r + 3/s ≤ 1, 3 ≤ s ≤ ∞, 2 ≤ r ≤ ∞ thenv satisfies (EE).

• Shinbrot (1974), Taniuchi (1997): If v ∈ Lr(0, T ; Ls(Ω)), where
2/r + 3/s ≤ 1 + 1/s, 4 ≤ s ≤ ∞, thenv satisfies (EE).

• Farwig and Taniuchi (2010): observed thatif v ∈ Lr(0, T ; Ls(Ω)), where
2/r + 3/s ≤ 1 + 1/r, 4 ≤ r ≤ ∞, thenv satisfies (EE).

• Further improvements:Cheskidov, Friedlander and Shvydkoy(2010),
Farwig and Taniuchi (2010).
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� Serrin (1963)

� Shinbrot (1974), Taniuchi (1997)

� Farwig, Taniuchi (2010)r Lions (1960)
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As to (SEI), Leray (1934), Galdi and Maremonti (1986), Miyakawa and Sohr
(1988), Farwig, Kozono and Sohr (2005) proved: Weak solutionv can be con-
structed so that it satisfies not only (EI), but also (SEI).

Partial answer to the question of uniqueness:

Theorem 2 (Prodi 1959, Lions and Prodi 1959, et al).Let u andv be two weak
solutions of the problem (1.1)–(1.4), with the same datav0 andf . Assume that

1) u satisfies (EI),

2) v satisfied at least one of the conditions

(a) v ∈ Lr(0, T ; Ls(Ω)) for somer, s satisfying2/r + 3/s = 1, 3 < s ≤ ∞
(b) v ∈ L∞(0, T ; L3(Ω)) andv( . , t) is right–continuous in the norm ofL3(Ω)

in dependence ont for 0 ≤ t < T .

Thenu = v a.e. inQT .

Kozono and Sohr (1996): if Ω is a domain with a ,,smooth” bounded boundary,
then the condition of right–continuity in condition (ii) can be omitted.
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Interior regularity of a weak solution under Serrin’s condition

Assume, for simplicity, thatf ≡ 0.

Theorem 3 (interior regularity – Serrin 1963). Letv be a weak solution to (1.1)–
(1.4) with f ≡ 0. Assume, in addition, that there exists a sub–domainΩ′ of Ω and
0 ≤ t1 < t2 ≤ T so that

(a) v ∈ Lr(t1, t2; Ls(Ω′)) for somer, s satisfying
2

r
+

3

s
= 1, 3 < s ≤ ∞.

Then, given any bounded domainΩ′′ ⊂ Ω′′ ⊂ Ω′ and 0 < δ < (t2 − t1)/2, each
space derivative ofv is bounded inΩ′′ × [t1 + δ, t2 − δ].
If, in addition,

(b) ∂tv ∈ L2(t1, t2; Lq(Ω′)) for someq ≥ 1

then each space derivative ofv is absolutely continuous function oft.

Remark. The analogous result in the caseΩ = R3 ands = 3 follows from the work
of Escauriaza, Seregin,̌Sverák (2003).
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Remark: interior regularity of ∂tv and p. Condition (a) implies that∂tv andp
have all spatial derivatives inLα(t1 + δ, t2 − δ; L∞(Ω′′)) for eachα ∈ [1, 2), (see
J. N., Penel2001, Kučera, Skaĺak 2003.)

Principle of the proof.
Let ζ > 0 be so small thatU4ζ(Ω

′′) ⊂ Ω′,

Denote byψ an infinitely differentiable cut–off function defined inR3 such that
0 ≤ ψ ≤ 1 and

ψ =

{
1 onUζ(Ω′′),
0 onR3

r U3ζ(Ω
′′).

The productψ p satisfies

ψ(x) p(x, t) = − 1

4π

∫
R

3

1

|x− y|
[

∆(ψp)
]
(y, t) dy.

If we use the integration by parts and the equation

∆p = −∂i∂j (vivj),
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we get (forx ∈ Ω′′)

ψ(x) p(x, t) = pI(x, t) + pII(x, t)

where

pI(x, t) = − 1

4π

∫
R

3

1

|x− y|
[
∂i∂j (ψvivj)

]
(y, t) dy,

pII(x, t) = − 1

2π

∫
R

3

xi − yi
|x− y|3

[
(∂iψ)vivj

]
(y, t) dy

− 1

4π

∫
R

3

1

|x− y|
[
(∂i∂jψ)vivj

]
(y, t) dy +

1

4π

∫
R

3

xi − yi
|x− y|3

[
(∂iψ)p

]
(y, t) dy

+
1

4π

∫
R

3

1

|x− y|
[ ∆ψ p ](y, t) dy.

Using the boundedness ofv and its spatial derivatives onsuppψ× (t1, t2), we obtain∣∣∇kpI(x, t) ≤ C(k).
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The integrals inpII can be considered only fory ∈ U3ζ(Ω
′′)r Uζ(Ω

′′) wherev and
its spatial derivatives are bounded and|x− y| ≥ ζ. Thus,

|∇kpII(x, t)| ≤ C(k)

∫
supp∇ψ

|p(y, t)| dy + C(k).

Hence∫ t2

t1

[
max
x∈Ω′

|∇kpII(x, t)|
]α

dt ≤ C(k)

∫ t2

t1

(∫
supp∇ψ

|p(y, t)| dy

)α
dt+ C(k)

≤ C(k)

∫ t2

t1

(∫
Uζ(Ω′′)

|p(y, t)|β dy

)α/β
dt+ C(k)

whereβ is chosen so that2/α + 3/β = 3. Due to the results of Taniuchi (1997)
and Kozono (1998),p ∈ Lα(t1, t2; L

β(Uζ(Ω
′)) for 1 < α < 2, 3

2 < β < 3 such that
2/α + 3/β = 3. Hence the last integral is finite. �

Remark. If Ω = R
3 then one can use a little different technique to show that∂tv

andp have all spatial derivatives inL∞(t1 + δ, t2 − δ; L∞(Ω′′)).
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Corollary. If (x1, t1), (x2, t2) ∈ Ω′′ × (t1 + δ, t2 − δ) then

|v(x1, t1)− v2, t2)| ≤ |v(x1, t1)− v(x2, t1)|+ |v(x2, t1)− v(x2, t2)|

≤ C |x1 − x2|+
∫ t1

t2

∂tv(x2, t) dt

∣∣∣∣
≤ C |x1 − x2|+

∫ t1

t2

‖∂tv( . , t)‖∞; Ω′′ dt

≤ C |x1 − x2|+
(∫ t2

t1

‖∂tv( . , t)‖α∞; Ω′′ dt

)1/α

|t1 − t2|(α−1)/α

≤ C |x1 − x2|+ C |t1 − t2|(α−1)/α.

This implies the Ḧolder–continuity ofv in Ω′′ × (t1 + δ, t2 − δ).
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2. A suitable weak solution of the problem (1.2)–(1.4)

L. Caffarelli, R. Kohn and L. Nirenberg (1983) called a weak solutionv of (1.1)–
(1.4) asuitable weak solutionif an associated pressurep belongs toL5/4(QT ) and
the pair(v, p) satisfies the so calledgeneralized energy inequality(GEI)

2ν

∫ T

0

∫
Ω
|∇v|2 ϕ dx dt ≤

∫ T

0

∫
Ω

[
|v|2

(
∂tϕ+ ν∆ϕ

)
+
(
|v|2 + 2p

)
v · ∇ϕ

]
dx dt

+

∫ T

0

∫
Ω

2v · f ϕ dx dt (2.1)

for every non–negative functionϕ fromC∞0 (QT ).

C-K-N proved the existence of a suitable weak solutionin the case whenΩ is ei-
therR3 or a “smooth” bounded domain inR3. (The proof is based on the applications
of the so called “retarded mollifications” in the nonlinear term. . . Ψδ(v) · ∇v.)

(See alsoV. Scheffer1977 for the proof in the casef = 0.)
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C-K-N defined aregular point of a weak solutionv as a point inQT such that there
exists a neighbourhoodU of this point, wherev is essentially bounded.

A point inQT that is not regular is calledsingular.

S(v) . . . the set of all singular points of solutionv in QT

Clearly, since the set of regular points is open inQT , the setS(v) of singular points
is closed inQT .

Put Q∗r(x, t) := Br(x)× (t− 7
8r

2, t+ 1
8r

2)

Lemma 2 (C-K-N 1983). Let v be a suitable weak solution of the problem (1.1)–
(1.4). There exists a constantε > 0 such that if

lim sup
r→0+

1

r

∫ ∫
Q∗r(x0,t0)

|∇v|2 dx dt ≤ ε (2.2)

then(x0, t0) 6∈ S(v).
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Theorem 4 (C-K-N 1983). Letv be a suitable weak solution of the problem (1.1)–
(1.4). Then the1–dimensional Hausdorff measure of seS(v) is zero.

Principle of the proof.

(x0, t0) ∈ S(v) =⇒ lim sup
r→0+

1

r

∫ ∫
Q∗r(x0,t0)

|∇v|2 dx dt > ε

LetU be a neighbourhood ofS(v) in QT andδ > 0.

To each(x0, t0) ∈ S(v) chooseQ∗r(x, t) ⊂ U (with r < δ) such that

1

r

∫ ∫
Q∗r(x0,t0)

|∇v|2 dx dt > ε.

Let us denote byJ the family of all such cylinders. Due to Vitali’s covering lemma,
there exists an at most countable sub–familyJ ′ = {Q∗ri(xi, ti)} of J such that

Q∗ri(xi, ti) ∩Q
∗
rj

(xj, tj) = ∅ for i 6= j,

∀ Q∗r(x, t) ∈ J ∃ Q∗ri(xi, ti) ∈ J
′ : Q∗r(x, t) ⊂ Q∗5ri(xi, ti).

Consequently:S(v) ⊂
⋃
i Q
∗
5ri(xi, ti). Moreover,
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∑
i

5ri ≤ 5

ε

∑
i

∫ ∫
Q∗ri(xi,ti)

|∇v|2 dx dt ≤ 5

ε

∫ ∫
U

|∇v|2 dx dt,

∑
i

(5ri)
3 ≤ 125δ2

∑
i

5r1 ≤
125δ2

ε

∫ ∫
U

|∇v|2 dx dt.

Sinceδ > 0 can be arbitrarily small, we deduce that the 3D Lebesgue measure of
SCKN(v) is zero. Thus, neighbourhoodU can be chosen so that its 3D Lebesgue
measure is arbitrarily small. Hence the right hand side can be arbitrarily small. This
implies thatP1(S(v)) = 0. Consequently,H1(S(v)) = 0. �

What is a real regularity of a suitable weak solution in the neighbourhood of
C-K-N’s regular point (x0, t0)?

Answer: there existsR > 0 andδ > 0 such that

a) v and its all spatial derivatives are inL∞
(
BR(x0)× (t0 − δ, t0 + δ)

)
,

b) ∂tv andp have all spatial derivatives inLα
(
t0− δ, t0 + δ; L∞(BR(x0))

)
for each

α ∈ [1, 2) if Ω is bounded and forα =∞ if Ω = R3.

c) v is Hölder–continuous inBR(x0)× (t0 − δ, t0 + δ).
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Later improvements or modifications:

F. Lin (1996) – used the same assumptions on domainΩ as in C–K–N, the definition
of a suitable weak solution requires the pressure to be inL3/2(QT ). Considered the
casef = 0.

Theorem 5 (Lin 1996). Let (v, p) be a suitable weak solution of the problem (1.1)–
(1.4). There exists a constantε > 0 such that if

1

δ2

∫ t0

t0−δ2

∫
Bδ(x0)

(
|v|3 + |p|3/2

)
dx dt ≤ ε (2.3)

for someδ > 0 thenv ∈ Cα
(
Bδ/2(x0)× (t0, t0 − 1

4δ
2)
)

for someα > 0.

Corollary. (2.3) implies that(x0, t0) is a regular point in the sense of C-K-N.

Principle of the proof. There exist numbersτ > 0 and0 < ρ1 < ρ2 so thatv is
bounded with all its spatial derivatives in[Bρ2

(x0)rBρ1
(x0)]× (t0 − τ, t0 + τ).
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We use a cut–off functionη ∈ C∞(R3) such that0 ≤ η ≤ 1, η = 1 in Bρ1
(x0) and

η = 0 outsideBρ2
(x0).

We putu = ηv −V, whereV is the correction such thatdiv u = 0. (FunctionV
satisfiesdiv V = ∇η · v; it can be constructed so that its support is in[Bρ2

(x0) r
Bρ1

(x0)]× (t0 − τ, t0 + τ).

-
x

6t

t = t0

t = t0 − τ

x = x0|x− x0| = ρ2 |x− x0| = ρ2

(x0, t0)s
t = t0 − τ ′

t = t0 + τ ′′

Functionsu, ηp satisfy the Navier–Stokes equation with the right hand sideh ∈
Lα(t0 − τ, t0 + τ ; Wk,∞(Bρ2

(x0)).
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Functionu satisfies the boundary conditionu = 0 on∂Bρ2
(x0)× (t0 − τ, t0 + τ).

Using the results on the local existence of strong solutions, one can show that there
exist τ, τ ′′ ∈ (0, τ) so that the same Navier–Stokes problem as the one satisfied by
functionsu, ηp, has a “smooth” solutionw, q on the time interval(t0 − τ ′, t0 + τ ′′),
satisfying the boundary conditionw = 0 on∂Bρ2

(x0)× (t0− τ, t0 + τ ′′).’Moreover,
w = u at timet = t0 − τ ′.

In fact, one obtainsu ∈ L∞(t0 − τ ′, t0 + τ ′′; W1,2(Bρ2
(x0)).

Sincev is a suitable weak solution, one can verify that solutionu satisfies (SEI).

Consequently, due to theorems on uniqueness, one can identify solutionsu andw in
Bρ2

(x0)× (t0 − τ ′, t0 + τ ′′).

Consequently,v ∈ L∞(t0− τ ′, t0 + τ ′′; W1,2(Bρ1
(x0)), which means thatv satisfies

Serrin’s regularity condition inBρ1
(x0)× (t0 − τ ′, t0 + τ ′′). �

Remark. Lin also proved that (2.2)=⇒
[

(2.3) holds for someδ > 0
]
.
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Y. Taniuchi (1997) considered domainΩ in R3 that is either smooth bounded, or
smooth exterior, or a half–space, or the whole spaceR

3.

Providedv0 ∈ L2
σ(Ω) andf ∈ L2(QT ), Taniuchi proved the existence of a suitable

weak solution.

Lemma 3 (Taniuchi 1997). If v is a weak solution andK is a bounded sub–domain
of Ω, v ∈ Lr(ε, T ; Ls(K)) with

1 < r, s <∞, 2

r
+

2

s
≤ 1,

1

r
+

3

s
≤ 1 (2.4)

thenv satisfies (GEE) inK × (ε, T ). Moreover, ifv ∈ Lr(0, T ; Lr(Ω)) with r, s
satisfying (2.4) thenv satisfies both (SEE) and (GEE).

Lemma 4 (Taniuchi 1997). If v is a weak solution,D is a bounded sub–domain of
Ω and0 < ε < T thenp and∂tv can be taken so that

p ∈ Lr(ε, T ; Ls(D)) for
2

r
+

3

s
= 3, 1 < r ≤ 2, 1 < s < 3,

∂tv ∈ Lr(ε, T ; Ls(D)) for
2

r
+

3

s
= 4, 1 < r ≤ 2, 1 < s ≤ 3

2
.
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O. A. Ladyzhenskaya and G. Seregin(1999) consider a bounded domainΩ ∈ R3,
they also considerf 6= 0, f ∈ ML2,γ(QT ) (for someγ > 0; ML2,γ denotes the
Morrey space), and they use the same definition of a suitable weak solution as Lin.

Ladyzhenskaya and Seregin define aregular point of a suitable weak solution(v, p)
to be such a point inQT that there exists its neighbourhoodU in QT , wherev is
Hölder–continuous.

Theorem 6 (Ladyzhenskaya, Seregin 1999).Let(v, p) be a suitable weak solution
of the problem (1.1)–(1.4). There exists a constantε > 0 such that if

lim sup
r→0+

1

r

∫ t0

t0−r2

∫
Br(x0)

|∇v|2 dx dt ≤ ε (2.5)

then(x0, t0)) is a (SL)–regular point of solution(v, p).

The proof is based on the estimates of solutionv in parabolic Campanato spaces.
(See e.g. W. Schlag,Comm. PDE21, 1996, 1141-1175.)

L-S do not prove the existence of a suitable weak solution.
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Remark: Basuc information on the Morrey and Campanato spaces.
(See e.g. Kufner et al:Function Spaces.)

Let Ω be a bounded domain inRN . Forλ ≥ 0 and1 ≤ p <∞, we set

MLp,λ(Ω) :=
{
u ∈ Lp(Ω); M‖u‖p,λ :=

(
sup

x∈Ω, r>0

1

rλ

∫
Br(x)∩Ω

|u(y)|p dy
)1/p

<∞
}
,

CLp,λ(Ω) :=
{
u ∈ Lp(Ω); [u]p,λ <∞

}
,

[u]p,λ :=
(

sup
x∈Ω, r>0

1

rλ

∫
Br(x)∩Ω

|u(y)− ur(x)|p dy
)1/p

C‖u‖p,λ := ‖u‖p + [u]p,λ

• MLp,0(Ω)� Lp(Ω), MLp,N(Ω)� L∞(Ω)

• If 1 ≤ p ≤ q <∞, λ ≥ 0, µ ≥ 0,
λ−N
p
≤ µ−N

q
then

MLq,µ(Ω) ↪→ MLp,λ(Ω).
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• MLp,λ(Ω) = {0} for λ > N

• If 1 ≤ p ≤ q <∞, λ ≥ 0, µ ≥ 0,
λ−N
p
≤ µ−N

q
then

CLq,µ(Ω) ↪→ CLp,λ(Ω).

• CLp,λ(Ω� MLp,λ(Ω) for 0 ≤ λ ≤ N

• CLp,λ(Ω� C 0,α(Ω) with α =
λ−N
p

providedλ ∈ (N,N + p).
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R. Farwig, H. Kozono and H. Sohr(2005) considered an arbitrary domainΩ in R3

with a uniformlyC2–boundary,0 < T ≤ ∞, v0 ∈ L2
σ(Ω), f ∈ L5/4(0, T ; L2(Ω)).

They proved the existence of a suitable weak solution(v, p) with v, ∂tv, ∇v,
∇2v, ∇p in L5/4(ε, T ′; L2(Ω) + L5/4(Ω)), where0 < ε < T ′ < T . The solution
satisfies (GEI)in the form

‖ϕv(. , t)‖2
2; Ω + 2ν

∫ t

s

‖ϕ∇v(. , τ)‖2
2; Ω dτ ≤ ‖ϕv(. , s)‖2

2; Ω +

∫ t

s

(
ϕf , ϕv

)
2 dτ

−ν
∫ t

s

∫
Ω
∇|v|2 · ∇ϕ2 dx dτ +

∫ t

s

∫
Ω

(
|v|2 + 2p

)
(v · ∇ϕ2) dx dτ

for a.a.s ∈ (0, T ), all t ∈ [s, T ) and allϕ ∈ C∞0 (R3) and (SEI) in the form

‖v( . , t)‖2
2 + 2ν

∫ t

s

‖∇v( . , τ)‖2
2 dτ ≤ ‖v( . , s)‖2

2 + 2

∫ t

s

(
v, f
)

2 dτ

for a.a.s ∈ [0, T ) (includings = 0) and allt ∈ [s, T ).

Note thatε can be considered to be= 0 if v0 ∈ D(Ã5/4)).

T ′ can be considered to be= T if T <∞.
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J. Wolf (2007) considered a general domainΩ ⊂ R3, f = 0.

Using the pressure representationp = p0 + ∂tp̃h wherep0 ∈ L4/3(0,∞; L2(Ω))
and p̃h ∈ C(Q) being harmonic,Wolf proved the existence of of the so called
generalized suitable weak solutionin Q := Ω × (0,∞), which is defined to be a
weak solution inQ such that the functionV := v +∇p̃h satisfies the identity∫ ∞

0

∫
Ω

[
−V ∂tφ+ v · ∇v · φ+ ν∇V : ∇φ

]
dx dt =

∫ ∞
0

∫
Ω
p0 divφ dx dt (2.6)

for all φ ∈ C∞0 (Q).

Remark. Integral equation (2.6) formally follows from the Navier–Stokes equation
if we use the representationp = p0 + ∂tp̃h, the identities〈
∇p,φ

〉
= −

〈
p, divφ

〉
= −

∫ T

0

∫
Ω
p0 divφ dx dt+

∫ T

0

∫
Ω
p̃h div ∂tφ dx dt

(where
〈
∇p,φ

〉
denotes the distribution∇p, applied to functionφ), and the fact that

p̃h is harmonic.
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Furthermore, Wolf proved that his solution satisfies∫
Ω
|V(t)|2 ϕ(t) dx + 2ν

∫ t

0

∫
Ω
|∇V|2 ϕ dx ds

≤
∫ t

0

∫
Ω

[
|V|2

(
∂tϕ+ ν∆ϕ

)
+
(
|v|2 + 2p0

)
V · ∇ϕ

]
dx ds

+ 2

∫ t

0

∫
Ω
(∇p̃h × curl V) ·Vϕ dx ds (2.7)

for every non–negative functionϕ fromC∞0 (QT ).

Inequality (2.7) formally follows from (2.6) if we chooseφ = Vϕ θt,δ, whereθδ
is an appropriate smooth cut–off function of one variable (equal to1 on the interval
[0, t] and equal to zero on the interval[t+ δ,∞)), and pass to zero withδ.

Theorem 7 (Wolf 2007). Let v be a generalized suitable weak solution of the
problem (1.1)–(1.4). There exists a constantε > 0 such that if

lim sup
r→0+

1

r

∫ t0

t0−r2

∫
Br(x0)

∣∣∣curl v × v

|v|

∣∣∣2 dx dt ≤ ε (2.8)

then(x0, t0) is a (Lin)–regular point of solutionv.
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3. A brief survey of further criteria for regularity at a point
(x0, t0) for weak or suitable weak solutions

• S. Takahashi(1990) proved that if the norm of solutionv in Lrw(t0 − ρ2, t0;
Ls(Bρ(x0)) (where 2/r + 3/s ≤ 1, 3 < s ≤ ∞) is less than or equal toε then
(x0, t0) is a regular point of solutionv.

• H. Kozono (1998) proved that ifv is a weak solution satisfying

sup
t0−σ<t<t0+σ

‖v(. , t)‖L3
w(Bρ(x0)) ≤ ε (3.1)

for someσ > 0 andρ > 0 then∂tv and∇kv (k = 0, 1, 2) are bounded in some
neighbourhood of point(x0, t0).

• J. Něcas, J.N.(2002) have shown that ifv is a suitable weak solution then the
condition

lim
δ→0+

1

δ2

∫ t0

t0−δ2

∫
Bδ(x0)

|v|3 dx dt = 0 (3.2)

implies that(x0, t0) is a regular point.
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• G. Seregin, V.Šverák (2005) have shown that ifv is a suitable weak solution
satisfying

1

δ2

∫ t0

t0−δ2

∫
Bδ(x0)

|v|3 dx dt ≤ ε, (3.3)

for all δ > 0 “sufficiently small” then(x0, t0) is a regular point.

• An improvement of the last criterion has been obtained byJ. Wolf (2010), re-
quiring the validity of

1

δ2

∫ t0

t0−δ2

∫
Bδ(x0)

|v|3 dx dt ≤ ε (3.4)

for at least oneδ > 0.

• Further generalizations and modifications of the aforementioned regularity crite-
ria can be found in the paper byG. Seregin, V.Šverák (2005).

• Another generalization of the CKN–condition for suitable weak solutions has
been proven byA. Mahalov, B. Nicoalenko, G. Seregin(2008), where the au-
thors replace∇v by a quantityd(v), which is in some sense related to∇v.
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• S. Gustafson, K. Kang and T.-P. Tsai(2006): v is a suitable weak solution,
f ∈ ML2,γ(QT ) for someγ > 0. If

lim sup
ρ→0+

ρ1−( 2
r+ 3

s) ‖v − vρ‖Lr(t0−ρ2,t0; Ls(Bρ(x0))) ≤ ε,

for somer, s ∈ [1,∞], satisfying 1 ≤ 2

r
+

3

s
≤ 2,

where vρ :=
1

|Bρ(x0)|

∫
Bρ(x0)

v dx,

then(x0, t0) is a regular point.

• S. Gustafson, K. Kang and T.-P. Tsai(2006) also formulated a criterion in terms
of vorticity:

lim sup
ρ→0+

ρ2−( 2
r+ 3

s) ‖curl v‖Lr(t0−ρ2,t0; Ls(Bρ(x0))) ≤ ε

for somer, s ∈ [1,∞], satisfying 2 ≤ 2

r
+

3

s
≤ 3.
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Remark. Put

x− x0 = ρx′, t0 − t = t0 − ρ2t′, v(x, t) =
1

ρ
v′(x′, t′), p(x, t) =

1

ρ2 p
′(x′, t′).

Then v′, p′ satisfy the Navier–Stokes equation and the equation of continuity in
B1(0)× (t0 − 1, t0).

Furthermore,

1

ρ

∫ t0

t0−ρ2

∫
Bρ(x0)

|∇v|2 dx dt =

∫ t0

t0−1

∫
B1(0)
|∇′v′|2 dx′ dt′,

1

ρ2

∫ t0

t0−ρ2

∫
Bρ(x0)

|v|3 dx dt =

∫ t0

t0−1

∫
B1(0)
|v′|3 dx′ dt′

Similarly, one obtains

ρ1−( 2
r+ 3

s) ‖v − vρ‖Lr(t0−ρ2,t0; Ls(Bρ(x0))) = ‖v′ − v′1‖Lr(t0−1,t0; Ls(B1(0))) ,

ρ2−( 2
r+ 3

s) ‖curl v‖Lr(t0−ρ2,t0; Ls(Bρ(x0))) = ‖curl′v′‖Lr(t0−1,t0; Ls(B1(0))) .

These formulas show that the mentioned criteria are “scale invariant”.
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Theorem 8 (J.N. 2011).If v is a suitable weak solution, satisfying the condition

lim inf
t→t0−

‖v(. , t)‖3;Bδ(x0) ≤ ε, (3.5)

for someδ > 0 then(x0, t0) 6∈ S(v).

-

x

6t

t0

↑

t3

t2

t1

x0 |x− x0| = δ

t(x0, t0)
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J.N. (2012): a > 0, 0 < ρ <
√
t0, R > 1, 0 < h < R− 1; we denote

Ua,ρ :=
{

(x, t); t0 − ρ2 < t < t0 and
√

2a(t0 − t) < |x− x0| <
√

2aρ
}
,

Pa,ρ,R,h :=
{

(x, t); t0 − ρ2/R2 < t < t0 and

(R− h)
√

2a(t0 − t) < |x− x0| < R
√

2a(t0 − t)
}
,

-

x

6t
t = t0

t = t0 − ρ2

x0 |x− x0| =
√

2aρ

t(x0, t0)

Ua,ρ

Va,ρ

Pa,ρ,R,h

|x− x0| =
√

2a(t− t0)
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Theorem 9 (J.N. 2012). Let v be a suitable weak solution of (1.1)–(1.3),p be an
associated pressure,(x0, t0) ∈ R3 × (0, T ), 0 < a < 2ν and 0 < ρ <

√
t0.

Suppose that

(i) functionv satisfies the integrability condition in setUa,ρ:∫ t0

t0−ρ2

(∫
√

2a(t0−t)<|x−x0|<
√

2aρ
|v(x, t)|s dx

)r/s
dt < ∞ (3.6)

for somer, s, satisfying 3 ≤ r <∞, 3 < s <∞, 2

r
+

3

s
< 1,

(ii) there exist real numbersR > 1, 0 < h < R − 1, such that functionp satisfies
the integrability condition in setPa,ρ,R,h :∫ t0

t0−ρ2/R2

(∫
(R−h)

√
2a(t0−t)<|x−x0|<R

√
2a(t0−t)

|p(x, t)|β dx

)α/β
dt < ∞ (3.7)

for someα, β, satisfying
r

r − 1
≤ α <∞, 3

2
< β <∞, 2

α
+

3

β
< 2.

Then(x0, t0) is a regular point of solutionv.
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4. Principle of the proof of Theorem 8

We callA ⊂ St0(v) aseparated subset ofSt0(v) if A ∩ St0(v)rA = ∅.
A separated subset ofSt0(v) is a closed set inR3.

B1 denotes a ball inR3 with radius1.

Lemma 5. There existσ > 0, c1 > 0 and δ1 > 0 such that ifA is a nonempty
separated subset ofSt0(v) such thatU1/2(A) ⊂ B1, and ε1 > 0, ρ1 ∈ (0, 1

2) are
given numbers, then there existsθ > 0 such that the inequality

‖v(. , t∗)‖3;Uρ1(A) < δ1 (4.1)

for somet∗ ∈ [t0 − σ, t0) implies that

‖v(. , t)‖3;Uρ1/2
(A) ≤ c1 ‖v(. , t∗)‖3;Uρ1

(A) + ε1 (4.2)

for all t ∈ (t∗, t∗ + θ) ∩ (t0 − σ, t0 + σ).
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-

x

6
t

t0

t0 + σ

t0 − σ

t∗

t∗ + θ

x0|x− x0| = ρ1 |x− x0| = ρ1

Note thatθ is independent oft∗.
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Now, we prove Theorem 8 by contradiction: Suppose that to eachε > 0 there
exists a singular point(x0, t0) ∈ R3 × (0, T ) of solutionv such that (3.5) holds.

Inequality (3.5) implies that there existsρ2 > 0 such that

lim inf
t→t0−

‖v(. , t)‖3;Bρ(x0) < ε

holds for allρ ∈ (0, ρ2). It means that there exists a sequencetn ↗ t0 such that

‖v(. , tn)‖3
3;Bρ(x0) < ε. (4.3)

There exists a separated subsetA of St0(v) such thatx0 ∈ A ⊂ Bρ/2(x0).

We can assume without loss of generality thattn ∈ (t0 − σ, t0). Inequality (4.3)
implies that

‖v(. , tn)‖3
3;Uρ/2(A) ≤ ε. (4.4)

If ε is chosen so small thatε ≤ δ1 (whereδ1 is the number from Lemma 5) and ifε1
is a positive number then Lemma 5 provides the existence ofθ > 0 such that
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‖v(. , t)‖3;Uρ/4(A) ≤ c1 ‖v(. , tn)‖3;Uρ/2(A) + ε1 ≤ c1 ε+ ε1

for all t ∈ (tn, tn + θ) ∩ (t0 − σ, t0 + σ). However, ifε1 andε are chosen so small
thatc1 ε+ ε1 < ε3, whereε3 is the number on the right hand side of (3.1), then

‖v(. , t)‖3
3;Bρ/4(x0) ≤ ‖v(. , t)‖3

3;Uρ/4(A) ≤ ε33

for all t ∈ (t0−σ0, t0 +σ0) for someσ0 > 0. Since theL3–norm dominates the weak
L3–norm, inequality (3.1) is fulfilled. Consequently,(x0, t0) cannot be a singular
point of solutionv.

This is the contradiction.

The proof is completed. �
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5. Principle of the proof of Theorem 9

The used regularity criterion. We will prove that solutionv satisfies the regularity
criterion

lim
δ→0+

1

δ2

∫ t0

t0−δ2

∫
Bδ(x0)

|v|3 dx dt = 0. (3.1)

We denote
θ(t) :=

√
2a(t0 − t),

and derive an estimate of

lim
δ→0+

1

δ2

∫ t0

t0−δ2

∫
Bδ(x0)

|v|3 dx dt = lim
δ→0+

[
AI
δ + AII

δ

]
, (5.1)

where
AI
δ :=

1

δ2

∫ t0

t0−δ2

∫
θ(t)<|x−x0|<δ

|v|3 dx dt,

AII
δ :=

1

δ2

∫ t0

t0−δ2

∫
|x−x0|<θ(t)

|v|3 dx dt.
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An estimate ofAI
δ . The integral inAI

δ is an integral over a subset ofUa,ρ. HenceAI
δ

can be estimated as follows:

AI
δ =

1

δ2

∫ t0

t0−δ2

∫
θ(t)<|x−x0|<δ

|v|3 dx dt

≤ 1

δ2

∫ t0

t0−δ2

(∫
θ(t)<|x−x0|<δ

|v|s dx

)3
s (4πδ3

3

)1− 3
s

dt

≤
(4π

3

)1− 3
s

δ3(1− 2
r−

3
s)
[ ∫ t0

t0−δ2

(∫
θ(t)<|x−x0|<δ

|v|s dx

)r
s

dt

] 3
r

.

The limit of the right hand side, forδ → 0+, equals zero due to condition (2.2) and
the assumptions onr ands. Hence we have

lim
δ→0+

AI
δ = 0. (5.2)
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Transformation to the new coordinatesx′, t′. We use coordinatesx′ andt′, which
are related tox andt through the formulas

x′ =
x− x0

θ(t)
, t′ =

∫ t

t0−ρ2

ds

θ2(s)
=

1

2a
ln

ρ2

t0 − t
. (5.3)

Then

t = t0 − ρ2 e−2at′ and θ(t) =
√

2a ρ e−at
′
.

The time interval(t0−ρ2, t0) on thet–axis now corresponds to the interval
(
0, ∞

)
on

the t′–axis. Equations (5.3) represent a one–to–one transformation of the parabolic
regionVa,ρ in thex, t–space onto the infinite stripe

V ′a,ρ :=
{

(x′, t′) ∈ R4; 0 < t′ <∞, |x′| < 1
}

in thex′, t′–space. Similarly, (2.1) is a one–to–one transformation of setUa,ρ in the
x, t–space onto

U ′a,ρ :=
{

(x′, t′) ∈ R4; 0 < t′ <∞, 1 < |x′| < eat
′}

in thex′, t′–space.
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-
x′

6t′

|x′| : R− h R− hR R1 10

1 + ξ 1 + ξ

t′δ =
1

a
ln
ρ

δ
(corresponds to

t = t0 − δ2)

V ′a,ρ

U ′a,ρ

|x′| = eat
′

P ′a,ρ,R,h
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If we put v(x, t) =
1

θ(t)
v′(x′, t′), p(x, t) =

1

θ2(t)
p′(x′, t′),

then functionsv′, p′ represent a suitable weak solution of the system of equations

∂t′v
′ + v′ · ∇′v′ = −∇′p′ + ν∆′v′ − av′ − ax′ · ∇′v′, (5.4)

div′ v′ = 0 (5.5)

for x′ ∈ R3 andt′ > 0. Functionsv′ andp′ satisfy the analog of the generalized
energy inequality:

‖ϕv′(. , t′)‖2
2;BR(0) + 2ν

∫ t′

t′δ

‖ϕ∇′v′(. , τ)‖2
2;BR(0) dτ ≤ ‖ϕv′(. , t′δ)‖2

2;BR(0)

− ν
∫ t′

t′δ

∫
BR(0)

∇′|v′|2 · ∇′ϕ2 dx′ dτ +

∫ t′

t′δ

∫
BR(0)

(
|v′|2 + 2p′

)
(v′ · ∇′ϕ2) dx′ dτ

+

∫ t′

t′δ

∫
BR(0)

[
aϕ2|v′|2 + (ax′ · ∇′ϕ2) |v′|2

]
dx′ dτ (5.6)

for a.a.t′δ > a−1 lnR, all t′ ≥ t′δ and allϕ ∈ C∞0 (BR(0)).
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The first estimate ofAII
δ . We have

AII
δ =

1

δ2

∫ ∞
t′δ

∫
B1(0)
|v′|3 dx′ 2aρ2 e−2at′ dt′

≤ 2a

∫ ∞
t′δ

∫
B1(0)
|v′|3 dx′ dt′ ≤ 2a

∫ ∞
t′δ

(∫
B1(0)
|v′|6 dx′

)1
4
(∫

B1(0)
|v′|2 dx′

)3
4

dt′

≤ C

∫ ∞
t′δ

(
‖v′‖2

2;B1(0) + ‖∇′v′‖2
2;B1(0)

)3/4 ‖v′‖3/2
2;B1(0) dt′

≤ C

(∫ ∞
t′δ

‖∇′v′‖2
2;B1(0) dt′

)3
4
(∫ ∞

t′δ

‖v′‖6
2;B1(0) dt′

)1
4

+ C

∫ ∞
t′δ

‖v′‖3
2;B1(0) dt′,

(5.7)whereC depends only ona.

Recall thatd := 1
5h. In order to estimate the integrals on the right hand side, we use

the generalized energy inequality (5.6) withϕ(x′) = ϕR,d(x
′), where0 ≤ ϕR,d ≤ 1

and

ϕR,d(x
′) = 1 for |x′| < R− 3d, ϕR,d(x

′) = 0 for |x′| > R− 2d.
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A cut–off function ηξ and related estimates. Let ξ > 0 andηξ be an infinitely
differentiable cut–off function inR3 with values in the interval[0, 1], such that

ηξ = 1 in B1(0), ηξ = 0 in R
3
rB1+ξ(0).

Let µ > 0. Using the continuous imbeddingW 1,2(B1+ξ(0)) ↪→ L2(B1+ξ(0)), we
derive the estimates

‖ηξv′‖2
2;B1+ξ(0) ≤

3∑
i=1

‖ηξv′i‖2
2;B1+ξ(0)

≤
3∑
i=1

(1 + ξ)2 ‖∇′(ηξv′i)‖2
2;B1+ξ(0) = (1 + ξ)2 ‖∇′(ηξv′)‖2

2;B1+ξ(0)

≤ (1 + ξ)2 (1 + µ) ‖ηξ∇′v′‖2
2;B1+ξ(0) +

(1 + ξ)2 c2(µ)

ξ2 ‖v′‖2
2;B1+ξ(0)rB1(0) . (5.8)

We further assume that numbersξ andµ are chosen so small thatξ < 1 and
(1 + µ)(1 + ξ)2a < 2ν.
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An auxiliary inequality. For 0 < R1 < R2, we denote

MR1,R2
(t) :=

{
x ∈ R3; R1 θ(t) < |x− x0| < R2 θ(t)

}
,

M ′
R1,R2

:=
{
x′ ∈ R3; R1 < |x′| < R2

}
.

We have ∫ ∞
t′δ

∫
M ′1,R

|v′|2 dx′ dt′ =

∫ t0

t0−δ2

θ−3(t)

∫
M1,R(t)

|v|2 dx dt

≤ C c
2/r
3 (δ) c

1−2/r
4 (δ), (5.9)

where

c3(δ) :=

∫ t0

t0−δ2

(∫
M1,R(t)

|v|s dx

)r/s
dt and c4(δ) :=

∫ t0

t0−δ2

θ−
6r

s(r−2) (t) dt.

c3(δ)→ 0 because
{

(x, t) ∈ R4; t0 − δ2 < t < t0, x ∈M1,R(t)
}
⊂ Ua,ρ.

c4(δ)→ 0 because− 6r

s(r − 2)
= −2 + 2

κ

κ+ 3/s
> −2.
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The right hand side of inequality (5.6). The right hand side of (5.6) can be split to
the sum

‖ϕR,dv′(. , t′δ)‖2
2;BR(0) +KI

δ +KII
δ +KIII

δ +KIV
δ +KV

δ ,

where

KI
δ := −ν

∫ t′

t′δ

∫
BR(0)

∇′|v′|2 · ∇′ϕ2
R,d dx′ dτ,

KII
δ :=

∫ t′

t′δ

∫
BR(0)

|v′|2 (v′ · ∇′ϕ2
R,d) dx′ dτ,

KIII
δ :=

∫ t′

t′δ

∫
BR(0)

2p′ (v′ · ∇′ϕ2
R,d) dx′ dτ,

KIV
δ :=

∫ t′

t′δ

∫
BR(0)

aη2
ξ |v′|2 dx′ dτ,

KV
δ :=

∫ t′

t′δ

∫
BR(0)

[
a(ϕ2

R,d − η2
ξ ) + (ax′ · ∇′ϕ2

R,d)
]
|v′|2 dx dτ.

5. Principle of the proof of Theorem 9 49 / 57



KI
δ := −ν

∫ t′

t′δ

∫
BR(0)

∇′|v′|2 · ∇′ϕ2
R,d dx′ dτ = ν

∫ t′

t′δ

∫
BR(0)

|v′|2 ∆′ϕ2
R,d dx′ dτ.

Since∆′ϕ2
R,d(x

′) is supported forR− 3d ≤ |x′| ≤ R− 2d, we get

KI
δ ≤ max |∆′ϕ2

R,d|
∫ ∞
t′δ

∫
M ′R−3d,R−2d

|v′|2 dx′ dτ

≤ max |∆′ϕ2
R,d|

∫ ∞
t′δ

∫
M ′1,R

|v′|2 dx′ dτ

−→ 0 for δ → 0 + (5.10)

because of (5.9).

5. Principle of the proof of Theorem 9 50 / 57



The next term is

KII
δ :=

∫ t′

t′δ

∫
BR(0)

|v′|2 (v′ · ∇′ϕ2
R,d) dx′ dτ ≤ C

∫ t′

t′δ

∫
M ′R−3d,R−2d

|v′|3 dx′ dτ

= C

∫ t0

t0−δ2

θ−2(t)

∫
MR−3d,R−2d(t)

|v|3 dx dt

≤
∫ t0

t0−δ2

(∫
MR−3d,R−2d(t)

|v|s dx

)3/s

θ1−9/s(t) dt

≤ C c
3/r
3 (δ) c

1−3/r
5 (δ), (5.11)

where
c5(δ) :=

∫ t0

t0−δ2

θ
s−9
s

r
r−3 (t) dt.

c5(δ)→ 0 for δ → 0+ because
s− 9

s

r

r − 3
= −2+

3

1− 3/r

(
1− 2

r
− 3

s

)
> −2.

HenceKII
δ → 0 for δ → 0+.
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In order to estimate the integral with pressure, we need the inequality∫
M ′R−3d,R−2d

|p′|
s
s−1 dx′ ≤ c6

∫
M ′R−5d,R

|v′|
2s
s−1 dx′ + c7

(∫
M ′R−5d,R

|p′| dx′
) s
s−1

for a.a.t′ ∈ (0,∞). The procedure is longer and technical. Finally, we obtain:

KIII
δ :=

∫ t′

t′δ

∫
BR(0)

2p′ (v′ · ∇′ϕ2
R,d) dx′ dτ −→ 0 for δ → 0 + .

The next integral on the right hand side of (5.6) can be estimated by means of (5.8):

KIV
δ :=

∫ t′

t′δ

∫
BR(0)

aη2
ξ |v′|2 dx′ dτ

≤ a(1 + ξ)2(1 + µ)

∫ t′

t′δ

‖ηξ∇′v′‖2;B1+ξ(0) dt′ + c8(δ),

where c8(δ) :=
(1 + ξ)2 c2(µ)

ξ2

∫ t′

t′δ

‖v′‖2
2;M ′1,1+ξ

dx′ dt′ → 0 because of (5.9).
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Finally, we have

KV
δ :=

∫ t′

t′δ

∫
BR(0)

[
a(ϕ2

R,d − η2
ξ ) + (ax′ · ∇′ϕ2

R,d)
]
|v′|2 dx dτ

≤
∫ ∞
t′δ

∫
BR(0)

a(ϕ2
R,d − η2

ξ ) |v′|2 dx dτ

≤
∫ ∞
t′δ

∫
M ′1,R

a(ϕ2
R,d − η2

ξ ) |v′|2 dx dτ

−→ 0 for δ → 0 + because of (5.9).

Thus, we obtain the inequality

KI
δ + . . .+KV

δ ≤ a(1 + ξ)2(1 + µ)

∫ t′

t′δ

‖ηξ∇′v′‖2;B1+ξ(0) dt′ + c9(δ),

where c9(δ)→ 0 asδ → 0+.
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Substituting this to (5.6), we obtain

‖ϕR,dv′(. , t′)‖2
2;BR−2d(0) + 2ν

∫ t′

t′δ

∫
M ′1,R−2d

(ϕ2
R,d − η2

ξ ) |∇′v′(. , τ)|2 dx′ dτ

+
[
2ν − a(1 + ξ)2(1 + µ)

] ∫ t′

t′δ

∫
B1+ξ(0)

η2
ξ |∇′v′(. , τ)|2 dx′ dτ

≤ ‖ϕR,dv′(. , t′δ)‖2
2;BR−2d(0) + c9(δ).

This yields

‖ϕR,dv′(. , t′)‖2
2;BR−2d(0) ≤ ‖ϕR,dv′(. , t′δ)‖2

2;BR−2d(0) + c9(δ), (5.12)

2ν

∫ ∞
t′δ

∫
M ′1,R−2d

(ϕ2
R,d − η2

ξ ) |∇′v′(. , τ)|2 dx′ dτ

+
[
2ν − a(1 + ξ)2(1 + µ)

] ∫ ∞
t′δ

∫
B1+ξ(0)

η2
ξ |∇′v′(. , τ)|2 dx′ dτ

≤ ‖ϕR,dv′(. , t′δ)‖2
2;BR−2d(0) + c9(δ). (5.13)
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Using the integrability of‖ϕR,dv′(. , s)‖2
2;BR−2d(0), as a function ofs, in the interval

(a−1 lnR, ∞), and estimate (5.12), we can prove that

‖ϕR,dv′(. , s)‖2;BR−2d(0) → 0 for s→∞.

Consequently, sincet′δ → ∞ for δ → 0+, the right hand sides of (5.12) and
(5.13) tend to zero ifδ → 0+. We denote the right hand sides byc10(δ).

Final estimates ofAII
δ . The integral of‖∇′v′‖2

2;B1(0) on the right hand side of (5.7)
can be estimated by means of (5.13):∫ ∞

t′δ

‖∇′v′‖2
2;B1(0) dt′ ≤ c10(δ)

2ν − a(1 + ξ)2(1 + µ)
. (5.14)

The integral of‖v′‖6
2;B1(0) on the right hand side of (5.7) can be estimated by means

of (5.12), (5.8) and (5.13):
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∫ ∞
t′δ

‖v′‖6
2;B1(0) dt′ ≤ c2

10(δ)

∫ ∞
t′δ

‖v′‖2
2;B1(0) dt′

≤ c2
10(δ) (1 + ξ)2

∫ ∞
t′δ

[
(1 + µ) ‖ηξ∇′v′‖2

2;B1+ξ(0) +
c2(µ)

ξ2 ‖v
′‖2

2;M ′1,1+ξ

]
dt′

≤ c2
10(δ) (1 + ξ)2

[
(1 + µ) c10(δ)

2ν − a(1 + ξ)2(1 + µ)
+
c2(µ)

ξ2

∫ ∞
t′δ

‖v′‖2
2;M ′1,1+ξ

dt′
]
.

The integral of‖v′‖2
2;M ′1,1+ξ

tends to zero forδ → 0+ due to (5.9). Thus, we obtain∫ ∞
t′δ

‖v′‖6
2;B1(0) dt′ −→ 0 for δ → 0 + . (5.15)

The integral of‖v′‖3
2;B1(0) on the right hand side of (5.7) can be estimated similarly

as the integral of‖v′‖6
2;B1(0). Hence we also have∫ ∞

t′δ

‖v′‖3
2;B1(0) dt′ −→ 0 for δ → 0 + . (5.16)
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It follows from (5.7), (5.14), (5.15) and (5.16) that

lim
δ→0+

AII
δ = 0. (5.17)

Conclusion. We observe from (5.2) and (5.17) that functionv satisfies condition
(3.2). Hence(x0, t0) is a regular point of solution v.

The proof is completed. �

5. Principle of the proof of Theorem 9 57 / 57


