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1. Weak solution to the Navier—Stokes equations

Q) ... adomain inR? with a Lipschitz—continuous boundary
T>0, Qr =Qx(0,7)

We deal withthe Navier—Stokes initial-boundary value problemfor viscous in-
compressible fluid

ov+v-Vv = =Vp+rvAv +f in Qr, (1.1)
divv = 0 in Qr, (1.2)
v=20 onof x (0,7, (1.3)

vV = Vy in Q x {0}. (1.4)

( 1824, 1845)



First qualitative results on the existence of solutions: in the 30-ties of
the 20th century.

Leray introduced the notion of theeak solution of the boundary—value problem
(1.1)—(1.4). (In fact, Leray studied the cd3e= R3. The case of a bounded domain
(2 was treated by in 1951.)

A weak solution to problem (1.1)—(1.4). Let vy € L2(Q) andf € L?(Qr). A
vector functionv € L2(0,T; W*(Q)) N L>(0,T; L2(Q)) is said to be aveak
solutionof the problem (1.1)—(1.4) if for alp € C3% (2 x [0,T)):

T
/ /[v-@tqb—VVV:V(b—v-Vv'gb]dxdt
0 Jo

:—/OT/Qf-¢dxdt—/Qvo-¢(.,0)dX- (1.5)



Remark: function spaceL(2). Let Cg,(2) be the linear space of all infinitely
differentiable divergence—free vector functionginvith a compact support if2.

For1 < ¢ < oo, we denote byLZ(2) the closure ofC3, (€2) in L4(€2).

Remark: characterization of the spacelL’(2). Assume thaf2 has a locally Lips-
chitzian boundary antl < ¢ < co. LetL?. (€2) be the space of functionse L4(2)
such thatlivv € L?(2). One can prove that

1) The spac&>(Q) is dense iLZ (Q).
2) The mappingy, : v — v -n defined onC*>(Q) can be extended to a continuous
linear mapping fronL.Z._(Q) to W~1/44(9Q).

The spacd.’(€2) can now be characterized as a space of functions f&ni<2),
whose divergence equals zerdirfin the sense of distributions) and such thgt =
0 (the zero element df/ ~1/29(90)).



Lemma 1 (Hopf 1951, Prodi 1959, Serrin 1963).The weak solutiow to problem
(1.1)—(1.4) can be redefined on a set of zero Lebesgue measure so that <
L?(Q) forall t € [0,T) and forallg € C3% (2 % [0,7)):

/t/[v-87¢—VVV2V¢—V~VV°¢}dXdT
0 JO ,
:—/O/Qf-(ﬁdxdT—i—/Qv(.,t)-cb(.,t)dx—/ﬂvo-cb(.,O)dx. (1.6)

Principle of the proof: We use aC' functioné, as on the figure. We use (1.6) with
¢(x,7)0,(7) instead ofp(x, 7), and we consider the limit fot — 0.

9},,(7')

0 t t+h



Theorem 1 (existence of a weak solution — Leray 1934, Hopf 1951, et allet{2
be a domain ilR?, T > 0, vy € L2(Q) andf € L?(Q7). Then there exists at least
one weak solutiow to problem (1.1)—(1.4). The solution satisfies

e the energy inequality (EI)

Iy / IV (.. 7)2dr

< HV0H2+2/0( (.,T),f(.,T))2dT (1.7)
forall ¢t € [t,T),

o Jim [[v(..t) = ol = 0.

Open questions:
e Does each weak solution satisfy (El), or even the energy equality (EE)?
e |s the weak solution unique?
¢ Is the weak solution regular provided thgtandf are regular?



(El) does not exclude e.g. this E(t)
behaviour of the kinetic energy

B(t) = V(.. 0l \

The inequality, which excludes the growth &1t), is the so callegtrong energy
inequality (SEI):

V(- Dl+2v [ Vv, n)lzdr

fora.a.s € [0,7) and allt € [s,T).

Question: Does the solution, provided by Theorem 1, satisfy (SEI)?



Partial answers regarding (EE): (1963): If v € L7(0,T; L*(92)), where
2/r+3/s <1, 3<s< 00, 2<r < oothenv satisfies (EE).

o (1974), (1997): If v € L"(0,T; L*(Q2)), where
2/r+3/s<1+1/s, 4 <s < oo, thenv satisfies (EE).
o (2010): observed thaif v € L"(0,7T; L*(2)), where
2/r+3/s<1+1/r, 4 <r < o, thenv satisfies (EE).
e Further improvements: (2010),
(2010).
1/s Serrin (1963)
% Shinbrot (1974), Taniuchi (1997)
% Farwig, Taniuchi (2010)

Lions (1960)

1/r

=~



As to (SEI), (1934), (1986),
(1988), (2005) proved: Weak solutionv can be con-
structed so that it satisfies not only (El), but also (SEI).

Partial answer to the question of uniqueness:
Theorem 2 (Prodi 1959, Lions and Prodi 1959, et al).Letu andv be two weak
solutions of the problem (1.1)—(1.4), with the same datandf. Assume that
1) u satisfies (El),
2) v satisfied at least one of the conditions
(@ veL(0,T; L*(Q2)) for somer, s satisfying2/r +3/s = 1,3 < s < ¢

(b) v € L*>=(0,T; L3(Q)) andv(.,t) is right—continuous in the norm df3(Q)
in dependence ohfor 0 <t¢ < T

Thenu = v a.e. InQr.

(1996): ifQ2is a domain with a ,,smooth” bounded boundary,
then the condition of right—continuity in condition (ii) can be omitted.



Interior regularity of a weak solution under Serrin’s condition

Assume, for simplicity, thaf = 0.

Theorem 3 (interior regularity — Serrin 1963). Letv be a weak solution to (1.1)—
(1.4) withf = 0. Assume, in addition, that there exists a sub—dorfiof 2 and
0 <t <ty <T sothat

.2
(a) v € L'(t,tz; L*(Q)) for somer, s satisfying — + 5 _ 1, 3<s< 0.
r S
Then, given any bounded doma¥f c " c @ and0 < § < (t, — t;)/2, each
space derivative of is bounded if2” x [t; + 6,y — 4.

If, in addition,
(b)  Oyv € L*(ty,to; LI(QY)) for someg > 1

then each space derivative vfis absolutely continuous function of

Remark. The analogous result in the ca3e= R? ands = 3 follows from the work
of (2003).



Remark: interior regularity of 0,v and p. Condition (a) implies thad,v andp

have all spatial derivatives ih®(¢; + d,t, — 6; L>()")) for eacha € [1,2), (see
2001, 2003.)

Principle of the proof.

Let{ > 0 be so small that/,.(©2") C €,

Denote byt an infinitely differentiable cut—off function defined ik* such that
0<y<land

o = 1 onU.(§Y"),
L 0 onR3\ Use ().
The product) p satisfies

1 1
41 s ’X—Y|

h(x)p(x,t) = [ A(yp) | (y.t) dy.

If we use the integration by parts and the equation

Ap = —@Oj (Uﬂ)j),



we get (forx € Q)

¢(X) p(X, t) - pI<X7 t) + pH(X7 t)

where
Vi) =~ [ = [0y wue)](v.0) dy.
pIt) = =5 [ S [0 dy
-+ | ey 0awme)o ay+ - [ = [0wr 5.0 dy
1 1

Using the boundedness vfand its spatial derivatives cruppy x (t1,t2), we obtain

Vil (x,t) < O(k).



The integrals inp!! can be considered only for € Us-(Q”) \ U (") wherev and
its spatial derivatives are bounded drd- y| > (. Thus,

Vi, 1)] < C(k) / p(y. )| dy + C(k).
supp V¢

Hence
to

« ta «
[max (Vi ()| dt < C(b) [ ( / |p<y,t>rdy) dt + C(k)
t,  xet 131 supp V¢

< C(k) / ’ ( / o P00 dy) gt om

whereg is chosen so thak/a + 3/8 = 3. Due to the results of Taniuchi (1997)
and Kozono (1998)p € L°(t1,te; L (U (Y)) for 1 < a < 2, 3 < 3 < 3 such that
2/a+ 3/ = 3. Hence the last integral is finite.

Remark. If Q = R3 then one can use a little different technique to show &hat
andp have all spatial derivatives ih>(t; + 0,12 — 9; L>(2")).



Corollary. If (x1,t1), (x2,t2) € Q" X (t; + d,t — §) then

|V(x1,t1) — va,t9)| < |[v(xy,t1) — v(xe, t1)| + |V(xe, t1) — V(x2, ta)]

ty
< Clxy — xo| + O0yv(Xa,t) dt|
o

tq
< Cha=xal+ [ v Dl
to

to 1/a
S C |X1 — X2’ + </ ||(9tv( . ,t)HCOXO;Q// dt) ’tl — 752|(O[71)/a
3]
< C |X1 — XQ’ +C |t1 — tz‘(a_l)/a.

This implies the Klder—continuity ofv in Q" x (t; + 9, t5 — §).



2. A suitable weak solution of the problem (1.2)—(1.4)

(1983) called a weak solutionof (1.1)—
(1.4) asuitable weak solutionif an associated pressupebelongs toL”/*(Qr) and
the pair(v, p) satisfies the so callegeneralized energy inequalit GEI)

T T
21// / IVv[*p dxdt < / /[|V|2 (O + vAP) + (V[P +2p) v - Vo] dxdt
0o Jo 0o Jo

T
—I—/ /QV-fgp dx dt (2.1)
0o Jo

for every non—negative functiop from C5°(Qr).

C-K-N proved the existence of a suitable weak solutiom the case whef is ei-
therR?3 or a “smooth” bounded domain k3. (The proof is based on the applications
of the so called “retarded mollifications” in the nonlinear term ¥5(v) - Vv.)

(See also 1977 for the proof in the cade= 0.)



C-K-N defined aegular point of a weak solutiory as a point i such that there
exists a neighbourhodd of this point, wherev is essentially bounded.

A point in Q that is not regular is callesingular.
S(v) ... the set of all singular points of solutionin Q1

Clearly, since the set of regular points is ope®in the setS(v) of singular points
Is closed inQr.

Put Q:(x,t) == B(x) x (t — Ir?,t + Lr?)

Lemma 2 (C-K-N 1983). Let v be a suitable weak solution of the problem (1.1)-
(1.4). There exists a constant- 0 such that if

r—0+

1
lim Sup—// Vv dxdt < e (2.2)
r Q:(X(JvtO)

then<X0, to) g S(V)



Theorem 4 (C-K-N 1983). Letv be a suitable weak solution of the problem (1.1)-
(1.4). Then tha—dimensional Hausdorff measure ofSgv) is zero.

Principle of the proof.

1
(x0,t0) € S(v) = lim sup —// Vv|? dxdt > ¢
Q7 (x0,to)

r—0+ T
Let U be a neighbourhood &(v) in Q7 ando > 0.

To each(xy, tg) € S(v) chooseR?(x,t) C U (with r < ¢) such that

1
—// IVv|? dxdt > e
r :(XOatO)

Let us denote bys the family of all such cylinders. Due to Vitali’'s covering lemma,
there exists an at most countable sub—famgily= {Q;. (x;,;)} of J such that

Qr, (x5, t:) N Q. (x5,t;) =0 fori # j,
VQix,t)eJ 3Q(xit) €T Qrx,t) C Q5 (xit;).
Consequently:S(v) C |J; @3, (xi,t;). Moreover,



> by < 52 // IVv|? dxdt < §// Vv|? dx dt,
i € i Q7. (xiti) ¢ U

12562
> (i) < 12552;5r1 < — //U\vv]? dx dt.

1

Sinced > 0 can be arbitrarily small, we deduce that the 3D Lebesgue measure of
Sckn(Vv) is zero. Thus, neighbourhodd can be chosen so that its 3D Lebesgue
measure is arbitrarily small. Hence the right hand side can be arbitrarily small. This
implies thatP!(S(v)) = 0. ConsequentlyH!(S(v)) = 0.

What is a real regularity of a suitable weak solution in the neighbourhood of
C-K-N's regular point (z,ty)?

Answer: there exists® > 0 andd > 0 such that

a) v and its all spatial derivatives are It° (Bg(xq) x (ty — 4, %) + 9)),

b) 0,v andp have all spatial derivatives ih* (¢, — 4.ty + &; L(Bgr(xy))) for each
a € [1,2) if Qis bounded and fafi = oo if Q = R3,

) v is Holder—continuous iBg(xo) X (tg — d,t0 + 9).



Later improvements or modifications:
(1996) — used the same assumptions on dofaa in C—K—N, the definition

of a suitable weak solution requires the pressure to beit((r). Considered the
casef = 0.

Theorem 5 (Lin 1996). Let(v, p) be a suitable weak solution of the problem (1.1)—
(1.4). There exists a constant- 0 such that if

5 / ([v]* + |p[*?) dxdt < e (2.3)
6 (52 B5 XO
for somed > 0 thenv € Ca(B5/2(x0) x (to, to — 16%)) for somea > 0.

Corollary. (2.3) implies thatx, ¢y) is a regular point in the sense of C-K-N.

Principle of the proof. There exist numbers > 0 and0 < p; < ps SO thatv is
bounded with all its spatial derivatives iB,,(xo) \ B,, (xq)] % (to — 7, to + 7).



We use a cut—off function € C*(R?) such tha < n <1, n=1in B, (x,) and
n = 0 outsideB,,, (xo).

We putu = nv — V, whereV is the correction such thdivu = 0. (FunctionV
satisfiesdivV = V7 - v; it can be constructed so that its support i$fif, (xg)
B, (x0)] x (to — 7,to + 7).

t
At EEREEE LR R t=ty+ 7"
: i (%0, %0) i | X A
————45 —————————————————————————— i —————————————————— t=ty—1
| i i il t=1ty—T
|x —lxol = P2 X = Xp |x —IX0| = P2

Functionsu, np satisfy the Navier—Stokes equation with the right hand $ide
Loty — 7, tg + 73 WP®(B,,(x0)).



Functionu satisfies the boundary conditien= 0 on9B,,(xg) % (to — 7,to + 7).

Using the results on the local existence of strong solutions, one can show that ther
existr, 7" € (0,7) so that the same Navier—Stokes problem as the one satisfied by
functionsu, np, has a “smooth” solutiow, ¢ on the time intervalt, — 7/, to + 7"),
satisfying the boundary conditiom = 0 ondB,,(x¢) x (to — 7.ty +7"). Moreover,

w =uattimet = ¢, — 7.

In fact, one obtains € L>(t) — 7/, to + 7"; WH2(B,,(xq)).
Sincev is a suitable weak solution, one can verify that solutiosatisfies (SEI).

Consequently, due to theorems on uniqueness, one can identify sotmsy in
Bp2(X()) X (ﬁ() — T/, to + T”).

Consequentlyy € L>(to— 7', to+7"; W"?(B,,(x0)), which means that satisfies
Serrin’s regularity condition iB,, (x¢) x (to — 7', to + 7").

Remark. Lin also proved that (2.2= | (2.3) holds for somé > 0 |.



(1997) considered domaif in R? that is either smooth bounded, or
smooth exterior, or a half-space, or the whole sgiite

Providedv, € L(Q) andf € L?*(Qr), Taniuchi proved the existence of a suitable
weak solution.

Lemma 3 (Taniuchi 1997). If v is a weak solution and& is a bounded sub—domain
of Q,ve L"(¢,T; L*(K)) with
2 1 3

2
1<rs< oo, -+ - <1, -+-<1 (2.4)
ros ros

thenv satisfies (GEE) ik x (¢, 7). Moreover, ifv € L"(0,T; L"(2)) with r, s
satisfying (2.4) thew satisfies both (SEE) and (GEE).

Lemma 4 (Taniuchi 1997). If v is a weak solutionD is a bounded sub—domain of
Q and0 < € < T thenp and9,v can be taken so that

2 3
p€ L' (e, T; L*(D)) for —+-=3,1<r<2 1<s<3,
r S

2 3 3
ov e L (e,T; L°(D)) for —+-=4, 1<r <2, 1<5§§.
roos



(1999) consider a bounded domaine R?,
they also considef # 0, f € MLQW(QT) (for some~y > 0; MLQ,7 denotes the
Morrey space), and they use the same definition of a suitable weak solution as Lin.

Ladyzhenskaya and Seregin definegular point of a suitable weak solutiofv, p)
to be such a point i) that there exists its neighbourhoédin ), wherev is
Holder—continuous.

Theorem 6 (Ladyzhenskaya, Seregin 1999)Let (v, p) be a suitable weak solution
of the problem (1.1)—(1.4). There exists a constant0 such that if

1 [f
lim sup —/ / IVv[*dxdt < e (2.5)
to—?"z BT(XQ)

r—0+ T

then(xo, ty)) is a (SL)—-regular point of solutio(w, p).

The proof is based on the estimates of solutiom parabolic Campanato spaces.
(See e.g. W. Schlag;omm. PDE21, 1996, 1141-1175.)

L-S do not prove the existence of a suitable weak solution.



Remark: Basuc information on the Morrey and Campanato spaces.
(See e.qg. Kufner et aFunction Spaces.

Let 2 be a bounded domain iRY. For\ > 0 andl < p < oo, we set

= (s S ) <o)

ME Q) = {u e LP(Q); Mlu
xeQ, r>0 T B.(x)NQ

CLA(Q) = {u e LP(Q); [ulpn < oo},

1 _ » 1/p
wpr = (s uly) - @ (x)1" dy)
xeQ, r>0 77 JB.(x)NQ

ullpn = Nullp + lulpn
o ML,o(Q) = LP(Q), ML, n(Q) = L¥(Q)

)\—NSILL—N
q

e lf 1<p<g<oo, A>0, u>0, then

MLq,u(Q) — MLp,A ().




ML,\(Q) ={0}forA > N

f1<p<g<oo, A>0, u=>0,
CLq,u(Q) - OLp,/\(Q)-

)\_Ngu_N then

p q

CLPJ\(Q = MLP’/\(Q) for 0 <AL N

CLoa(Q = C%(Q) with o = p

provided\ € (N, N + p).



(2005) considered an arbitrary doméinn R?
with a uniformly C>~boundary) < T < oo, vy € L2(Q), f € L>4(0,T; L3(Q)).
They proved the existence of a suitable weak solutiofw, p) with v, d;v, Vv,
V2v, Vpin L>4(e, T"; L2(Q) 4+ L>4(Q)), where0 < ¢ < T" < T. The solution
satisfies (GEl)in the form

t t
lov( 00+ 2 [ IeVel Dl dr < lov( s)la+ [ (ot ov), dr

t t
—V/ / VIv[*- Vy? dxdr +/ /(|V|2 +2p) (v - Vy?) dxdr
fora.a.s € (0,7), allt € [s,T) and allp € C;°(R?) and (SEI) in the form

t
V(. 012 + 20 / Vv DI3dr < [lv(.,s)2 + 2 / (v.f), dr

fora.a.s € [0,7) (includings = 0) and allt € [s,T).
Note thate can be considered to be0 if vy € D(A%*)).

T’ can be considered to be T if T' < .



(2007) considered a general dom&irc R?, f = 0.

Using the pressure representation= p, + 9,p, Wherep, € LY3(0,00; L*(Q))
andp, € C(Q) being harmonic\Wolf proved the existence of of the so called
generalized suitable weak solutiorin @ := Q x (0, c0), which is defined to be a
weak solution inQ) such that the functioV := v + Vp,, satisfies the identity

/OO/[—Vat¢+V~VV-¢+VVV:V¢] dxdtz/oo/pgdivqbdxdt (2.6)
0 Ja 0 Jo
forall ¢ € C5°(Q).

Remark. Integral equation (2.6) formally follows from the Navier—Stokes equation
if we use the representatign= p, + 0,pp,, the identities

T T
<Vp,qb> = —<p,d1vqb> = —/0 /ondlv¢ dxdt—l—/0 /Qphdlvﬁtqb dx dt

(where(Vp, ¢) denotes the distributiokp, applied to functionp), and the fact that
pr IS harmonic.



Furthermore, Wolf proved that his solution satisfies

/|V ()2 dx+2u/ /|VV|2g0dde

< / /“V|2 ((‘3tg0+z/Ag0) + (\V\Q +2p0) V-Vgo} dx ds
0 Jo

t
+ 2/ /(Vﬁh x curl V) -V dxds (2.7)
0 JO
for every non—negative functiop from C5°(Qr).

Inequality (2.7) formally follows from (2.6) if we choosg = V ¢ 6,5, wheref;
Is an appropriate smooth cut—off function of one variable (equaldo the interval
[0, t] and equal to zero on the interjak- 6, o0)), and pass to zero with

Theorem 7 (Wolf 2007). Letv be a generalized suitable weak solution of the
problem (1.1)—(1.4). There exists a constant 0 such that if

lim sup — / /
r—0+ to—r? J B,(x0)

then(xy, to) is a (Lin)—regular point of solutiow.

curl v x |V—| dxdt < e (2.8)
%




3. A brief survey of further criteria for regularity at a point
(x0, to) for weak or suitable weak solutions

. (1990) proved that if the norm of solutionin L (tq — p?, to;
L*(B,(x0)) (Where 2/r +3/s <1, 3 < s < 00) is less than or equal tothen
(x0, tp) is a regular point of solutios.

o (1998) proved that it is a weak solution satisfying
sup [V E)|l13B,x0) < € (3.1)

to—o<t<tp+o

for somes > 0 andp > 0 thend,v andV*v (k = 0,1, 2) are bounded in some
neighbourhood of pointxg, ty).

o (2002) have shown that # is a suitable weak solution then the
condition to
L 3
513& 52 /to ; —/35 . v dxdt = (3.2)

implies that(xy, to) is a regular point.



o (2005) have shown that # is a suitable weak solution

satisfying .
1 0
—2/ / v dxdt < e, (3.3)
5 t0752 B(s(Xo)

for all § > 0 “sufficiently small” then(xy, #() is a regular point.

e An improvement of the last criterion has been obtained by/olf (2010), re-
quiring the validity of

1 [t
—2/ / v]P dxdt < e (3.4)
5 f0—§2 B5(X0)

for at least on& > 0.

e Further generalizations and modifications of the aforementioned regularity crite-
ria can be found in the paper loy. (2005).

e Another generalization of the CKN—condition for suitable weak solutions has
been proven by (2008), where the au-
thors replacé&/v by a quantityd(v), which is in some sense relatedV .



o (2006): v is a suitable weak solution,
f € ML, (Qr) for somey > 0. If

249)

lim sup ,01_(
p—0+

”V_VP Lr(to—p?,to; L#(B,(x0))) < ¢

L 2 3
for somer, s € [1, ], satisfying 1 < —+ - < 2,

T S
1
where v, = ——— dx,
v \Bp<><o>|/3p<x0>v *

then(xo, ty) is a regular point.

o (2006) also formulated a criterion in terms
of vorticity:

lim sup pQ_(%JF%) |curl v

54 L7 (to—p2to; L3 (By(xp))) = €
p—

L 2 3
for somer, s € [1, ], satisfying 2 < —+ - < 3.
r S



Remark. Put

1 1
X —X=px, to—t=ty—p*t, v(x,t)=-V (X t), pxt)= —Qp'(x', th.
p p

Then v/, p' satisfy the Navier—Stokes equation and the equation of continuity in
Bl(O) X (to — 1,t0).

Furthermore,

1 to to
—/ / IVv|* dxdt = / / V'V/|? dx' dt,
p to—pQ BP(XQ) to—l Bl(O)

1 to to
— / v dxdt = / / v/ dx’ dt’
IO t07p2 Bp(Xo) to*l Bl(O)

Similarly, one obtains

1—(243 _ —

P (+) HV_Vp L7 (to—p%,to; L8 (B,(x0))) — HV/—Vll L7 (tog—1,to; L8 (B1(0))) s
(2,3

P ) leurl V| e im0 = €01V o1 100101 0)) -

These formulas show that the mentioned criteria are “scale invariant”.



Theorem 8 (J.N. 2011).If v is a suitable weak solution, satisfying the condition

htriltoizlf HV(‘7t>H3;B(5(x0) < € (35)

for somey > 0 then(xo, ty) & S(v).

t
(X())tO)
bo p——- *
T L |
ty L '
ty L :
|
t1 L _ |
| I
X Ix — x| =06 X

3. A brief survey of further criteria for regularity at a poiix,, ¢,) 34 /57



(2012): a >0, 0 < p < /Ty, R>1, 0 <h < R —1; we denote

Uwp = {(x,0); tg—p° <t <toandy/2a(ty —t) < |x — xo| < V2ap },
Pa,p,R,h = { (X, t); to — p2/R2 <t <ty and

(R — h)\/2a(ty — t) < |x — xo| < R\/2a(ty — )},

t
(X0, to) t=t,
I = ~—
y : Pa,p,Rh
|
|
X — Xol = +/2a(t —t
Vi, | ol (t —to)
| t=ty—p’
-~ ‘ -
| | |

X X — Xg| = V2ap X



Theorem 9 (J.N. 2012). Let v be a suitable weak solution of (1.1)—(1.3)be an

associated pressuréxg,ty) € R? x (0,7), 0 < a < 2v and 0 < p < /.
Suppose that

(i) functionv satisfies the integrability condition in s&t, ,:

to r/s
/ </ v(x,t)]° dx) dt < oo (3.6)
to—p? 2a(to—1)<[x—xo|<v2ap

. 2 3
for somer, s, satisfying 3 <r <oo, 3<s<oo, -—-+4+-<1,
r

S
(i) there exist real number® > 1,0 < h < R — 1, such that function satisfies

the integrability condition in sef, , r 5.

to a/B
/ (/ Ip(x,1)|” dx) dt < oo (3.7)
to—p?/R? (R—h)+/2a(to—t)<|x—x0|<R+/2a(to—1)
L 3 2 3
for somex, 3, satisfying S <a<oo, =<f<o0 —4-=<2.
r—1 2 a 0

Then(xy, ty) is a regular point of solutiorv.



4. Principle of the proof of Theorem 8

We call A C S;,(v) aseparated subset &, (v) if ANS;, (v)~ A=10.
A separated subset 6f,(v) is a closed set ifR>.
B; denotes a ball ifR? with radiusl.

Lemma 5. There exisb > 0, ¢; > 0 andd; > 0 such that if 4 is a nonempty
separated subset &, (v) such thatl/; »(A) C By, ande; > 0, p1 € (0,3) are
given numbers, then there exigts- 0 such that the inequality

V(.. %)

for somet* € [ty — o, ty) implies that

|30, (4) < 01 (4.1)

V(- D30, 0 < allvl, ), @ +ea (4.2)

forall t € (t*,t* —|—(9> N (t() — 0, by +0’).



x — xo| = p1

x —xg| = p1

X0

Note thatd is independent of*.



Now, we prove Theorem 8 by contradiction: Suppose that to each> 0 there
exists a singular pointxg, ty) € R? x (0,7T') of solutionv such that (3.5) holds.

Inequality (3.5) implies that there exists > 0 such that

htriltgilf HV( 7t)”3;B,>(X0) < €
holds for allp € (0, p2). It means that there exists a sequefce” t, such that

VG )55, 00 < € (4.3)

There exists a separated suhdetf S; (v) such thaty € A C B, /»(x0).

We can assume without loss of generality thate (¢, — o,t). Inequality (4.3)
implies that

V(o t) 50, 0 < e (4.4)

If €is chosen so small that< §; (whered, is the number from Lemma 5) anddf
Is a positive number then Lemma 5 provides the existenée>of) such that



v (. at)||3;Up/4(A) < a HV(wtn)H:a;Up/Q(A) +e6 < cetea

forall t € (t,,t, +0) N (ty — o,ty + o). However, ife; ande are chosen so small
thatc; € + €1 < €3, wherees is the number on the right hand side of (3.1), then

HV('7t)H§;B,,/4(X0) < ||V(.’t)‘|§;Up/4(A) < 6%

forallt € (to— o0, ty+00) for someoy > 0. Since thel.>~norm dominates the weak
L3—norm, inequality (3.1) is fulfilled. Consequently,,t,) cannot be a singular
point of solutionv.

This is the contradiction.

The proof is completed.



5. Principle of the proof of Theorem 9

The used reqgularity criterion. We will prove that solutiorv satisfies the regularity

criterion
lim — Sdxdt = 0. 3.1
5i0+ 52 /to 52 »/Bg XO ’V’ . ( )

0(t) == \/2a(ty — 1),

We denote
and derive an estimate of

to
3 : I gl
511%1 ﬁ/to ; /35 v]? dxdt = lim [Aj+ Af' ], (5.1)

0—0+

(x0
1 3
Al = = lv|? dx dt,
92
(t)<|x—x0|<0

/ lv|® dx dt.
|x—x0|<6(%)

where

1
02 Ji,—s



An estimate of AZ. The integral inAf is an integral over a subset b, ,. HenceA!
can be estimated as follows:

to
/ / lv|? dx dt
to—(SQ 9(t)<|X—X0|<5
to < rAmsty 1
< —2/ (/ v|® dx) (W—> dt
0% Jio—52 \Jo(t)<x—xo| <5 3
Ar\1-3 2_3 to s z
(—W> F 5312 -0) [/ (/ v |® dx) dt] :
to—(52 9(t)<|X—X0‘<5

3
The limit of the right hand side, far — 0+, equals zero due to condition (2.2) and
the assumptions onands. Hence we have

1
I
A(;:ﬁ
1

lim AL = 0. 5.2
g Ay =0 (5.2)



Transformation to the new coordinatesx’, ¢'. We use coordinates andt’, which
are related tx andt through the formulas

t 2
, X—Xp , ds 1 P
= i = =—1 : 5.3
TN /to_pz 02(s)  2a to—t (5:3)

Then
228 and  0(t) = V2ape .

The time intervalt,— p*, ty) on thet—axis now corresponds to the interyal o) on

t=ty—p’e

thet'—axis. Equations (5.3) represent a one—to—one transformation of the parabolic

regionV, , in thex, t—space onto the infinite stripe
V,, = {x,t) eRY 0 <t/ <oo, x| <1}

in thex’, t'—space. Similarly, (2.1) is a one—to—one transformation of/setin the
x, t—space onto

U,, = {x,t) eRY, 0<t' <00, 1< x| < e}

in thex’, t'—space.



t/

|
L. p
ts=—1In=
0 an5—

(corresponds t

t =ty — 6%
|
| |
|
| | L
| | L
| | | |
| v | |
| a,p | | |
| | / ' | |
| |/ X[ =e
| | |
| | | |
| 1+ . X!
X|: R R-—h 0 1 R—h R
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If we put v(x, t) = % v(x', 1), p(x,t) = 021( 5 p'(x,t),

then functions/’, p’ represent a suitable weak solution of the system of equations
ov' +v -VVv = —V'p +vAV —av —ax' - V'V, (5.4)
div'v! = 0 (5.5)

for X’ € R? andt > 0. Functionsv’ andyp’ satisfy the analog of the generalized

energy inequality:

t/
‘|90V/(-7t/)||§;BR(O)+2V/ eV (D o) 47 < eV (D) Ba0)
s

t/ t/
— y/ V'|V|2 V'? dx' dr + / / (V> +2p)) (V- V'¢?) dx' dr
t- J Bg(0) ts J Br(0)

1
t/
+/ / [ap?|V'|* + (ax' - V'?) V[ ] dX'dr (5.6)
t5 7 Br(0)

fora.a.t; > a ' InR,allt’ > t;and allp € C;°(Bg(0)).



The first estimate of AL/, We have

1 * ,
Agj _ _2/ / ‘V/‘B dX/ 2ap2672at dt,
2y o
i ;
< 2a/ / V/|? dx'dt’ < 2a/ (/ v/|® dX/) (/ Kds dX') dt’
B:(0 ! B1(0) B1(0)
< 0/ (v
t
< o( LIV dt’) ( [ VI dt') +C [ VI 0
) ) 1)

whereC depends only on. (5.7)

3/4 3/2
o+ IV 5.0)" V15 %, 0 AF

Recall thatd := %h. In order to estimate the integrals on the right hand side, we use
the generalized energy inequality (5.6) withix') = ¢ 4(x'), where0 < pp, <1
and

pra(x') =1 for|x'| < R — 3d, era(x') =0 for|x'| > R — 2d.



A cut—off function 7, and related estimates. Let{ > 0 andn: be an infinitely
differentiable cut—off function ifR? with values in the intervaD, 1], such that

ne =1 in By(0), ne =0 in R* <\ By.¢(0).

Let u > 0. Using the continuous imbeddidg*(By1¢(0)) — L*(B14¢(0)), we
derive the estimates

3
2

H77£V/||§;BH§(0) < ZH%U; 2: By1¢(0)
=1

3
< Y APV )5, ) = L+ IV BV 5,000

i=1

(1+ €)% ca(p)
< (M + ) neV'V'I5 5, o) T = V115, 5. c0)~m(0): (5-8)

We further assume that numbeérandy . are chosen so small that< 1 and
(14 w)(1+¢&)%*a < 2v.



An auxiliary inequality. For0 < Ry < R,, we denote

Mp, () = {x € R% Ri0(t) < |x — x| < Ry 0(1)},

]\4‘;31,]%2 = {X’ S RS; R, < ‘X/| < RQ}
We have
00 to
/ / V|2 dx' dt’ = / 93(75)/ [v|* dx dt
tg {7R to—02 MLR(t)
< Ca"(8) ey " (0), (5.9)
where

to T/S to 6r
c3(6) == / (/ v |® dx) dt and  c¢y(6) := / 6 0= (t) dt.
to*(g2 Ml,R(t) to*(g2

c3(6) — 0 becausd (x,t) € R tg — 6% <t < ty, x € My g(t)} C Uy

6
c4(0) — 0 because- AN, N L

s(r —2) K+ 3/s



The right hand side of inequality (5.6). The right hand side of (5.6) can be split to
the sum

||90R7dV/(' 7%5)“%;33(0) + K(gl + Ké” + K({H + K(glv + Kg/,
where

t/
KI = —y/ V'V |2 V'3, dx dr,
t; JBr(0) ’
t/
K = // V[P (v Vg ) dx' dr,
ts / Br(0)
t/
KH = / / 2p' (v - V' 4) dx'dr,
t5 J Br(0)

t/
KV = // an§|v'\2 dx’dr,
ts J Bgr(0)

t/
K = [ faha =)+ o Vigha)] IV dear
ts R



% %
Kl = —V/ V'IV[2- Vg, dx' dr = V/ / V|2 NS, dx dr.
| t; JBr(0) |

ts J Bgr(0)

SinceA'y%, ,(x') is supported foR — 3d < |x'| < R — 2d, we get

oo
K! < max\A’gp%M/ / V> dx'dr
s

Mg 34 R 24
o0
< max |A'ph 4| / / Iv'[? dx' dT
t5 LR

— 0 ford—0+ (5.10)

because of (5.9).



The nextterm is

t/ t
o= [ wpe g aar <o f
t;J Bg(0) ts
to

— C 92(75)/ Iv|® dx dt
to—062 Mp_34,r—24(t)

to 3/s
T e
to—62 Mp_34,rR—24(t)

C " (6) ey (),

where to

IA

IA

c5(6) — 0fory — 0+ because i

Hence K — 0 for § — 0+.

!
MR73d,R72d

\v’|3 dx’ dr

(5.11)



In order to estimate the integral with pressure, we need the inequality

/ P71 dx” < C6/ v’ S1dx 4 ¢ (/ | dX,)
M My 54 g R-5d,R

R—3d,R—2d -5

for a.a.t’ € (0,00). The procedure is longer and technical. Finally, we obtain:

K= // v -Viehy) dx'dr — 0 ford — 0+.
Br(0

The next integral on the rlght hand side of (5.6) can be estimated by means of (5.8):

t/
KIV = // an§|vl\2dx'd7'
ts 7/ Br(0)

t,
< a1+ +p) / 1969V |13 3y, 0y A+ e5(6),
t/

(L+8)% eap)

where c¢g(9) := H HQ;M{1+£ dx'dt’ — 0 because of (5.9).

&




Finally, we have

/!

t
K o= ] ke =)+ (0 Vi) 19 dxds

4
o0
<)
t.

0

o0
< [ aleha- ) P axar
ts J Mg

— 0 for 6 — 0+ because of (5.9).

/ a(@hg — ) V]2 dxdr
B

r(0)

Thus, we obtain the inequality
t/
Ki+. . + K] < a(l+&*(1+p) / 116V |2: 31.c(0) At + ca(8),
ts

where cyg(6) — 0asé — 0+.



Substituting this to (5.6), we obtain

t/
lerav' (-, t)13: By_suio) + 2V/ / (Oha—ng) IVV' (L, 7)[F dxX/dr
ts {,R—2d
t/
+ [2v —a(1+€)*(1 + p)] / / e [V'V/(L,7)]? dx'dr
t5  Bi4¢(0)

< llerav' (- t)13: By suio) + co(6)-
This yields
leraV' (O3 Bysi) < Nl0RaV (- 5112 By _su(o) + €0(0), (5.12)

w [ a9V P axdr
t Ja

1,R—2d

+ [2v —a(l + (1 + p)] / / e [V'V/(L,7)]? dx'dr
t5  J Biy(0)

< lleraVv'(. atﬁs)H;;BR_Qd(o) + c9(9). (5.13)



Using the integrability of|¢r . v'(. , S)H;,BM(O), as a function o, in the interval
(a1 In R, oo), and estimate (5.12), we can prove that

HSOR,dV/(- ) 3)\|2;BR,2d(0) — 0 for s — oo.

Consequently, sincet; — oo for § — 0+, the right hand sides of (5.12) and
(5.13) tend to zero if6 — 0+. We denote the right hand sides &y(6).

Final estimates ofAj". The integral of| V'v'|[3. 4, on the right hand side of (5.7)
can be estimated by means of (5.13):

> 12 / 610(5)
3 |
/t, VYm0 4 < o e )

0

(5.14)

The integral oﬂ|v’\|g; 5,(0) ON the right hand side of (5.7) can be estimated by means
of (5.12), (5.8) and (5.13):



| VB0 at < @) [ 1VIB 2
t

/ /
4 )

00 C ,u
< a0 0+ [ [0 TV g0+ 22 v HWJ a

; | 3
(14 p) c10(9) cop) [ !
< CIO( ) (1 +€) [21/ — a(l _|_€)(2)(1 ‘l-,u) + 52 /tﬁ 1,14¢ dt]

The integral of||v’[3 ,,, _tends to zero fo§ — 0+ due to (5.9). Thus, we obtain

/HVIIQB ¢ — 0 ford —0+. (5.15)
t/

)

The integral of||v'|]3. ; , on the right hand side of (5.7) can be estimated similarly
as the integral oﬂv’H B, (0)- Hence we also have

| VIt — 0 fors—0+. (5.16)
t

/
é



It follows from (5.7), (5.14), (5.15) and (5.16) that

lim AX = 0. 5.17
g A =0 10

Conclusion. We observe from (5.2) and (5.17) that function satisfies condition
(3.2). Hence(x, ty) is a regular point of solution v.

The proof is completed.



