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Lecture 2 — Contents
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— a brief survey.

2. Regularity criteria based on conditions imposed only on some components of
velocity or vorticity.

A brief chronological survey with main ideas of the proofs.

Methods based on the estimates of vorticity, pressure, or on the application of the
multiplicative Gagliardo—Nirenberg inequality.

Some open problems.
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1. Regularity criteria imposing conditions on various
quantities (not only velocity) — a brief survey

We assume that is a weak solution of the Navier—Stokes initial-boundary value
problem inQQ; andw := curl v.

Regularity via certain integrability of vorticity:
J. T. Beale, T. Kato, A. Majda (1984): 2 = R3, proved that the inequality

T
/ |lw(t)||so dt < o0
0
implies regularity.
Later improvement:

H. Kozono, T. Ogawa, Y. Taniuchi(2003): © = R3, the L>*—norm can be re-

placed by theB ~—horm (in the homogeneous Besov spﬂ& (R3)) in the
BKM—condition.
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Regularity via the direction of vorticity:
P. Constantin, C. Fefferman(1993): Assume that there exist constagtsM > 0
such that sing| < Cly — x|, (1.1)
forall x,y € QM,0 <t < T, wherey is the angle between(x, t) andw(y, t) and
QM = {x e lwix, )] = M}.

Then solutiorv is regular inQ .
Later improvements:

e H. Belrao da Veiga, L. Berselli(2002): Inequality (1.1) can be replaced by

[sing| < Cly —x|'?,
e Z. Grujic, A. Ruzmaikina (2004): assumed that> 2, w, € L'(Q) N L4(9),
a) [wl|y @ e L'(0,T),  b)|sing| < Cly —x|"

forallx € QM, 0 < t < T. These assumptions imply that solutiorhas no
singular points irQ)r.
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Regularity via the direction of velocity:
A. Vasseur(2009): Q = R3, f = 0, v is supposed to be a Leray—Hopf weak solution
such thatliv (v/|v|) € L"(0,T; L*(R?)) with

2 1
_+§§—, s>6, r>4, 0<7T <oo.
r s 2

Such a solution is smooth @7.

Regularity via the eigenvalues or eigenvectors of the rate of deformation tensor:

J.N. and P. Penel(2001): If D is an open sub—domain 6}, (v, p) is a suitable
weak solution, (; < (, < (3 are the eigenvalues of the tendbr:= (Vv), and
G = ¢+ ¢! where

(i) one of the functiong,, ((2).+, (3 belongs toL*"(D) for somer € [1,], s €
(3, oc], satisfying2/r + 3/s < 2,

then solutionv is regular in D.

An assumption can also be made only on the eigenvectors of tBnsor
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Improvements of Serrin’s regularity condition:
o H.Kozono, T. Ogawa, Y. Taniuchi(2003): regularity inZ(0,T; BY, ..)(R?).

e H. Kim (2007): 2 either bounded smooth or the whole sp&cke if a strong
solutionv blows up at tim&l™ thenfOT [v()[[7, dt = oo, where2/r+3/s =1,
3 < s < oo.

Regularity via jumps of the BZ ', —norm:

A. Cheskidov, R. Shvydkoy(2010): Q = R3, if jumps of a weak solution in the
Bgofoo—norm do not exceed certain constant (a multiple of viscosity) then the solution
IS smooth.

A logarithmically improved Serrin’s criterion:

S. Montgomery-Smith (2007): © = R3,
T r
t
T Y
o 1+In™[lv(D)lls
with 2 < r < 00,3 < s < 00, 2/r + 3/s = 1, implies regularity of weak solution.
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Regularity beyond Serrin’s condition:

e R. Farwig, H. Kozono, H. Sohr(2007): Q is a domain inR? with a smooth
boundaryf = 0, v is a weak solution satisfying (SE¥); € L2(Q), 4 < s < oo,
3<q¢<6,2/s+3/q=1.Then

(i) Togivenr € [1,s) suchtha/r +3/g=1+«,0 < a <2(1—1/s) there
exists a constant’ = C'(vy, 2,7, s) > 0 such that if

[v(?)
then solutionv is smooth i) (in the sense that € L*(0,T; L(2))).
(i) If to eachT; € (0,T) there exist®) < §(77) < 17 such that

rorL@) < C

VvV € LS(Tl —9,T7; Lq(Q))

then solutionv is smooth i (in the sense that € L; .((0,7); L%(2))).

loc

Here, sinc&/r + 3/q > 1 (in condition (i)) orv satisfies only the left—ward Serrin
condition in(0, '), the results go beyond Serrin’s condition.
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e R. Farwig, H. Kozono, H. Sohr (2007): Q a bounded domain ifR? with a
smooth boundaryf = 0, v is a weak solution satisfying (SER, € L2(Q2),
4<s<o00,3<q<6,2/s+3/qg=1.

Then there exist§' = C'(2,¢) suchthatid <t <77 <T,0<a <2(1-1/s)
and at least one of the conditions

T
(|)/ [v(m)[l; dr < C(Ty —t) with - +§—1+a 1<r<s,
roq

Tl
w)/ () dr < C(T —1) With 2 +2 =140, 1< 7 <s
roq
holds then solutiow is smooth i) (in the sense that € L*(T,T; LY(2))).

e P. Han (2009): Q2 has a smooth bounded boundary or it is a half-spagec
L2(Q) N L3(Q). v a weak solution satisfying (SEl),

[WWMWh<Cm—ﬂ

with 1 < r < oo thenv is regular in some left neighbourhood of, including
point7;.
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Regularity via the kinetic energy:

R. Farwig, H. Kozono, H. Sohr (2008): €2 is a bounded domain with a smooth
boundary,f = 0, v is a weak solution satisfying (SEl),< a < b < T < .

If ||v(¢)]|3 is Holder continuous (as a function of tint in (a,b) with exponent
« € (3,1) thenv is smooth inQ .

Serrin—type conditions imposed on the gradient of velocity or on the vorticity:

e H. Beirdo da Veiga(1995): If Q@ = R3, f = 0, wy = curl vy € L2(R3),
we L"(0,T; L*(R3))with 1 <7 <00, 2 <s<o0, 2/r+3/s<2 orifthe
norm ofw in L>(0, T; L*?(R3)) is sufficiently small then solution is smooth
in QT-

e D. Chae, H. J. Choeg(1999): proved the same result, imposing conditions only
on two components of vorticity or on the gradients of only two components of
velocity.

These results have been later generalized to other dofiains
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Regularity in terms of pressure:

We assume that is a weak solution angl is an associated pressure. Presguran
be considered in the clags/?(Qr).

e D.Chae, J. Leg(2001): If @ =R3,2/r+3/s <2,s > 3,p € L"(0,T; L*(R?))
solutionv is smooth inQ) .

o G. P.. Galdi, L. Berselli (2002): € is the whole spac&?, a half-space, a
smooth bounded domain, or a smooth exterior domaip. df L"(0,7"; L*(Q2))
with2/r + 3/s < 2, % < s < oo then solutionv is smooth in) .

Remark. The pressure is given uniquely up to an additive constant, depending
possibly ont. If p does not satisfy the aforementioned assumptions then one cannof
correct it, adding any functiop(¢) to p.

e K. Kang—J. Lee (2006): extended the previous result to the %131—:-5 < .

e Ch. Qionglei, Z. Zhifei (2007): 2 = R3, f = 0, considerep € L(0,T;
BY, ..(R?)) and proved the regularity of solution
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e T. Suzuki (2012): © bounded smooth domain R®, p € L5><(0,T; L4>*(R)),
with the norm in this space “sufficiently small2/s +3/¢ = 2, 2 < ¢ < 3,
2 < s < 2 thenv is smooth inQy.

T. Suzuki also used conditions, imposed\dp.
o G.Seregin, V.Sverak (2002): Q =R3, f =0

A functiong : R? x (0,00) — [0, 00) is said to satisfy condition (C) if to each
to > 0 there existsRy(ty) > 0 such that

X, 1
a) sup  sup / 9(x,1) dx < oo,
X()ER3 to—R%StSto BRO (X) ‘X _ X0|

b) for each fixedx, € R* and each fixed? € (0, Ry], the function

t . .
t.—>/ g(x 1) dx is continuous at, from the left.
BR(X()) ‘X - Xol

If eitherp > ¢ in Qr or p + %|v|2 < g in Q7 for some functiory satisfying
condition (C) then solutior is smooth inQ) 7.
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J. Necas and J.N.(2002): Assume thatv, p) is a suitable weak solution.

v T
(%0, %0) t =t

X0
P is an arbitrarily wide space—time paraboloid.

2 3
If p_ e L%(V) with E+B§2’ a>3,3>3

2 3
andv € L*"(U) with —+ - <1, r > 3,s > 3,
T S

then(xo, ¢y) is a regular point.
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2. Regularity criteria based on conditions imposed only
on some components

Regularity via two components of velocity:

e H. O. Bae and H. J. Chog(2000, 2005):v is a suitable weak solution, imposed
Serrin’s conditions only on two components of velocity in a sub—donaiof
Qr, proved that there are no singular pointdin

e J.N. and P. Pene((2002): proved an analogous result.

Regularity via one component of velocity:

e J.N. and P. Penel(1999): v is suitable weak solution, one componentvoils
assumed to be essentially bounded in a space-time dabhain 2 x (0, 7).
Thenv has no singular points ib.

e J.N., A. Novotny and P. Penel(2003): v is suitable weak solution, one compo-
nent ofv is assumed to be in"(a,b; L*(§Y)), where0 < a <b < T, isa
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sub—domain of), r € [4,00], s € (6, 00| satisfying2/r + 3/s < 3. Thenv
has no singular points it x (a,b).

e JN. and P. Penel (2002): certain anisotropic criteria, interpolating between
Serrin’s condition witt2 /7’43 /s" < 1 imposed on two velocity components and
Serrin’s condition witte/r” 4+ 3/s” < 1 imposed on one velocity component.

e |. Kukavica and M. Ziane (2007): Q = R3, v; is only assumed to be in
L7(0,T; L*(R?)), where2/r + 3/s = 2 for r € [1¢, 00) ands € (2, oo].

e C. Cao and E. Titi (2008): the authors consider the spatially periodic problem
in R* and use the conditio®/r + 3/s < 2 +2/(3s), s > 1.

e M. Pokorny and Y. Zhou (2009): the exponents s are supposed to satisfy the
conditions2/r +3/s < 3 +1/(2s), s > .
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Regularity via one velocity component in the radially symmetric case:

J.N. and M. Pokorny (2000) (Later improved by/. Pokorny): v is an axially
symmetric suitable weak solutioh= 0, (v,)- € L"(a,b; L*(2)), where0 < a <
b < T, Qis an axially symmetric sub—domain 9f » € [2,00], s € (3,00]
satisfying2/r + 3/s < 1. Thenv has no singular points i€’ x (a,b).
Alternatively: vy € L"(a,b; L*(€)')), where

a) either s € [6,00], 7 € [&,00], 2/r +3/s < T,

b) or s € [3,6), r € (10,00], 2/r +3/s <1— £,

Thenv has no singular points i’ x (a, b).

Regularity via some components of the gradient of velocity:

e H. Beirao da Veiga(1995) e D. Chae, H. J. Chog(1999)
e P. Penel, M. Pokorry (2004) e |. Kukavica, M. Ziane (2006, 2007)
e Y. Zhou, M. Pokorny (2009, 2010)
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Open problem:

Can the regularity of a weak solution be controlled by just one
component of vorticity?

Principles of proofs of some one—velocity—component criteria

|. Application of equation for vorticity

Assume that e.g. the componepbf velocity v is “smooth” in a space—time cylinder
X (t1,t3), whereQ) C Qand0 <t; <ty <T.

We know (from the so called “Theorem of structure”) that
(t1,12) = | (ay.b,) UG,

vel’
where sef’ is at most countable, sétis of measure zero and solutietis “smooth”
on each time intervala,, b,). Thus singularities can appear only at tintes G.
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Assume that, is one of the time instants,. Let¢, — 7 be any pointina., b,). Then
we know that “smooth” on the time interval — 7, ).

Letx, € €. In order to work in a bounded domain, we choose aBa# Br(x,) C
(Y, and use a cut—off function, that is a function fromC§°(B), equal to one in
BR_e(X()), and such that < n<l1 in BR(X()) N BR_e(X()).

Multiplying the Navier—Stokes equation by functighwe obtain the equations of
the same type, i.e.
du+u-Vu = —V(np) +rvAu+h in B x (ty — 7, %), (2.1)
diva = 0 in B x (t() — T, to), (22)
for the functionu := nv — V, whereV is an appropriate correction that guarantees

the validity of equation (2.2). (ConcretelfivV = Vn - v.) FunctionV can be
constructed so thatipp V C [Br(xg) N\ Br_c(X0)] X (to — 7, %0).

Functionu, and all its derivatives, are equal to zero@B x (ty — 7, o).

Functionh depends orV, 7, and on the values of functions, p in [Br(xg) ~
BR_G(X())] X (t() -7, t()).
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Denote byws; the third component of vorticity (= curl u). We have

8tCU3 +u- V(.U3 = 81]12 — 82h1 +w - Vu;; + vAw. (23)
We denote byl . |||.,, the norm inL%(ty — 7,t; L°(B)) and
- Wse2ne) = NIl loc2 + 1l ll2.6-

Lemma 1. Suppose thatz € L"(ty — 7,t; L*(R?)) for 2 <7 < 400, 3 < s <
+o0, 2/r +3/s < 1. Then there exist positive constanisand ¢, such that

2/r+3/s

Neslllooonee < e llluslls IIVullZ 50, 6 + ca (2.4)
Equation (2.1) can be written in the form
du+ Fi(u)+ -+ Fg(u) = h—V(np+ Luj) +vAu, (2.5)
where
1(u) = (wouz, —wiuz, 0),  Fy(u) = (ug O1us, uz ougy, 0),

Fy(u) = (—wsua, wyuy, 0),  Fs(u) = (0,0, uy Ous),
Fg(ll) = (u1 61161, U1 82u1, O), F6(11) (O, 0, U9 82%3).
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o [|1Fi(u)ll32 < |llusllzs IVl where
2+2 ] 2+2 ] d 2+3 5% 2+3 >3
- T —— an o= =4 = —.
r a ’ s b a b 2 r s) — 2

e Similarly, functionsF;(u) and Fs(u) can also be estimates by means of “good
properties” ofus.

e FunctionFy(u) can be estimated, using inequality (2.4):

to
IR, = / / W2 (2t ud) dxdt < sl lull
t()—T
2a 2b
wherea > 2, b > 2, 2 3/b=23, a= = ——.
a Ja+3/ S5 - I6; -

38
Using the imbeddingl/ol’ﬁ“’(B) — L’(B), the last estimate gives:

IF2(wll32 < Cllwslliign@e IVall? s -
" B+3
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since || Vull? . < C || Vullixays I Vullz2. we obtain

B3, < CllwsliPeanes IVUllee2nee
2 r+3 s
< O (&Ml Va5t + &) IValloee
2 r+3/s)+1
scwmmuwu\“”++4wvwm2 26)-
to
. kuumﬁzzi/ l/[w%@wm2+uﬂ@mnﬂdxm:
to—T B
1 fo 3 02 3 02
3 to—T B
Using the equationd?u; + d3u; = —0s31u3 — dows (Which follows from the

equation of continuity), we transform the last integral to

1 [
— / / [ui’ 831%3 + U? (92(,(}3] dx dt.
3 to*’r B
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e Finally, we use the estimate

IVulllSe, + IVAall3, < ClIF () + - + Fs(w)|llz
+ Cllfl22 + C V(. to — )5

The norm|||Fy(u) + - - - + Fi(u)||3, can be estimated by something that can be
absorbed by the left hand side.

Conclusion: In this way, we can e.g. prove the result obtained by Ne—No—Pe (2003),
i.e. that ifuy € L"(t1,ts; ), where2/r + 3/s < 3, then solutionv is smooth in
Q' x (tl,tg).
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II. Application of the multiplicative Gagliardo—Nirenberg inequality

weWRRY):  lulls < Clldully [Duully |0sulls?

Assume thaf2 = R3, v = 1 andf = 0. Multiplying the Navier—Stokes equation by
Av, we get
d1

53 IV OB+ 1avs = [ (v-9v)- Avax
R3

The right hand side can be rewritten in the fofm + K2 + K3, where

ZZ/ (Okv3) (03v5) (Okvj) dx + = ZZ/ (O3v1) (Okv;) (Okv;) dx

j=1 k=1 j=1 k=1

ZZZ/ (Orvi) (070;) (Okvy) dx, All the terms contain

S derivatives with respect
=5 Z [(B1v1) + (Dov2)] (B3v)) (B5v;) dx. to 1 Or 5.

R?}
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Thus, denotingv;, = (0, 0»), we get
1 ! ! 1
SIVv@l+ [ IVv@ds < ¢ [ [ 199V axds+ 5 9wl

1
<c / Vv (e 19 () 3 Vv (s) ds + [Tl

4
s ( / V2 (s)] ds)

< C+CJt) (/Ot | V2v(s)]|3 ds) : (2.6)

<

O<s<t

t
where J%(t) := sup Hth(s)HgnL/ IVVav(s)[5 ds.
0

In order to estimate/?(¢), we multiply the Navier—Stokes equation ky;,v and
integrate inR3. We obtain
d1

G VOB IV = [ v ava @)

RB
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where /(V Vv) - Apv dx = Z Z/ vi(0;) (Anvj) d

=1 j=1

T Z/ v; (Ojv3) Apvs dX+Z/ v3(05v;) Apv;) dx

= Ji+ o+ Js.

‘]1:_22/ 83?)2 8@1 avi)dx

i=1 j=1

+ /Rg [—(Osv3) (9101) (Dav2) + (D5v3) (Dav1) (Drv2) | dx

— _Z Z/ v3(050;v;) (0jv;) dx

=1 j=1

+ /RS v3[(010501) (Bav2) + (D20303) (Oyv1) — (D205v1) (O1v2)
— (0105v2) (0a01)] dx
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3 2
- Z Z/ v3(0;0kv3) (Opv;) dx

=1 k=1
One can derive that

S S 1 S/(S—
Tt Bl < Clleslls VOVl ™ [ Wavll ™ < 2+ C floall2/ 2 W3,

[Js] < C / 03] [VV| [V V] dx < C [loglls IV Vv ]2 [[Vv]ly ™ [0Vl

Applying the G-N inequality t&/v, we get

1+2 S 1-3/s 1/s
5] < e el e
2(s 3)
S CHUS (s 2) va (s— 2) ||V2 (3_2) +ZHVVhVH§-

Substituting the estimates pf; + J,| and|Js| to (2.7), we get

1 t 1 /!
S Vv @I + / IVViv(s)IB ds < IVivol+ / IV Vv (s)]3 ds
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_2s5
S IViv(s)]13 ds

+ [t
+ [t

(1) < 0+0/0 lvs(s)

2s 2(s—3)

SV ()l 1V (s)

( : )
s—2
5 ds

Thus, N
FVv(s)]l3 ds

s—3
s—2 2

¢ 2s
+ C (/0 HU3(S) §5—3) HVhV(S)H% dS) H|v2v 57,22

Substituting the estimate df () to (2.6), we get (after some technical manipulations
like e.g. applications of Blder's and Young’s inequalities):

t
||Vv]|§+/ |Av(s)||3 ds < something that enables us to apply Gronwall’s
0 inequality.
Conclusion: In this way, we can e.g. prove the result obtained by Zh—Po (2009),

i.e. thatifvs € L7(0,T; R?), where2/r + 3/s < 2 4+ 1/(2s), then solutionv is
smooth inQr.
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3. Regularity as a result of “smoothness” of a certain spectral
projection of vorticity

3.1. Spectral projections of velocity and vorticity

We assume thd? = R®. We denote)r := R3 x (0, 7).
e The operatof—A), with the domairi’’2?(R?) (respectivelyW>2(R?)), is posi-
tive and self—adjoint i.?(R3) (respectively inl.?(R?3)).

e The spectrum of—A) is continuous and coincides with the inter{@loo) on the
real axis.

e The Stokes operatdf := curl?, as an operator in spa&e (R?), coincides with
the reduction of —A) to L2(IR3).

o D(S) = W22(R%) N L2(R%)

3. Regularity as a result of “smoothness” of a certain spectral projection of vorticity 28 /57



e OperatorsS is positive. Its spectrum is continuous and coincides with the interval
[0, 00) on the real axis.

e The powerS'/* of operatorsS satisfies the Sobolev-type inequality

Julls.ps < 3] SY*ullgrs  foru e D(SY4).

e Operatolcurl, with the domainD(curl ) := W12(RR3), is self-adjoint ifL2 (R?).

e The spectrum oéurl is continuous and coincides with the whole real axis.

Principle of the proof.Sp(curl) is a subset of the real axis.

The residual part is empty, becauserl is self-adjoint. It means that each point
A € Sp(curl) is either an eigenvalue, or it belongs$p.(curl) (the continuous
spectrum ofcurl).

If )\ is an eigenvalue thei? is an eigenvalue of the Stokes operarwhich is
impossible. ThusSp(curl) = Sp.(curl).

Let us show that the spectrum covers the whole real axis.
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All points of Sp,(curl ) are non—isolated, otherwise they would have been the eigen-
values.

Let A € Sp.(curl), A # 0. There exists a sequenge,,} on the unit sphere in
L2 (R?), such that

|curl u, — Auy,|[2.gs — 0.

Leté € R, € >= 0. Putud (x) := £3/%u,(¢x). Then{ud} is a sequence on the unit
sphere inL2(R3), satisfying

[curl ué, — € ud ||g.ps — O.
It means that \ belongs toSp.(curl) as well. Thus, each real number, with the

same sign a$, is in Sp,.(curl).

Since the spectrum afurl is on both sides of on the real axis (becausarl is
not a positive or a negative operator), it must cavesc, 0) U (0, oo).

However,Sp.(curl ) is closed, hencBp, (curl) = R.
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e Let {£)} be the spectral resolution of identity, associated with operaiot .
ProjectionF), is strongly continuous in dependencen

0 o0
e Pm :=F :/ dE\, P":=1-E, :/ dFE)
_ 0

o

e Operators”~ andP* are orthogonal projections I (R?) such thatl = P~+ P~
and O = P~ P™.

o L2(R3)~ := P-L2(R?) and L2(R%)* := P+L2(R3)
e Operatorcurl reduces on each of the spadggR?)~ andL2(R3)*. It is negative

onL2(R?)~ and positive o2 (R3)*.

e A := |curl| = —curl |L§(R3)_—|—curl |L§(R3)+ = / A dE)

o A2=9§

e OperatorA is positive and self-adjoint ih2 (R?).
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e The resolution of identity associated with operatois the system of projections
Fy =0 for A <0, F)\:E/\—E_/\forA>O.

e The family of projectionsx) := O for A < 0, G := F 5 for A > 0, represents
the resolution of identity associated with the operatdr= S.

-A=/ AdFA=/ \/CdFﬂ:/ V¢ dG = 812
0 0 0

o |uflsrs < 03\|A1/2u|\2;R3 for u e D(A1/2)
ev =Pv, v i=P'%Vv, w =Pw, w':=Pw

e Since operatocurl commutes with projection®~ and P, we have
w =curlv: = -Av- andw’ =curl v = Av™'.
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3.2. Regularity in dependence on the spectral projection of vorticity

Theorem 1. Letv be a weak solution to the initial-value Navier—Stokes problem.
Assume that

() (—4)'w* e L*(Qr)

and at least one of the two conditions
(@) vo € L3(R?) andv satisfies (SEI),
(b) vy € D(A'Y?) andv satisfies (EI)

holds. Then the norMA'/%v|,.gs is bounded in each time intervéd, T'), where
0 <9 < T. Consequently, solution has no singular points i) .

Moreover, if condition (b) holds thelhA'/2v |, gs is bounded on the whole interval
(0, 7).
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Principle of the proof.

Suppose that condition (a) holds. Solutiobelongs tal.?(0,7; D(A)), hence there
existst, € (0,7) (arbitrarily close td)) such that

1) v(to) € D(A),
2) solutionv satisfies the energy inequality, starting from the time insf@ant

Due to the theorems on the local in time existence of a strong solution to the Navier-
Stokes equations, there exists- 0, t,+ 6 < T, and a strong solution’ on the time
interval (to, to + 6), satisfying the initial condition’ () = v(¢y).

Due to the theorem on uniquenesS= v on(ty, ty+60). Hencev is a strong solution
on (t(), to + Q)

Suppose further thate (ty, ty + 0).

The Navier—Stokes equation (with= 1) can also be written in the equivalent form

Ov+wxv+curl’v = —V(p+1|v]). (3.1)
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Multiplying this equation byAv, and integrating ifR?, we obtain
d1

T \|Al/2v||2 RS — Q(w XV, W ) 23 T HA3/2VH§;R3 = 0. (3.2)
The scalar produdiw™ x v, w™ ). gs can be estimated:
[(WF X v, W)y | < G NAPW0T g | A2V g8 | AP0 o
< A2 ot AT o 42
< T AV g+ SIAVI g 1A (3.3)
Equation (3.2) and inequalities (3.3) yield
LAV e A2 e < A AV g A B (3.4)
Since||A2w |3 gs = [I(=A)*w |3 55 € L'(0,T), we can apply Gronwall's

inequality and deduce thdtA'/?v||,. gs is bounded irty, ¢y + 6).
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3.3. Regularity in dependence on one component the spectral projection
of vorticity

Theorem 2. Letv be a weak solution to the Navier—Stokes initial problem. Assume
that

(i) (—A)*w3 € L*(Qr)

and at least one of the two conditions
(@) vo € L%(R?) andv satisfies (SEI),
(b) vo € D(A'?) andv satisfies (El)

holds. Then the norfiA'/2v||,.s is bounded in each time intervéb, T'), where
0 <9 < T. Consequently, solution has no singular points i) .

Moreover, if condition (b) holds thelhA'/2v |, gs is bounded on the whole interval
(0, 7).
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Principle of the proof.

I. A formal approach.
A 2|5 e = (Aw™, @ )pms = (curl w¥, w)gps

Assume that we can find scalar functignandz so that

Aopy = (=AY 03wy,  Vipz = (=A)'wyp —Vopy  inR? (3.5)
for each fixedr; € R. Denotew = curl w™. Then
(curl w™ wh)ors = (W,w o ps = ((—A)*l/llw, (—A)1/4w+)2;R3
( A) 1/4 +
_ / (—A)_1/4W ( A) 1/4 + dx
R3 ( ) 1/4 +
822 + aly
= / (—A)_1/4W . —0O1z + 09y dx
" (—A)
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dx

[ 0
= / (—A) Viw . ( 82y ) ) V4w - curl ( 0
R? —1/4,, T

_ 0\ ]
:/ (—A) Viw . 82y )" Veurlw - [ 0 dx
R | 1/t .
[ 0
:/ (=A) Hiw 82y )"V curl®wt - | 0 dx
R | 14yt .

= / (—=A) V4curlw™ - ( (923/ ) + (=AM z] dx.
R3 (_A)—l/zlwgr

Problem. We need to estimate the&*—norms ofV,py andz by means of the.?—
norms of the right hand sides in (3.5). This is, however, impossible if (3.5) is con-
sidered in the whole plarig?.
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[I. A correct approach.

SetsK{"™, C"" and the partition of function w™. Form,n € Z and¢ € (—3,00),
we denote

K == (m—&m+14+&x(n—&n+1+4¢) c R?,
C™ = K xR = (m—2,m+3)x (n—2,n+3) xR C R®.
K{™ are squares ii®*, C™" are cylinders irR”.
Lete € (0, 1) be fixed. There exists a partition of unify™"},, <z that consists of
infinitely differentiable functiong™" of two variables, such that
a) n™ =11in K™, 7™ =0inR>~ K™, 0<n™ <1inR?
b) n™ et (1, x9) = 0™ (z1 + 4,2 + j) forallé, j € Z,
C) Ypnez M =1 IR

We denote by, the 2D nabla operatdio,, d»), and byw;, the 2D vector field

(wi',wy).
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Applying successively the procedure of solving the equalign - u = f (the so
called Bogovskij operator), we deduce that there exists a sys¥eftt },, ,cz of 2D
vector functionsv™ = (V" V;m) defined inR?* with the properties

d) Vop - V™ = —Vopn™ - wj, inR?,

e) supp V" C [KJ" ~ K"l] X R,

) > nez V™ =0 inR?,

9) V™ [l2:cmn + [[Vap VI [[g;0mn < € [lwgpla; o,
h) 105V [3;cmn < c [|Oswspllo; cmn.

Constantc is always independent ofi andn. We can derive from the last two
estimates, by interpolation, that

V™ 11 /2,0, cmn < e l|w™ |1 /2,2, cmn - (3.6)

For technical reasons, we put™ := 0 and we further considev¥”" to be the 3D
vector field. Further, we put

wmn - nmnw+ . an.
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The components ab™" are denoted by, wy" andws™.
By analogy withws,, we also denote)’? := (w]™, wi™).

Functionw™" is divergence—free ifR?, it equalsw™ in k™' x R, and its support is
a subset of(}!" x R.

Moreover, we havew™ = )~ w™"
mne
The term||A'/%w* |2 5, can now be written in this form:

A0 B = (Aw™ w0 )age = (curl wh w0 aga = D7 D (eurl ™, w)y e
m,neZ kel
- Z Z (curl W™, W)y, con. (3.7)

m,neZ ke{m—1;m;m+1}
le{n—1;n;n+1}
The last equality holds because the supporte’@df andw*’ have non—empty inter-
sections only ift € {m — 1; m; m 4+ 1} andl € {n — 1; n; n 4+ 1}. In this case,
both the supports are subset6f".
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Operator (—A),,,. We denote by(—A),,, the operator—A with the domain
D((=A)) = W22(C™) N Wy 2(C™).

(—A),., is a positive and self—adjoint operatorfid(C"™"), with a bounded inverse.

Auxiliary functions y* . Functiony*! is the solution of the 2D Neumann problem

: 0
Dopyll, = —(= )4 (05w’ in Kp™, g’m” =0 ondky”"  (3.8)
n
form,n e Z,k € {m —1, m; m+ 1} andl € {n — 1; n; n + 1}. Functiony*!
satisfies the estimate
%2 Y13 g + V20" Y3, e < €11 (= )il (D383, s (3.9)

wherec is independent ofn, n, k andl. Sincedswi! is a function of three vari-
ableszy, x5, x3, functiony*! naturally depends not only on, x5, but also ons.
Integrating the last estimate with respect:to we obtain

||V2D2 %n”? omn T HV2D?J ||2 cmn < cfl(=A )1/48 WSZHQ cmn - (3.10)
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Auxiliary functions 2" . We define function*!  to be the solution of the equation
Vap® 2 = (=A)w5h = Vap Uy (3.11)

in K. (Here, we denote by, the operator{—ds, d;).) The solution exists
because

Vap - [(=A)awbh — Vepym,] = 0.

Solutionz*! depends not only om;, x5, but also onz; because the right hand side
of equation (3.7) depends ag as well.

2k . the so calledstream functiorof the 2D vector field —A)n/nwhl, — Vopykl

For each fixed:; € R, 2! satisfies the estimate

m

2xgr < ¢ ([(=A)wsp

HVQD Zrk;”fn

2 k5 + || Vap yﬁanzK;w). (3.12)
Moreover,z,’j{n is constant o®C™" (= OK5™ x R). This follows from the identities

Vap 'tz on = (=AAWE . n —Vopyt on = 0 onoCc™".
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Indeed, the second termpyjj{n -n equals zero oWC™" by definition ofyf;ln

The first term(—A)rnw*! is zero ondC™ becausev™ € D((—A),.), hence
(—A)},{fl mnee D((—A)3/4) and functions fromD((— A)?,{ﬁ) have the trace on
oC™" equal to zero.

Functionz*! is unique up to an additive function efandx3;. We can now choose
this function so that*’ = 0 onC™". This choice, together with (3.12) and (3.10),
implies that

lzmallzsomn < e (1(=A) @i llz:cmn + [ Vop Yy |2 cnn)

< e (II(=A)mw" 1z + (=A)0 (Osw5") ). (313

The estimate of(curl w™", w")y. cme. Due to the definition of functiong!, and

2k function(—A)pnw!! has the form
81yfrfn 0
(_A)rlr{f{wkl = 323/“ + curl 0 in C"™",
(_A)l/;lwlgd Zﬂn
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We denotew”" = (wi™, wy™, wy™) = curl w™ andwl = (w™, wi™).

We have

(=4)

J-.
J..

(=4)

(eurl &™)y cmn = (W @My ome = [ (A (8) ) dx
alyﬁzln 0
LA gymn Aoyt + (=A) Veurl 2™ 0 dx
(—A) LAk Zin
alyﬁzln
;12/4Wmn ) aQy%n + (_A)?r{iwgm Zfrfn dx.
1/4
(=)t

The norms of the componentgy,;, andd,y,;, are estimated by

¢ |[(=A) Dyl

13, cmn» SEE (3.6).

Thus, each term in this integral is “controlled” by w5 .
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Applying the estimates af*! | 2} andV™", we can finally derive the estimate

mn

(curl wmn’ wkl)Q;Cm" < 0c HerH%/ZQ;Cm" + 6(5) ||w§r|‘§/2,2;0m”' (314)

The estimate of the right hand side of (3.7).The sum_ i (3.7) can be split
to twenty five parts, which successively contain the sums ovet 0 mod5, ...,
m = 4 mod5 andn = 0 mod5, ..., n =4 modb>.

Let us consider e.g. the casen € Z, m = 0 mod5, n = 0 mod5 (i.e.m andn are
integer multiples ob).
(1)

Denote the sum over these, n by >~ " _;,

possibilities by>""? _,, ..., 2

m,nez’ m,nez"

and the sums over twenty four other

The cylindersC"™" corresponding to the first case are disjoint and their union equals
R3 up to the set of measure zero. Applying (3.14), we have
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Z(l) Z (curl W™ W)y, cmn

mneZ  ke{m—1;m;m+1}
le{n—1;n;n+1}

) 0
< de Yy Wt paomn +e(0) Y i 13,0 0mn- (3.15)

m,ne’l m,nez

The L?>—norms andV!>—norms ofw™ satisfy the identities
(1) (1)
> w3 om = o3 and > flw”

m,nez m,nez

2
1,2;R3"

Facm = ot

Applying the theorem on interpolation (see e.g. Theorem 1.5.1 in the book by Lions,
Magenes), we derive that

(1)
Z Hw—'—H%/ZQ;Cm" < C|‘w+“%/2,2;]1@3-
mneZ

The norms|ws ||3/2.2. e @nd||wy |3 /2.2, s Satisfy the same inequalities.

Applying these inequalities, and estimating the s@%?nez, s zfjigez in the
same way as the sum in (3.15), we get
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||A1/2w+|\§;R3 < Z Z (curl w™ W)y, gmn

m,nes  ke{m—1;m;m+1}
le{n—1;n;n+1}

< dcllwt |1 pms +c(0) lwi I3,

The first term on the right hand side is less than or equadtd|w (|3, ps+[| A 2w ™[5 s ).
Choosingd > 0 so small that ¢ < 1, and estimating|w3+|\§/2 ,.gs from above by
ey 113, g5 + | (=A)* 4wy []3, ps» we finally obtain

1A 20t 3 < callow® |50 + 5 1 (—2)7 Wi |13 go- (3.16)

Completion of the proof. Substituting estimate (3.12) to (2.4), we get

d 1
= AV g 1A% e
< AS AV g (ol B + e [(~A) " [3m).  (31T)

The proof can now be finished in the same way as the proof of Theorem 1.
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3.4. Some generalizations of the results from sections 3.2 and 3.3

The “positive” and “negative” parts of the velocity or the vorticity need not be gen-
erally separated by poitin the spectrum oéurl .

Let the point of separation be wherea = a(t) is a function oft in the interval
(0, T) with values in[—oo, 00).

We denote by:"(¢) the positive part and by (¢) the negative part af(t).

Recall that{ F,} is the spectral resolution of identity, corresponding to the self—
adjoint operatocurl .

We denote 00
P;Et) = I_Ea(t) = / dE)\,
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Theorem 3 (generalization of Theorem 1).Letv be a weak solution to the Navier—
Stokes initial value problem. Assume that

(i) ot € L?(0,7) and (—A)Y4w’ € L2(Qr),
and at least one of the two conditions

(@) vo € L3(R3) andv satisfies (SEI),

(b) vy € D(AY?) andv satisfies (El)

holds. Then the norfiA'/2v||,. s is bounded in each time intervéb, T'), where
0 <9 < T. Consequently, solution has no singular points i) 7.

Moreover, if condition (b) holds thelhA'/2v |, gs is bounded on the whole interval
(0,7).

Remark (on the special case(t) = —o0).

If function a in Theorem 3 is: a(t) = —oo for all ¢t € (0,7 thenPJt) = [ and
wl(t) = w(t)in (0,7).

a
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In this case, condition (iii) is the condition on the whole vorticity and it requires
thatw € L?(0,T; D(SY%)).

The spaceD(S'/4) is continuously imbedded k3 (R?).

In this case, our result is in a good agreement with the older result oBeirao da
\Veiga (1995), which states that ifw € L?(0,7’; L3(R?)) then solution v has no
singular points in Q7.

Theorem 4 (generalization of Theorem 2).Letv be a weak solution to the Navier—
Stokes initial value problem. Assume that

(V) a* € L3(0,T), a~ € L°(0,T) and (—A)*4w’; € L (Qr)

and at least one of the two conditions (a), (b) holds. Then all the conclusions of
Theorem 3 are true.

Note that condition (iv) is not applicable to the case —c.
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3.5. Further related remarks

Remark 1 (on the meaning of functionsv* and w™).
The velocityv and the corresponding vorticity satisfy

v = / dE\(v), w=curl v= / ANdE)\(v) = / dE)\(w). (3.18)
In accordance with the heuristic understanding of the definite integral, we can inter-
pret the first integral in (3.18) as a sum of “infinitely many” contributial#s, (v),

each of whose is an “infinitely small” Beltrami flow.

Recall thaBeltrami flowsare flows, whose vorticity is parallel to the velocity. Here,
concretelycurl dFE)(v) = A dE)\(v).

Function v can now be understood to be the sum of only those “infinitely
many” “infinitely small” contributions, whose vorticity is a positive multiple
of velocity. (We call them thepositive Beltrami flows.
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Remark 2 (explicit form of spectral projection E)).
F ... the Fourier transform
Fleurl v](¢) = i¢ x F[v](C),
curl v(x) = F'[i¢ x F[v](¢)] (x)
curl v(x) = [F 1o (iM)o F]v(x),
where 07 _C37 CQ
M = ( C37 07 _Cl ) .
_C27 Ch 0

Operator(iM) is self-adjoint in spac®? + i R3. If we denote by¢, its resolution
of identity, then

E\zv = []:_1 o0&y o}"}v.
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Operator(i M) has the eigenvalues|¢|, 0, and|¢|. The corresponding eigenvectors
are

1 1
M=Kl Vi(€) = ¢ (1> — (G + G+ G) ¢ +il¢] (1) X ¢,
1 1

KPP = (G +G+EG)G—1K (G —E)
= | KP=(G+G+G)e—1[¢ (G- ¢G)
ISP — (G + G+ G)G—ilC] (G —¢)

A3 =—[C] : V3(() = Vi(Q).

SinceV,(¢) - v = 0, projection&, can be expressed:

EV =0 for A < —|[(|,

- ViQ)-v
EV = ——— V for — [C| < A\ < [(],
¥ = o VO <A<l
EV =V for || < A.
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Remark 3 (flow in the neighbourhood of a singularity).

Theorems 1 and 2 are also truedf (respectivelywsy) is replaced byw~ (respec-
tively wy).

Thus, both the conditions (i) and (ii) show that if weak solutionv has a singular
point then the singularity must contemporarily develop in the “positive part”
vt of function v as well as in the “negative part”v—.

(Recall thatv™ represents the contribution tocoming from the positive Beltrami
flows andv~ is the contribution from the negative Beltrami flows.)

The singularity must even develop at the same spatial point. (This can be proven by
an appropriate localization procedure.)
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Remark 4 (the role of “large frequencies”)

Suppose, for simplicity, that functianconsidered in Theorem 3 is positive.

Then projectionP,” can be interpreted as a reduction to the positive Beltrami flows
with “high frequencies”, concretely the “frequencies” comparable amd higher.

Theorem 3 shows that if a singularity develops in solutionv, then it must es-
pecially develop in the part of v (respectively its vorticity w) that consists of
positive Beltrami flows with the “large frequencies” (i.e.~ a and higher).

Since the functions |, w} andw;; can be replaced by_, w, andw_; in Theorem

3, the singularity must also develop in the partvofrespectively vorticityw) that
consists of negative Beltrami flows with “large frequencies”. The singularities must
appear in both the parts at the same space—time point.
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Remark 5 (relation to the helicity)

Note that the so called helicity

H(v) := (v, curl v)ops = / v - curl v dx
R3

can be expressed in the form
H(v) = Hv" )+ H(v").
The “partial” helicitiesH (v*) and H (v ) satisfy the inequalities
H(v") >0, H(v™) <0.
Consequently, sincd = |curl |, we have
(v, AV)ome = [|[AV|5p = H(v') — H(v").

Thus,conclusions of Theorems 1—-4 imply that both the termg$7(v*) and H(v ™)
arein L>(¢,T) foreachd € (0, 7).
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