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Lecture 3 — Contents

1. Regularity up to the boundary with no—slip boundary condition.
Regularity up to the whole boundary under Serrin’s condition.
Regularity up to a part boundary under Serrin’s condition.
CKN-type regularity conditions on the boundary.

2. Conditions on a fixed materia boundary.

3. A regularity criterion based on the eigenvalues of te3passuming Navier’s
boundary conditions.

4. Existence of a regular solution on a time interval independent of viscosity. (We
consider the Navier—Stokes problem with “appropriately inhomogeneous” Navier’
boundary condition.)
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1. Regularity up to the boundary with no-slip
boundary condition

1.1. Regularity up to the whole boundary under Serrin’s condition

Theorem 1 (regularity up to the boundary). Let{ be a domain inR? with the
uniformly C>—boundaryof2. Letv be a weak solution to the Navier—Stokes initial—
boundary value problem with the no—slip boundary conditica 0 (on9$2 x (0, 7))
and withf = 0. Suppose, in addition, that

.. 2 3
v e L"(0,7; L°(2)) forsomer, s satisfying—+ - =1, 3 <s < oc.
r S

Then dFv € L*(e, T; W22(Q)) forall k € Ny := {0} UN forany0 < e < 7.

If, in addition, 92 is uniformly of the clas§™ thendfv ¢ L?(e, T; W™2%(Q)) for
all k e Nj.
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Remarks.

e The statement on the regularity of solutiernolds up to the initial time = 0 if
the initial velocityv, is “smooth”.

e The theorem was successively proved leyay (1934) (the cas@ = R?), Sohr
(1983) (the case of boundéd?), von Wahl (1983, 1986),Giga (1986).

1.2. Regularity up to a part of the boundary under Serrin’s condition

e S. Takahashi (1992, 1994)assumed thatxy, ty) € 02 x (0,7,

3 2
Ve Lt~ S LB () 1), gs€ (000), DD <1
thenv € L>([B,, (x0) N Q] x (to — i, to+r7)) foranyr, € (0,r) provided that

B, (xg) N0 is a part of a plane.
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e H.J. Choe(1998): proved that a suitable weak solution is bounded locally near
the boundary if it satisfies Serrin’s conditions near the boundary and the trace of
the pressure is bounded on the boundary.

e K. Kang (2004): assumed thé&l is a half—space and has shown that if a weak
solution satisfies Serrin’s conditions in a neighbourhood(othen it is Hlder—
continuous up to the boundary.

e 7. Skalak (2005):  is a domain inR? with a smooth boundary,I” > 0,
DT(X0> = BT<X0> N Q, FT = BT(X()) N (‘39, Q,« = DT(X()) X (to — Tz, to + 7“2)

Theorem 2 (Skabk 2005). Letu be a weak solution of the Navier—Stokes initial—
boundary value problem(xy, ty) € 992 x (0,7, » > 0. Suppose that € L(t, —
r? to +r% LP(D,(xg))) for somep, g € (1, 00), satisfying2/q + 3/p = 1. Then

u € L®(ty— p*, to + p* C°(D,(x0)))

for everyg € (0,1) andp € (0, 7).
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Principle of the proof.

a) Localization to the neighbourhood of point(xg, ¢y) € 92 x (0,7): Letn be a
C* cut off function such that < n <1, n =0in Q1 \ Qo /34,3, andn = 1in
QT/3+2p/3'

Putv = nu — V, whereV is a correction that guarantees the equationv = 0.
FunctionV can be constructed so that

supp V C Q34,3 U {the cluster points of)s, /3. ,/3 0n 92 x (0,T)}.
Functionv satisfies the localized system

ov+u-Vv = —V(no) + vAv +h inQr, (1.1)
divv = 0 in Qr, (1.2)
v=20 ono x (0,7, (1.3)
v=20 inQ x {0}, (1.4)
where
h = —v(An)u—2vVn-Vu+u-V(nu) — oVn — 0,V + AV
—u-VV — (9m)u.
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b) One can show thath € L'(0,7; L(2)) for I’ € (1,2),1 € (2, 3) such that

2 3

7 + 7= 3.
Here, it is necessary to apply estimates of the weak solut@md functionp derived
by Y. Giga and H. Sohr in 1991, and the estimates of funcWorollowing from its

construction (see e.g. the book by G. P. Galdi).

c) The next stepis the proof and application of a "very technical’ lemma on the
linearized Navier—Stokes problem

ov+b-Vv = —Vo+rvAv+h in Qr, (1.5)
divv = 0 in Qr, (1.6)

v =20 ondf2 x (0,7, (1.7)

v=20 in Q x {0}. (1.8)
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. 2 3
Lemmal. Let (i) 1<pg<oo, —+-=1, be LY0,T; LP(9)),
q

p
) 92 3 P 1 1 1
I 1<9; 2 0/, >y _:3, 7<9 3, —_ = = — =
(if) < 5t o < — =2
1 1 1 1 1 1
iy »r Lle(l,), —==—=, ==——=, r>60, >0,
r [ p ' q

(iv) he L'(0,T: Li(Q)),

(V) ve L*0,T; L=(Q)NLY0,T; LY (Q)) with Vv € L*(Qr)°nLY(0,T; LY (Q)?)
be a weak solution of the linearized Navier—Stokes problem (1.5)—(1.8).

Then there exists > 0 such that if||b|||,, < € then

Vvl < C [y,

, 1 1 1
IIVVlrm < Clhl]y; providedthatl < < 3 andﬁ =773
Vol + 10wl < C il
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Applying Lemma 1, one obtains that
NVl VMO as VY ms MOvllen < Cllfl]r,
wherer, ', m are as in Lemma 1.

d) Using these estimates of and the coincidence of with u in @, 3,5,/3, one
can considea new “smaller” localization so that the new cut—off function is now
supported inQ), 3,2,/3. Thus, one can improve the information on a new function
and a new functiom¢:

!/ I ].
he L0, T; L™(Q)), n¢c L'(0,T; L™(Q),  where — =

1
m [

1
3
e) Using the bootstrapping argument (i.e. several further “smaller” localiza-
tions), one can finally arrive at

h—u-VveL'0,T; L™(Q))

for all m, I’ such that

2 3
3<m<p, 1<l<2, —4+—<2.
' m
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Then we have
4
vit) = / e~ An(=9) Pmih(s) = u(s) - Vv(s)] ds.
0
If 0 < o < § then one can choogesuch thatv!’/(I’—1) < 1 and obtain the estimate

1AV (@)l < [ A5 e Pl (s) —u(s) - Vv(s)] ds

"lh(s) = u(s) - VV(3)]lm
0 (t—s)*

! 1 e
: </0 (t—s)al'mw—l)) I —w- Vvl < C.

We use the imbedding(A42) — W?2*"(Q) (following from the interpolation the-
ory) and the imbeddin§v2*™(Q) — C’(Q) (for 3 = 2a — 3/m > 0).

By a suitable choice af andm, one can get < 1—3/p arbitrarily close tal — 3 /p.

< ds
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e G. A. Seregin (2005): shows that ar®>*—weak solution is smooth in a neigh-
bourhood of a flat part of the boundary. Concretely:

Bf :=B.(0)Nn{x3 >0}, Qf:=B"x(-1,0)
Let functionsv andp have these integrability properties:
v € L*(—1,0; L*(B{)) N L*(=1,0; W"(B})),
v, Vv, Vv, 8, p, Vp € L8(—1,0; L¥*(B})).
Let v, p satisfy the Navier—Stokes equationgJp, and the boundary condition
v=20 for x| <1, z3=0, —1<t<0.
Let, in addition,v € L>(—1,0; L3(B;)).

Thenv is Holder—continuous in the closure 1+/2.
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1.3. CKN-type regularity conditions on the boundary

e G. A. Seregin (2002, 2003)introduced the notion of bBoundary—suitable weak
solution,as a suitable weak solution that possesses the regularity

ve L®0,T; LA(Q) N LX0,T; W'(Q)), pe L**Qr),
Viv, Vp € LY%(0,T; L¥?(Q)).

Seregin gives reasons for this definition:fiE L?(Qr) then one can prove that
Hopf’s weak solution has the same properties on any time intésval), 5 > 0
(referring to a previous paper by Ladyzhenskaya and Seregin).

Furthe, Seregin has proven the existence of a suitable weak solution with the
same integrability properties forc (4,7 for anyd > 0.

Finally, he derives a condition for the localbldler continuity of a boundary—
suitable weak solution near a flat boundary. The condition has the form of the
C-K-N condition on velocity for the local essential boundedness of suitable weak
solutions. The difference, in comparison to C-K-N, is that the condition can be
used in the interior points as well as in the boundary points.
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e G. A. Seregin, T. N. Shilkin and V. A. Solonnikov (2004):

The authors assume thaf) is uniformly of the classC? and prove that there
are absolute constans ¢, > 0 such that, if a boundary—suitable weak solution
satisfies for some poirtky, ¢y) with x, € 92 and0 < ¢, < T the condition

I
S P v <
p lf()—p2 QﬂBp(l‘())

for some (smallp or the condition

_ 1
limsup —

to
/ / Vv dydt < ¢
p—0 P Jtg—p2 JONB,(x0)

thenv is Holder—continuous in a neighbourhood of the paia, t).

The problem, in a neighbourhood of poii, ¢y), is transformed to the problem

in the neighbourhood of a flat boundary. In this process the coefficients of the
Navier—Stokes system are changed. The main work is to develop a theory for the
new (perturbed Navier—Stokes) system in appropriate spaces via linearization.
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Corollary. The set of singular points of a boundary—suitable weak solution, in-
cluding singular points on the boundary, has the 1-dimensional Hausdorff mea-
sure equal to zero.

e S. Gustafson, K. Kang and T.-P. Tsal (2006):Certain extensions of the results
of Seregin (2002).

The authors study the 3D Navier-Stokes equations near a flat boundary. They ar:
able to prove l8lder continuity of suitable weak solutions near a flat boundary (as
well as in the interior) for solutions with vanishing Dirichlet boundary conditions.

In particular, if the external forcis reasonably smootlk, € 02 (02 is flat in
the neighbourhood of,), they show that for every pajk, r) satisfying

3 2 3
1<-+-<2, 2<r<oo, (s,r)#(§,m)
s T

and
3/s+2/r

lim sup p~ ) |v

Lr(t=p2 L (B (xp)) = €
p—0

for somee > 0 depending only om, s, andf, then(x, t) is a regular point.
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e J. Wolf: considered a suitable weak solution in the half sg&te The main
result is a direct proof of the partial regularity up to the flat boundary, based on
a new decay estimate, which implies the regularity in the cylir@gtzo, t,)
provided

1
lim sup —/ lcurl v|* dxdt < e
p—0+ P JQf (x0,t0)

with e sufficiently small.
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2. Conditions on a fixed material boundary

e The no-slip boundary condition: v =0 onof) x (0,7

This condition is supported by a series of recent papers (e.g. by Bucur, Feireisl,
NeCasow), where the authors consider a rugous boundary, velocity field satisfying
the impermeability boundary condition- n = 0, and assume that the rugosity
varies so that it becomes “smaller” and “denser”, up to the limit case when the
rugosity vanishes and the boundary becomes smooth.

WM

If divv = 0 andv is “smooth” then the conditior = 0 on 92 x (0,7) is
equivalent to the three conditions

v-n =0, curlv-n =0, —  -n=0. (2.1)

on
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e Navier’'s boundary conditions:
(@ v-n=0, (b) [T-n], +yv=0 onof2 x (0,7), (2.2)
whereT is the stress tensor.

The second condition says thae tangential component of the force with which
the fluid acts on the boundary is proportional to the tangential velocity.

In the incompressible Newtonian fluid with the density: 1, we have
T = —pl + 2vD, whereD is the rate of deformation tensor. D = (Vv )gymn.

v >0 ... coefficient of friction between the fluid and the boundary

e Navier—type boundary conditions:
(@ v-n=0, (b) curlv xn=0 ono x (0,7T) (2.3)

Condition (2.3b) comes from Navier’s condition (2.2b): assuming that
~ = 0, using the formula¥ = 2vD and

veurlvxn = [T-n]; +2vv-Vn,

and neglecting the curvature of the boundary. we obtain (2.3hb).
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e The generalized impermeability boundary conditions:
@v-n=0, () curlv-n=0, (c)curl>’v-n=0 (2.4)
onof) x (0,7T).

We observe that these conditions in fact differ from the series of boundary condi-
tions (2.1a) only in the third condition (2.4c).

The third condition (2.4c) says that- T - n = 0 which means that the normal
component of the viscous stress actingait equals zero. On the other hand,
sincev curl’v = —vAv = —Div T, condition (2.4c) can be written in the form
Div T -n = 0. It says that the normal component of the intensity of production of
the viscous stress a#f) equals zero.

e Serrin’s proposal: v-n=0 and
v=0 it |(T-n).| < K[(T-n),|, (25)
T -n],+yv=0 if |(T-n);| > K|(T-n),|. (2.6)
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Remarks.
e Conditions (2.1) and (2.3) can also be used in inhomogeneous versions, when on
studies an inflow or outflow from domain.

e Conditions (2.3), (2.4) guarantee that-n = 0 ond$2 x (0, T"), which e.g. means
that the Helmholtz projection and the Laplace operator commute.
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3. Aregularity criterion based on the eigenvalues of tensob,
assuming Navier’s boundary conditions

We assume thd? is a bounded smooth domain.

ov+v-Vv = —Vp+rAv in Qr, (3.1)
divv = 0 in Qr, (3.2)

v-n =0 onof x (0,7, (3.3)
T-v],+9v =0 ono x (0,7, (3.4)
vV = vy in Q x {0}. (3.5)

Multiplying equation (3.1) byP, Av and integrating irf2, we obtain
/ ov - P;Av dx + / v-Vv-P,Avdx = v|P,Av|3. (3.6)
Q Q

We further assume, for simplicity, that= 1, v = 1.
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The first integral on the left hand side can be treated as follows:
/ ov - P,Av dx = / v - Av dx = 2/ O¢v - Div (VV)gym dx
Q Q Q

=2 [ Ov-[(VV)ym -n]dS - 2/ O VvV 1 (VV)gym dx
o0 0

= Ov - [2D(v) - n} dS — 4 /‘(VV)Sym‘2 dx
o0 ! dt Jg

1d 5
= 2 S IVIBon — s DR
In order to estimate the second integral on the left hand side of (3.6), we write

Av = P,Av + Vo

wherey is a solution of the Neumann problem

Ap=0 inQ, ggp Av-n ondQ. (3.7)
n
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The right hand sidé\v - n in the boundary condition can be modified in this way:
Av-n = —curl’v-n = —curl[(curl v),] -n— curl [(curlv),| -n
= —curl [(curlv),] - n.

The vector fieldcurl [(curlv),] is tangential becauseurl v), is normal. Hence
the termcurl [(curlv),| - n equals zero onx).

The tangential component ofirl v, i.e. (curl v),, equalsn x curlv x n. In order
to expresgurl v x n, we use the formula

2D -n|, = curlv xn —2v-Vn.
Hence, using the boundary condition (3.4), we obtain:
(curlv), = n x (curlv xn) = nx (2D n]; + 2v - Vn)
= n X (—V+2V-Vn).
Thus, the boundary condition in (3.7) takes the form

¢

n — —curl [n X (—V + 2v - Vn)} ‘1.
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Classical theory of solution of the Neumann problem now implies that
Vel < C H —curl [n X (_V +2v- Vn)] - H—1/2,2;8Q'

The right hand side can be estimated by means of continuity of the linear operator
that assigns to a divergence—free functione L?(f2) a scalar functioma - n €
W=122(9Q). Thus, we finally get

Vel < C||curl [n x <—V +2v-Vn)|-n|, < C|v]i.. (3.8)

Hence the second integral in (3.6) is

/V'VV'PUAVdX:/V-VV~AVdX—/V'VV'VQOdX, (3.9)
Q Q Q

where

< IVl IVVI2 [IVell: < Clivile VY

/v-Vv-Vgodx
9)

IA

Cwr) vl Vvl (forr > 2)
< 0 [PAv]lz +C©) Vv
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The first integral on the right hand side of (3.9 is
/V-VV~Ade = / [V-VV]-Vv-ndS—/V[V-VV]:Vvdx
) o9 Q0
— Il - ]2 - ]37
where
I, = / Vj % Vi j Uik dX,
)

13 = /Uj Vi, jk Vik dx = 0,
Q

L = / [V-Vv]n-VV-ndS+/ [v-Vv],-Vv-ndS = I+ I;.
o0 o0

Integrall, can be treated as follows:
I, = / [v-Vv], - (Vv-n),dx = / (vj v ng) (Vg Vg N i) AS
o9 o9

= / [v; 0j(vr ) — vjvrng;| (Vg U o M) dS
o0
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= —/ (vjurnig) (Vg Vg i ) S = —/am[(vjvlnm) (vkvm,knk} dx
80 )

= —/6m[(vj vingg) (Ve k] vpg dx < O(r) ||Vl ([VVI3 (forr > 2)
0

< 0 [ PAV]Z + C©) [V

Integral; is

I :‘/ [v-Vv],-Vv-ndS
o9
— / [V . VV]T : {(Vv)sym N+ (vv)asym ' n} ds
o0

= | v V] {[(VV)sym  0)r + (VV)agym - 0} dS

o0
1
= aQ[V . VV]T . {—§V + (vv)asym ’ Il} ds
1
= {v -Vv—[v -Vv],} - {——V+(Vv)asym~n} ds.
o0 2
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As in the case of,, we finally obtain
I5| < 0 |PAv|5+C6) [Vv]s.

Recall thatD = (Vv)qym = (di;). Further, we denote by;; the components of

(VV)asym and byw; the components @b = curlv. Integrall, can now be modified
in this way:

I, = /U%kvm Vi k dx = /djkvivj Vi k dx = /dj (dij—kaij) (dik—i—aik) dx
Q Q Q

= / djk dij dzk dx + / djk dij Qi dx + / djk 5 dzk dx + / djk Qjj Ak dx
Q Q Q

Q
= / djk dij de dx + / djk aij (073 dx
Q Q

1
= / djk dij dzk: dx — - / djk Wi Wi dx.
Q 4 Q
Thus, we have

1
/V'VV'AV dx = _/djkdijdik dX—f-Z/djijwk dX—I—R, (310)
Q Q Q
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whereR denotes any expression satisfying the estimate
[R| < 6 |PAV[3+C(0) V5. (3.11)

Recall the inequalities, fulfilled by divergence—free vector functienghat satisfy
Navier's boundary conditions (3.3), (3.4).

Wl < ClIVwlE,

Vw3

IA

C(lawl +IIwllia) < C (IP-AW]; + [Iwlli ).
C (1P Aw; + Vwl3),

IA

IVwli3

IA

C [D]l3-

The integral ofv - Vv - Av can also be treated in this way:

/V-VV-AVdX = —/V-Vv-curl2vdx
0 Q
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= —/ v-Vv:(n X curlv) dS—/curl(V-Vv)-curlvdx
o9 0

= —Ig— I

Integral; can be estimated as follows:

1Is| = /aQ([2]D)-n]T+2v'Vn) - (v-Vv) dS‘

— /m(—v+2v-Vn)-(v-Vv) dS|

1/2 1/2
< C/ v |Vv|dS < C</ |VV\2dS) (/ |v|4dS>
o0 o0 o9

< C(IVVIE+ VIR IVVIE) < d1PAV]E+C0) IVl

Integral I; satisfies:

I; = —/(V-Vw-w—w-VV-w) dx = /w-Vv-wdx
Q Q
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= /W'(vv)sym'wdx = /djkijk dx.
Q

Q
Thus, we obtain

/V-VV-AV dx = /djkijk dx + R. (3.12)
Q Q
Comparing (3.10) and (3.12), we can exclude the integrd),ab; w;, and we obtain:

4
/V-Vv-Avdx = —g/djkdijdikdx+R.
Q Q

Substituting all these expressions and estimates to (3.6), we obtain
d 1d 4
— [|ID(v) |3 —— [ dird;; dip dx + R.
S ID) 3 + 5+ < 3 [ dondyd ax+
Choosing) sufficiently small, we obtain

d 1d 4
= PO+ 5 Vlzoe + 5 IAv]E < - ., i gt dx +C[|Vvl;
dt

2 dt

w
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The productl;; d;; dy; equals the trace of the tendt. It is invariant with respect to
rotations of the coordinate system. Hence we can choose, for its expression, e.g. th
system in whicHD has the diagonal representation

A, 0, O
D=0 X 0
07 07 )\3

Here, \;, X2, \3 are the eigenvalues of tensbr The trace ofD? can now be ex-
pressed as
TrD? = X+ A3+ Al

The eigenvalues satisfy the characteristic equation of teéhsioe.
N ANE -NE+E =0 (i=1,2,3), (3.13)

whereF;, F,, E5 are the principal invariants of tensbr Recall thatF;, = TrID = 0
(due to (3.2)) and¥s = det D. Thus, summing (3.13) ovér= 1,2, 3, one gets

TrD? = X+ X3+ X3 = 3detD = 30 M\ \s.
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Assume that the eigenvaluas, \», A3 are ordered so that; < Ay < A3. Thus, we
have

d 1 1
= (I3 + 5 IV, 50) + 5 I12-AV]3
2 1 2
<~ [ M dxo+ €Vl (IPOIIE + 5 IVIE o)
1
< 4 [ (00 0w da dx+-C Vv (IDW)IE + 5 IvIEan)-  (344)

Integrating inequality (3.14), we obtain an estimatétv)|[5+5 || v]|3. o in L®(e, T)
provided that

/(—/\1) (M) A3 dx € LY0,T). (3.15)
Q
Then we obtain

DV 2 + IVIE 200 + VAV, < C /Q(—M)(Az% Azdx.  (3.16)
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: 2
Assuming e.g. that ), € L"(0,T; L*(Q2)), where — + 5 <1, we get
T S

T
| [0 00 axde < 100 Il =,

where T ) r/s 1/s
el = [ / ( At dx) dt] |
0 QO

Obviously,
VIoHsl M sl € CHTV)gm] < OV,

Hence r
/o /Q<—A1><AQ>+A3 dxdt < CIA) s IIVVIP2 s -
r—17 s—1
Applying the inequality

2

llglles < INglls: (Igllocz + Nollzs)

(which can be proved by means of thélHer inequality and which is valid far <
a < 400,2 < 3 <6andl < 2/a+ 3/ < 32)tothe norm of Vv with a =
2r/(r — 1) ands = 2s/(s — 1), we obtain:

[\l [yt

-2+

(N[
|w
N—

3
N
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2 3
£ _'_ 2
w2 HIVAVI2)"

| [ 0anxaxde < il (193]
0 Q

In this way, we can prove the theorem

Theorem 3. Letv be a weak solution of the problem (3.1)—(3.5), satisfying (SEI).
Suppose thaf; < ¢, < (3 are the eigenvalues of the tendor= (Vv)sm and

(i) one of the functiong;, (¢2)+, (3 belongs toL*" (D) for somer € [1,00], s €
(2, oc], satisfying2/r + 3/s < 2,

then the norm|Vv (., t)||» is bounded fot € (¢, T) (for anye > 0).

Remarks.

e The sketched proof, in fact, concerns the case+ 3/s < 2. However, if2/r +
3/s = 2 then we can work on an arbitrarily short time inter¢gl — &, ;) instead
of (0,77). Assuming that|Vv(.,t, — £)|l2 < oo and¢ is “sufficiently small”,
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one can achieve the norjff{\2)+|||,.s (which is now the norm on the time interval
(to — &, to)) to be arbitrarily small. Then the ter@|[|(Az2)+[||s [|[V*V]]5, can be
absorbed by the left hand side of (3.16).

]

e If vy is “smooth” then the statement of the theorem can be extended up to the
initial time ¢,.

e The theorem can be modified in such a way that it holds only “locally” in the
neighbourhood of a part @i2 x (0, 7).

e Since the eigenvalues of tensbrgive the rate of deformations of infinitesimally
small volumes of the fluid in the principal directions 6f Theorem 3 shows
that the deformations such that the infinitesimally small volumes are stretched in
one direction and compressed in two directions act for regularity. On the other
hand, deformations when the infinitesimally small volumes are stretched in two
directions and compressed in one direction act again the regularity. In this case
condition (i) restricts the stretching in the direction of the eigenvector associated
with eigenvalue\,.
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4. Existence of a regular solution on a time interval
independent of viscosity

We assume thd? is a bounded smooth domain. The approach, presented in this sec-
tion, shows the advantage of Navier’s boundary conditions. It is not known whether
an analog with Dirichlet’s boundary condition is also possible.

Lemma 2 (on a strong solution to the Euler problem — Kato, Temam, et al).
Letr > 0, 2 be a bounded domain iR? with the boundary of the clagg®/>+"1!,
u® € Wo2r2(Q) N L2(Q) and £ € L'(0,T; W°272(Q2)). Then there exists
Ty € (0,7 and a unique solutiom” of the Euler problem

u+u-Vu = —-Vp+f in Qr, (4.1)
divua = 0 in Qr, 4.2)

u-n =0 ono2 x (0,7, 4.3)
u=u" in Q x {0}. (4.4)

on the time interva(0, 7*) such tha’ € L>(0, Ty; W>/2 ().
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Principle of the proof. We assume for simplicity that = %

We successively apply the operaféf (for j = 0, 1, 2, 3) to equation (4.1), multiply
the equation byv/u and integrate o). Then we sum the integrals fgrrunning
from 0 to 3. The integrals with the highest derivatives are:

a) /u—V(VSu)-(V?’u), b) /VZu-Vgu—V2u, C) /V2u-V2u-V3u,
0 0 Q

d) / Viu- Vu- Viu, e) / Vip. Viu f) / V3f - V.
Q Q Q)

Applying the integration by parts and equation (4.2), we observe that the integral a)
equals zero. The integral b) is less than or equal to

ClIViulz [Viulli < C[[VPull [[Vulls [[VAull: < Cluls,.

The integrals c) and d) can be estimated similarly. In order to estimate the integral
e), we express as a solution of the Neumann problem

Ap = —Vu- (Vu)" in Q, (4.5)
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dp
on
Sinceu - n = 0 on 912, the right hand of (4.6) equalsu - V(u-n)+u-Vn-u =
u - Vn - u. Applying the known estimates of solutions of the Neumann problem and
the estimates following from the theorem on continuous imbeddings and from the
theorem on traces, we obtain

= —u-Vu-n on o ). (4.6)

IViplle < Cl[Va- (Vu)ls2 + Cllu- Vo - ull52.00

< ClVu- (Vu)' |z + Cllu®ullse < Culfs,.

Thus, the integral e) is less than or equal to
3/2
IV Vil < [Vl Vil < [Vl + C VPl < C ul,.

Finally we obtain the inequality

d
T lullz, < Cllull5,+Clfllsz2 ulls2 + C. (4.7)
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Remark. The same approach fails if we try to apply it to the Navier—Stokes
equation, with any of the mentioned boundary conditions.

The reason lies in the ,,viscous” teeu: if we apply the operato¥? to this term,
multiply it by V3u and integrate i), we obtain the integral

v / AV3u - Viu.
Q

One would like to integrate by parts and to transform it e.g—to/, |V4ul|?, but
none of the considered boundary conditions enables us to get rid of the integral or
o).

We can now construct a strong solution of the Navier—Stokes problem as a per-
turbation of the solution of the Euler problem.

If we want a correctly formulated problem, we need to add some “complementary
boundary” condition to condition (4.3). We can use a generally inhomogeneous
boundary condition

[T”(u) : nL +kxku = a (wherea=a(r,k)) ondQx (0,7). (4.8)
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We use the next two assumptions:

(Al) There exists a positive constantso that coefficients andx are related by the
equations = c3v, which is in coincidence with physical observations.

(A2) Functiona(v) on the right hand side of (4.8) has the form
a(v) = [TV(u’)-n]_+cru’ +ve” = v{[2D(’) -n|_ +czu’+ ¢"},

where¢” € L2(0,Ty; W3/22(02)) N Wi2(0, Ty; WY22(09)), ¢” depends
continuously onv for v > 0, and is tangent t0€). Moreover,¢” is assumed to
satisfy the conditions
¢"(.,0) =0 onofl, (4.9)
(" 232200 + 1019”21 2.2:00) < v¥co(v)  forv =0, (4.10)
where2 < a < 1 andc,(v) is non—decreasing and continuous in dependence
onv.

The necessity of having functiam(») in the form given by condition (A2) is dis-
cussed in the remark after the next theorem.
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Theorem 4 (on a family of solutions of the Euler or Navier—Stokes problem).
Let functionsu™ € W*%(Q) N L2(Q), f € L'(0,T; W*2(Q2)) be given. Let
assumptions (Al) and (A2) be fulfilled. Then there existss (0,7], v* > 0
and a unique family{u”} (for 0 < v < v*) of solutions of the Euler problem (if
v = 0) or the Navier—Stokes problem (f < v < v*) in L>(0,Ty; WE()) N
L*(0, Ty, W22(Q)).

Solutionu” depends continuously enin the normj|| . ||| 1,2 + ||| - [[/2:2,2-

There exist positive constants co, independent af, such that
o = u’llocire < e v, (4.11)
H\u" — U_O| 2:2,2 S (6) Va_1/2. (412)

(Recall thata is the number from condition (A2). Theorem 4 is due to J.N and
P. Penel, to appear in JIMFM.)

Remark. Inthe proof, we construat” in the form

u”:uOJrU”, pl/:po_{_ql/'
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whereU?, ¢” are perturbations af’, p°, tending to zero as — 0.
If this is substituted to the boundary condition (4.8), we get

[T"(u”) - n]_+ cspu’ 4 [TY(UY) -n]_+csrU” = a(v). (4.13)

The expressiongI” (u’) - n|_+ csyu’ and [T(UY) - n]_+ ¢;U” generally have
a different decay for — 0: the first expression equal¥(v), while the second one
equalso(v) for v — 0.

Thus, equation (4.13) confirms that functiafy) cannot be chosen arbitrarily:

a(v) must be equal tgT"(u’) - n| _ + c3ru’, eventually plus something that equals
o(v) for v — 0. This is the sense of assumption (A2). Then the boundary condition
(4.8) is“naturally inhomogeneous” because (A2) expresses the only form that the
right hand side of (4.8) may have if solutiefi is approximated by the familju”}

in the considered “strong topology”.
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