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Motivation: Onset of waves on a falling film

• Applied for the transfer of
heat or mass

• Surface Waves increase
transfer rates

• Understand onset of waves
by linear stability analysis
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Hydrodynamic Model
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• Incompressible, isothermal,
Newtonian two-phase flow

• No phase transition

• Constant surface tension

ρ(ut + u · ∇u)− η∆u +∇p = ρg, ΩL ∪ ΩG

∇ · u = 0, ΩL ∪ ΩG

JuK = 0, y = h0(x) + h(t, x)

JpI− η(∇u + (∇u)T )KnΣ = σκnΣ, y = h0(x) + h(t, x)

u = 0, y = 0

∂u

∂y
= 0, y = ŷ
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Steady State
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pN = const., h0 = const. > 0, h = 0,
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ρG
ηL
− ρG
ηG

), h0 ≤ y ≤ ŷ ,
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Stability for dynamical systems

Consider a dynamical system on a finite dimensional phase space
X:

∂x

∂t
= f(x),

x(0) = xini.

Let x0 be a steady state, i.e. f(x0) = 0. The linearized stability
equations are written as

∂ζ(t)

∂t
= Aζ(t),

ζ(0) = ζ0,

where A = ∂f(x0)
∂x is the Jacobian.



Motivation Governing Equations Chiba’s Method Periodic case Inflow/Outflow case

Stability for dynamical systems

Consider a dynamical system on a finite dimensional phase space
X:

∂x

∂t
= f(x),

x(0) = xini.

Let x0 be a steady state, i.e. f(x0) = 0. The linearized stability
equations are written as

∂ζ(t)

∂t
= Aζ(t),

ζ(0) = ζ0,

where A = ∂f(x0)
∂x is the Jacobian.



Motivation Governing Equations Chiba’s Method Periodic case Inflow/Outflow case

Chiba’s Method

Solution of the linearized stability equations is given by

ζ(t) = exp(At)ζ0.

The asymptotic stability is determined by the spectrum of A whose
dimension can be extremely large.

Idea: Compute low dimensional approximation to the evolution
operator B := exp(AT ) for some fixed T > 0, and compute
approximative spectrum of A via the spectral mapping theorem.
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Chiba’s Method

Solution of the linearized stability equations is given by

ζ(t) = exp(At)ζ0.

The asymptotic stability is determined by the spectrum of A whose
dimension can be extremely large.

Idea: Compute low dimensional approximation to the evolution
operator B := exp(AT ) for some fixed T > 0, and compute
approximative spectrum of A via the spectral mapping theorem.



Motivation Governing Equations Chiba’s Method Periodic case Inflow/Outflow case

Chiba’s Method

• Iterative Algorithm that computes a subspace

X̃ = span{ζ1, . . . , ζM} ⊂ X

such that the most amplified eigenmodes can be well
approximated in X̃.

• Need a solver for the nonlinear problem, a steady state x0,
and an initial perturbation ζ1.

• Choose ζ1 ∈ X randomly.
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Chiba’s Method for dynamical systems

Compute random initial perturbation ζ1, ‖ζ1‖ = 1

for k = 1 to M:

Simulate dynamical system for time T , starting
with two different initial values x0 + εζk and
x0 − εζk . Store the results as xk+ and xk−.

Bζk = (xk+ − xk−)/2ε

Compute ζk+1 with Gram-Schmidt:

Bζk =
∑

ck,lζ l , l = 1 . . . k + 1

< ζ i , ζ j > = δi ,j .

next k
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Chiba’s Method

Last step:

Bζ1 = c1,1ζ1 + c2,1ζ2

. . .

BζM−1 = c1,M−1ζ1 + . . .+ cM,M−1ζM .

BζM = c1,Mζ1 + . . .+ cM,MζM + cM+1,MζM+1.

If |cM+1,M | is small, we can ignore that term.
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Chiba’s Method

Last step:

B̃ζ1 = c1,1ζ1 + c2,1ζ2

. . .

B̃ζM−1 = c1,M−1ζ1 + . . .+ cM,M−1ζM .

B̃ζM = c1,Mζ1 + . . .+ cM,MζM .

B̃ is a square matrix, and we can discuss stability on the basis of
this.
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Chiba’s Method for free boundary problems

• Problem: In order to apply Chiba’s Method, we have to
perform linear algebra, but for falling films, the phase space is
not a vector space.

• Solution: Transform velocity field to a fixed reference domain.
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Chiba’s Method for free boundary problems
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• Diffeomorphism between fixed and physical domain:

T(x ′, y ′) =

(
x ′
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h0(x ′)2−ŷh0(x ′)

y ′2 + h0(x ′)2−ŷh0(x ′)−ŷh(t,x ′)
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y ′
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=

(
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)
• Transform velocity in a divergence free way:(

u
v

)
(x , y) =

[
1

detDT
DT

(
u′

v ′

)]
(x ′, y ′) where T(x ′, y ′) = (x , y).
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Chiba’s Method for free boundary problems

• With this transformation,

(
u′

v ′

)
solenoidal if and only if

(
u
v

)
solenoidal.

• Phase space consists of solenoidal velocity fields on the fixed
domain, combined with an interfacial perturbation.

• Pressure is treated implicitly.
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Simulating the evolution of a perturbation

• Utilize volume of fluid solver
FS3D.

• Interface advection via PLIC.

• Surface tension via Balanced
CSF with height functions.

• The solver is well validated
for falling films, see
[ARB12]. 1
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Periodic Case

• Boundary conditions in streamwise direction:

u(t, 0, y) = u(t, x̂ , y)

h(t, 0) = h(t, x̂).

• Analyzed stability of ten water/air falling films at Reynolds
numbers from 15 to 150, with different domain lengths.

• Stability behavior in this setup equivalent to results achieved
by Orr-Sommerfeld equations.
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Stability in dependence of domain length
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• For small domain
lengths, real shear
modes dominate.

• With growing domain
length, films become
more unstable due
surface modes of
maximal wavelength.

• After local minimum:
Modes with smaller
than maximal
wavelength dominate.
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Neutral stability curve

• Define a dimensionless wave number α as

α =
2πh0

x̂
,

and look for α at which the film is neutrally stable.

• Comparison to [CD02]:
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Wave number of most amplified mode

• Compare wavenumber of the most unstable mode [PW77]:
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Wave velocity of most amplified mode

• Define a dimensionless wave velocity Cr as

Cr =
Imλ1l

2πumax
,

• Compare to [PW77]
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Surface Modes

Most amplified mode at Re = 90,
x̂ = 37h0, λ = (33.20 + 271.7i)s−1

Real part

0 0.2 0.4 0.6 0.8 0.98
−6

−4

−2

0

2

4

6
·10−3

x in cm

h
(x
)
in

cm

Imaginary part

0 0.2 0.4 0.6 0.8 0.98
−6

−4

−2

0

2

4

6
·10−3

x in cm

h
(x
)
in

cm

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1 · 10−2

2 · 10−2

3 · 10−2

4 · 10−2

5 · 10−2

x in cm

y
in

cm

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1 · 10−2

2 · 10−2

3 · 10−2

4 · 10−2

5 · 10−2

x in cm

y
in

cm



Motivation Governing Equations Chiba’s Method Periodic case Inflow/Outflow case

Inflow/Outflow case

• Boundary conditions in streamwise direction:

u = uN at x = 0,

∂u

∂x
= 0 at x = x̂ ,

h0 + h = h0 at x = 0,

∂(h0 + h)

∂x
= 0 at x = x̂ .

• Standard boundary conditions for VOF simulations of falling
films; deliver good agreement with experiments.

• Analyzed stability of water/air falling films at Reynolds
numbers from 45, 90, and 135, and at domain lengths up to
256h0.
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Stability in dependence of domain length
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• Film is asymptotically stable for all
considered setups.

• Becomes more unstable with a
longer domain.

• For a fixed dimensionless domain
length, the film becomes mores
stable with a higher Reynolds
number.
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Stability in dependence of domain length
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• Length of the domain:

x̂ = n(
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• Lower bound for wave inception
line according to [PW77]:
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Complex Modes

Most amplified mode at Re = 90,
x̂ = 256h0, λ = (−27.69 + 213.7i)s−1, dr = 0.0927
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• Critical wavelength for Re = 90 in the periodic setting is
about 10.5h0; wavelength of the most amplified mode is 37h0.

• No amplified modes on a domain of length 256h0 in the
inflow/outflow-setting.

• Calculations on longer domains are needed.

Thank you for your attention!
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Scalar product

• Outcome of stability analysis independent of norm.

• Convenient to use a physically reasonable scalar product:

< (uα, hα), (uβ, hβ) > =
1

2

∫ x̂

0

∫ ŷ

0
ρ(x , y)uαuβdxdy

+
1

2

∫ x̂

0
σ(∂xhα)(∂xhβ)dx .

• Sum of kinetic energy and energy of interface disturbance.
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Shear Modes

• Real modes with no interfacial perturbation and no velocity
component in y -direction.

• Independent of domain length

• If written as u(y/h0), velocity independent of Re.

• Growth rate increases with Re.

20 40 60 80 100 120 140 160

−101

−102

−103

Re

λShear,1

λShear,2

λShear,3

λShear,4



Bibliography References

Shear Modes
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Surface Modes

Second most amplified mode at Re = 90,
x̂ = 37h0, λ = (22.29 + 596.6i)s−1

Real part

0 0.2 0.4 0.6 0.8 0.98

−4

−2

0

2

4

·10−3

x in cm

h
(x
)
in

cm

Real part

0 0.2 0.4 0.6 0.8 0.98

−4

−2

0

2

4

·10−3

x in cm

h
(x
)
in

cm

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1 · 10−2

2 · 10−2

3 · 10−2

4 · 10−2

5 · 10−2

x in cm

y
in

cm

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1 · 10−2

2 · 10−2

3 · 10−2

4 · 10−2

5 · 10−2

x in cm

y
in

cm



Bibliography References

Verification

• In order verify to that the found modes are actually
eigenmodes, we initialized the solver with steady state +
mode, and let the simulation run for time T = −1/Re(λ), and
calculated the expected outcome due to linear theory.

• Define a relative error by

dr = 2
‖Bϕ1,numerical − Bϕ1,theoretical‖
‖Bϕ1,numerical‖+ ‖Bϕ1,theoretical‖
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Real modes

• Also in this case there are real modes present, although they
can not be characterized as shear modes.

• Example: Re = 135, x̂ = 32h0, λ = (−115.2)s−1, dr = 0.0391
:
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Complex Modes

Most amplified mode at Re = 90,
x̂ = 64h0, λ = (−84.74 + 195.1i)s−1, dr = 0.0224
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Complex Modes

Most amplified mode at Re = 90,
x̂ = 128h0, λ = (−63.35 + 195.2i)s−1, dr = 0.0121
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Complex Modes

Most amplified mode at Re = 90,
x̂ = 192h0, λ = (−42.87 + 207.4i)s−1, dr = 0.0218
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