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Motivation

Motivation:

Onset of waves on a falling film

e Applied for the transfer of
heat or mass

e Surface Waves increase
transfer rates

e Understand onset of waves
by linear stability analysis
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Governing Equations
Hydrodynamic Model

Atmosphere

g

Qa(t)

e Incompressible, isothermal,
Newtonian two-phase flow

e No phase transition

1% S:;(;) ! e Constant surface tension
p(us +u-Vu) —nAu+ Vp = pg, QL UQ¢
V- -u=0, Q,UQ¢
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Governing Equations
Steady State
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Chiba's Method
Stability for dynamical systems

Consider a dynamical system on a finite dimensional phase space

X: 5
X
—_— = f
5 = ).
X(O) = Xijni-

B | Genterof
Smart Interfaces



Chiba's Method
Stability for dynamical systems

Consider a dynamical system on a finite dimensional phase space

X: 5
X
_— = f
5 = (),
X(O) = Xijni-

Let xo be a steady state, i.e. f(xg) = 0. The linearized stability
equations are written as

8 t
C(O) - COa
where A = 8%’;0) is the Jacobian.
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Chiba's Method
Chiba's Method

Solution of the linearized stability equations is given by

¢(t) = exp(At)Co.

The asymptotic stability is determined by the spectrum of A whose
dimension can be extremely large.
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Chiba’'s Method

Solution of the linearized stability equations is given by

¢(t) = exp(At)Co.

The asymptotic stability is determined by the spectrum of A whose
dimension can be extremely large.

Idea: Compute low dimensional approximation to the evolution
operator B := exp(AT) for some fixed T > 0, and compute
approximative spectrum of A via the spectral mapping theorem.
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Chiba's Method
Chiba's Method

e |terative Algorithm that computes a subspace

X =span{Cy,...,¢m} C X

such that the most amplified eigenmodes can be well
approximated in X.

e Need a solver for the nonlinear problem, a steady state xq,
and an initial perturbation ;.

e Choose ¢; € X randomly.
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Chiba's Method for dynamical systems

[ Compute random initial perturbation ¢4, [|¢1]| = 1
y
[ fork = 1to M:
X
Simulate dynamical system for time T, starting
with two different initial values xg + €¢, and
Xo — €C). Store the results as x,4 and x,_.
v
( B, = (xis — xi)/2€
¥
Compute ¢, with Gram-Schmidt:

BCk =) cuiCpnl=1...k+1

< ¢, ¢ > =iy
¥
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Chiba's Method
Chiba's Method

Last step:

B¢, = c1,1¢1 + 2,162

BCy_1=cam-1¢1+.. -+ cmum-1Cum-
B¢y = amCy + ...+ cmumCy + cm+1,mCpg-

If |cpm1,m]| is small, we can ignore that term.
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Chiba's Method
Chiba's Method

Last step:

B¢y = c1161 + @216,

By 1 = cam-161+ ...+ cmm—18 -
éCM = Cl,Mcl +...+emmluy-

B is a square matrix, and we can discuss stability on the basis of
this.
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Chiba's Method for free boundary problems

e Problem: In order to apply Chiba's Method, we have to
perform linear algebra, but for falling films, the phase space is
not a vector space.

e Solution: Transform velocity field to a fixed reference domain.
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Chiba's Method for free boundary problems

e Diffeomorphism between fixed and physical domain:

o ()25 ho (") ho(x 2= ho(x") Y

T(X/ /) = / X/ N2 __g nN_¢o ’ = X
Y )= h(t,x") ” + ho(x')2 =9 ho(x")—yh(t,x )y/ =

e Transform velocity in a divergence free way:

(4) ) = | gm0 (10)] 6o where T0x.p) = (o)
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Chiba's Method for free boundary problems

/
e With this transformation, (5,) solenoidal if and only if (L\;)

solenoidal.

e Phase space consists of solenoidal velocity fields on the fixed
domain, combined with an interfacial perturbation.

e Pressure is treated implicitly.
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Chiba's Method
Simulating the evolution of a perturbation

o Utilize volume of fluid solver 0 0 0 0

FS3D.

- - \

e Interface advection via PLIC. 0.8 \Q4\ 0.03 0
e Surface tension via Balanced

CSF with height functions. 1 1 &\ 0.1
e The solver is well validated

for falling films, see

[ARB12]. 1 1 1 3
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Periodic case
Periodic Case

e Boundary conditions in streamwise direction:

u(t,0,y) = u(t,%,y)
h(t,0) = h(t, R).

e Analyzed stability of ten water/air falling films at Reynolds
numbers from 15 to 150, with different domain lengths.

e Stability behavior in this setup equivalent to results achieved
by Orr-Sommerfeld equations.
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Periodic case

Stability in dependence of domain length
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Periodic case
Neutral stability curve

e Define a dimensionless wave number « as
27Th0

o Y

X

o =

and look for a at which the film is neutrally stable.
e Comparison to [CD02]:
4 T T T T
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Periodic case
Wave number of most amplified mode

e Compare wavenumber of the most unstable mode [PW77]:
0.5 T T L

0.1F . B

10° 10! 102 10°
Re
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Periodic case

Wave velocity of most amplified mode

e Define a dimensionless wave velocity C, as

e Compare to [PW77]
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Periodic case

Surface Modes

Most amplified mode at Re = 90,
% =37ho, A = (33.20 +271.7i)s 7!

Real part

Imaginary part
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Inflow/Outflow case
Inflow/Outflow case

e Boundary conditions in streamwise direction:

u=uy atX:07
g)‘:zo at x = X,
ho + h=hg at x =0,

Ox
e Standard boundary conditions for VOF simulations of falling
films; deliver good agreement with experiments.

e Analyzed stability of water/air falling films at Reynolds
numbers from 45, 90, and 135, and at domain lengths up to
256 hg.
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Inflow/Outflow case

Stability in dependence of domain length

Largest real part in

——Re =135
——Re =90
——Re =45

\ \ , ,
50 100 150 200 250
Domain length in ho

e Film is asymptotically stable for all
considered setups.

e Becomes more unstable with a
longer domain.

e For a fixed dimensionless domain
length, the film becomes mores
stable with a higher Reynolds
number.
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Inflow/Outflow case

Stability in dependence of domain length

- —20f

eal part in spectrum,
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e Length of the domain:

~ 2n? 1
% = n(5L)/3Re? .
P8

e Lower bound for wave inception
line according to [PW77]:

Le = (JLyV e,
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Complex Modes

Inflow/Outflow case

Real part

103

& = 256h9, A

Most amplified mode at Re = 90,
(—27.69 + 213.7/)s7 !, d, = 0.0927
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Inflow/Outflow case

e Critical wavelength for Re = 90 in the periodic setting is
about 10.5hg; wavelength of the most amplified mode is 37hg.

e No amplified modes on a domain of length 256hg in the
inflow/outflow-setting.

e Calculations on longer domains are needed.

[
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Motivation Governing Equations Chiba's Method erio e Inflow/Outflow case

e Critical wavelength for Re = 90 in the periodic setting is
about 10.5hg; wavelength of the most amplified mode is 37hg.

e No amplified modes on a domain of length 256hg in the
inflow/outflow-setting.

e Calculations on longer domains are needed.

Thank you for your attention!
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Scalar product

e Qutcome of stability analysis independent of norm.

e Convenient to use a physically reasonable scalar product:

< (uqa, ha), (ug, hg) > / / X, y)uqugdxdy
+ 2/0 0(Oxha)(Oxhs)dx

e Sum of kinetic energy and energy of interface disturbance.
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Shear Modes

e Real modes with no interfacial perturbation and no velocity
component in y-direction.

e Independent of domain length
o If written as u(y/ho), velocity independent of Re.

e Growth rate increases with Re.

1
10 —&— AShear,1
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Shear Modes
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Surface Modes

Second most amplified mode at Re = 90,
£ = 37ho, A = (22.29 + 596.6/)s !
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Verification

e In order verify to that the found modes are actually
eigenmodes, we initialized the solver with steady state +
mode, and let the simulation run for time T = —1/:e()), and
calculated the expected outcome due to linear theory.

e Define a relative error by

”B(Pl,numerical - Bsol,theoretical”
”Bgol,numericaIH + HBsol,theoreticaIH

d =2
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h(z) in cm

yinem

References

Also in this case there are real modes present, although they
can not be characterized as shear modes.

Example: Re = 135, % = 32hp, A = (—115.2)s7!, d, = 0.0391
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Complex Modes

Most amplified mode at Re = 90,
X = 64hg, \ = (—84.74 + 195.1i)s’1, d, = 0.0224

Real part
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Complex Modes

Most amplified mode at Re = 90,
% =128hg, A = (—63.35 + 195.2/)5*1, d, = 0.0121

Real part Imaginary part
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Complex Modes

Most amplified mode at Re = 90,
£ = 192hy, A = (—42.87 +207.4i)s™ !, d, = 0.0218

Real part Imaginary part
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