On the sectorial \mathcal{R} -boundedness of the Stokes operator for the compressible viscous fluid flow in a general domain

Miho Murata

Waseda University

Joint work with Prof. Yoshihiro Shibata

Nov. 5th, 2012
The 7th Japanese-German International Workshop on
Mathematical Fluid Dynamics

Outline

- Introduction
 - main problem
 - known results
 - definition of R-boundedness
- Main theorem
 - R-boundedness for the solution operator to the resolvent problem
 - the generation of analytic semigroup
 - the maximal L_p - L_q regularity

Linearized problem

We consider the linearized problem in general domain with slip boundary condition.

Slip boundary condition.
$$\begin{cases} \frac{\partial \rho}{\partial t} + \gamma \operatorname{div} u = f & \text{in } \Omega, \ t > 0, \\ \frac{\partial u}{\partial t} - \alpha \Delta u - \beta \nabla \operatorname{div} u + \gamma \nabla \rho = g & \text{in } \Omega, \ t > 0, \\ S(u, \rho) v|_{\tan} = h|_{\tan} & \text{on } \Gamma, \ t > 0, \\ u \cdot v = 0 & \text{on } \Gamma, \ t > 0, \\ (\rho, u)|_{t=0} = (0, 0). \end{cases}$$

- $u = (u_1, \dots, u_N)$: unknown velocity field $(N \ge 2)$, ρ : unknown density
- α, β, γ : constant. $\alpha, \gamma > 0$, $\alpha + \beta > 0$.
- $S(u, \rho) = 2\alpha D(u) + [(\beta \alpha) \operatorname{div} u \gamma \rho]I$: stress tensor
- ν : unit outer normal field on Γ

Linearized problem

We consider the linearized problem in general domain with slip boundary condition.

Slip boundary condition.
$$\begin{cases} \frac{\partial \rho}{\partial t} + \gamma \operatorname{div} u = f & \text{in } \Omega, \ t > 0, \\ \frac{\partial u}{\partial t} - \alpha \Delta u - \beta \nabla \operatorname{div} u + \gamma \nabla \rho = g & \text{in } \Omega, \ t > 0, \\ S(u, \rho) \nu|_{\tan} = h|_{\tan} & \text{on } \Gamma, \ t > 0, \\ u \cdot \nu = 0 & \text{on } \Gamma, \ t > 0, \\ (\rho, u)|_{t=0} = (0, 0). \end{cases}$$

- $u=(u_1,\ldots,u_N)$: unknown velocity field $(N\geq 2)$, ρ : unknown density $n|_{\tan}=n-\langle n,\nu\rangle$
- α, β, γ : constant. $\alpha, \gamma > 0$, $\alpha + \beta > 0$.
- $S(u, \rho) = 2\alpha D(u) + [(\beta \alpha) \operatorname{div} u \gamma \rho]I$: stress tensor
- ν : unit outer normal field on Γ

Linearized problem

We consider the linearized problem in general domain with slip boundary condition.

$$(\mathsf{P}) \quad \begin{cases} \frac{\partial \rho}{\partial t} + \gamma \operatorname{div} u = f & \text{in } \Omega, \ t > 0, \\ \frac{\partial u}{\partial t} - \alpha \Delta u - \beta \nabla \operatorname{div} u + \gamma \nabla \rho = g & \text{in } \Omega, \ t > 0, \\ 2\alpha [D(u)v - \langle D(u)v, v \rangle v] = h - \langle h, v \rangle v & \text{on } \Gamma, \ t > 0, \\ u \cdot v = 0 & \text{on } \Gamma, \ t > 0, \\ (\rho, u)|_{t=0} = (0, 0). \end{cases}$$

- $u=(u_1,\ldots,u_N)$: unknown velocity field $(N\geq 2),$ ρ : unknown density $n|_{\tan}=n-\langle n,\nu\rangle v$
- α, β, γ : constant. $\alpha, \gamma > 0$, $\alpha + \beta > 0$.
- $S(u, \rho) = 2\alpha D(u) + [(\beta \alpha) \operatorname{div} u \gamma \rho]I$: stress tensor
- ν : unit outer normal field on Γ

Definition (general domain)

Let $1 < r < \infty$ and let Ω be a domain in \mathbb{R}^N with boundary Γ . We call Ω a uniform $W_r^{3-1/r}$ domain if there exist positive constants α , β and K such that for any $x_0 = (x_{01}, \ldots, x_{0N}) \in \Gamma$ there exist a coordinate number j and $h \in W_r^{3-1/r}(B_\alpha'(x_0'))$ $(x_0' = (x_{01}, \ldots, \hat{x}_{0j}, \ldots x_{0N}))$ and $\|h\|_{W_r^{3-1/r}(B_\alpha'(x_0'))} \le K$ satisfying

$$\Omega \cap B_{\beta}(x_0) = \{ x \in \mathbb{R}^N \mid x_j > h(x') \ (x' \in B'_{\alpha}(x'_0)) \} \cap B_{\beta}(x_0),$$

$$\Gamma \cap B_{\beta}(x_0) = \{ x \in \mathbb{R}^N \mid x_j = h(x') \ (x' \in B'_{\alpha}(x'_0)) \} \cap B_{\beta}(x_0),$$

where $B'_{\alpha}(x'_0) = \{x' \in \mathbb{R}^{N-1} \mid |x' - x'_0| < \alpha\},$ $B_{\beta}(x_0) = \{x \in \mathbb{R}^N \mid |x - x_0| < \beta\}$ and $W_r^{3-1/r}(B'_{\alpha}(x'_0))$ denotes the set of all functions $h \in W_r^2(B'_{\alpha}(x'_0))$ such that

$$< D_k D_l h >_{1-1/r, r, B_{\alpha}'(x_0')} = \left\{ \iint_{B_{\alpha}'(x_0) \times B_{\alpha}'(x_0)} \frac{|D_k D_l h(x') - D_k D_l h(y')|^r}{|x' - y'|^{N-2+r}} dx' dy' \right\}^{\frac{1}{r}} < \infty$$
 for $k, l \neq j$ with $D_k D_l h = \frac{\partial^2 h}{\partial x_k} \frac{\partial x_l}{\partial x_l}$.

$$||h||_{W_r^{3-1/r}(B'_{\alpha}(x'_0))} \le K$$

$$\Omega \cap B_{\beta}(x_0) = \{x \in \mathbb{R}^N \mid x_j > h(x') \ (x' \in B'_{\alpha}(x'_0))\} \cap B_{\beta}(x_0)$$

$$\Gamma \cap B_{\beta}(x_0) = \{x \in \mathbb{R}^N \mid x_j = h(x') \ (x' \in B'_{\alpha}(x'_0))\} \cap B_{\beta}(x_0)$$

$$(x' = (x_1, \dots, \hat{x_i}, \dots x_N))$$

$$||h||_{W_r^{3-1/r}(B'_{\alpha}(x'_0))} \le K$$

$$\Omega \cap B_{\beta}(x_0) = \{x \in \mathbb{R}^N \mid x_j > h(x') \ (x' \in B'_{\alpha}(x'_0))\} \cap B_{\beta}(x_0)$$

$$\Gamma \cap B_{\beta}(x_0) = \{x \in \mathbb{R}^N \mid x_j = h(x') \ (x' \in B'_{\alpha}(x'_0))\} \cap B_{\beta}(x_0)$$

$$(x' = (x_1, \dots, \hat{x_j}, \dots x_N))$$

$$||h||_{W_r^{3-1/r}(B'_{\alpha}(x'_0))} \le K$$

$$\Omega \cap B_{\beta}(x_0) = \{x \in \mathbb{R}^N \mid x_j > h(x') \ (x' \in B'_{\alpha}(x'_0))\} \cap B_{\beta}(x_0)$$

$$\Gamma \cap B_{\beta}(x_0) = \{x \in \mathbb{R}^N \mid x_j = h(x') \ (x' \in B'_{\alpha}(x'_0))\} \cap B_{\beta}(x_0)$$

$$(x' = (x_1, \dots, \hat{x_j}, \dots x_N))$$

Example of general domain

- boundary: bounded ⇒bounded domain, exterior domain
- boundary: unbounded ⇒half space, tube, layer

tube

$$T = \{x = (x', x_N) \mid x' \in D, x_N \in \mathbb{R}\},\ D : W_r^{3-1/r} \text{ bounded}$$

$$x' = (x_1, \dots x_{N-1})$$

asymptotically flat layer

$$L = \left\{ x = (x', x_N) \middle| \begin{array}{l} a(x') < x_N < 1 + b(x'), \\ a(x') \le b(x') \end{array} \right\}$$

Example of general domain

- boundary: bounded ⇒bounded domain, exterior domain
- boundary: unbounded ⇒half space, tube, layer

tube

$$T = \{x = (x', x_N) \mid x' \in D, x_N \in \mathbb{R}\},\$$

 $D:W_r^{3-1/r}$ bounded

$$x'=(x_1,\ldots x_{N-1})$$

asymptotically flat layer

$$L = \left\{ x = (x', x_N) \middle| \begin{array}{l} a(x') < x_N < 1 + b(x'), \\ a(x') \le b(x') \end{array} \right\}$$

Example of general domain

- boundary: bounded ⇒bounded domain, exterior domain
- boundary: unbounded ⇒half space, tube, layer

tube

$$T = \{x = (x', x_N) \mid x' \in D, x_N \in \mathbb{R}\},\$$

 $D:W_r^{3-1/r}$ bounded

$$x'=(x_1,\ldots x_{N-1})$$

asymptotically flat layer

$$L = \left\{ x = (x', x_N) \middle| \begin{array}{l} a(x') < x_N < 1 + b(x'), \\ a(x') \le b(x') \end{array} \right\}$$

Known result and motivation

Enomoto and Shibata (2012, submitted)⇒

 \cdot the generation of analytic semigroup and the maximal regularity by the R-boundedness of Stokes operator

The difference between "result of Enomoto and Shibata" and "our result" is the following:

- Enomoto and Shibata
- ⇒ boundary condition (Dirichlet) : homogeneous
- our result
- ⇒ boundary condition (slip): derivative term, non-homogeneous

Known result and motivation

Enomoto and Shibata (2012, submitted)⇒

 \cdot the generation of analytic semigroup and the maximal regularity by the R-boundedness of Stokes operator

The difference between "result of Enomoto and Shibata" and "our result" is the following:

- Enomoto and Shibata
- ⇒ boundary condition (Dirichlet) : homogeneous
- our result
- ⇒ boundary condition (slip) : derivative term, non-homogeneous

Known result and motivation

Enomoto and Shibata (2012, submitted)⇒

 \cdot the generation of analytic semigroup and the maximal regularity by the R-boundedness of Stokes operator

The difference between "result of Enomoto and Shibata" and "our result" is the following:

- Enomoto and Shibata
- ⇒ boundary condition (Dirichlet) : homogeneous
- our result
- ⇒ boundary condition (slip) : derivative term, non-homogeneous

Resolvent problem

The corresponding resolvent problem:

(RP)
$$\begin{cases} \lambda \rho + \gamma \operatorname{div} u = f & \text{in } \Omega, \\ \lambda u - \alpha \Delta u - \beta \nabla \operatorname{div} u + \gamma \nabla \rho = g & \text{in } \Omega, \\ S(u, \rho) \nu|_{\tan} = h|_{\tan} & \text{on } \Gamma, \\ u \cdot \nu = 0 & \text{on } \Gamma. \end{cases}$$

In order to show the generation of analytic semigroup, we define a linear operator $\ensuremath{\mathcal{R}}$ by

$$\mathcal{A}(\rho, u) = (-\gamma \operatorname{div} u, \alpha \Delta u + \beta \nabla \operatorname{div} u - \gamma \nabla \rho) \text{ for } (\rho, u) \in \mathcal{D}(\mathcal{A}),$$

$$\mathcal{D}(\mathcal{A}) = \{(\rho, u) \in W_q^{1,2}(\Omega) \mid S(u, \rho) \nu |_{\tan} = 0, u \cdot \nu = 0 \text{ on } \Gamma\},$$

where we set $W_q^{m,l}(\Omega) = \{(f,g) \mid f \in W_q^m(\Omega), g \in W_q^l(\Omega)^N\}.$

Resolvent problem

The corresponding resolvent problem:

$$\begin{cases} \lambda \rho + \gamma \operatorname{div} u = f & \text{in } \Omega, \\ \lambda u - \alpha \Delta u - \beta \nabla \operatorname{div} u + \gamma \nabla \rho = g & \text{in } \Omega, \\ S(u, \rho) \nu|_{\tan} = h|_{\tan} & \text{on } \Gamma, \\ u \cdot \nu = 0 & \text{on } \Gamma. \end{cases}$$

In order to show the generation of analytic semigroup, we define a linear operator $\ensuremath{\mathcal{H}}$ by

$$\mathcal{A}(\rho, u) = (-\gamma \operatorname{div} u, \alpha \Delta u + \beta \nabla \operatorname{div} u - \gamma \nabla \rho) \text{ for } (\rho, u) \in \mathcal{D}(\mathcal{A}),$$

$$\mathcal{D}(\mathcal{A}) = \{(\rho, u) \in W_q^{1,2}(\Omega) \mid S(u, \rho) v|_{\tan} = 0, u \cdot v = 0 \text{ on } \Gamma\},$$

where we set $W_q^{m,l}(\Omega) = \{(f,g) \mid f \in W_q^m(\Omega), g \in W_q^l(\Omega)^N\}.$

Resolvent problem

The corresponding resolvent problem:

(RP)
$$\begin{cases} \lambda \rho + \gamma \operatorname{div} u = f & \text{in } \Omega, \\ \lambda u - \alpha \Delta u - \beta \nabla \operatorname{div} u + \gamma \nabla \rho = g & \text{in } \Omega, \\ S(u, \rho) \nu|_{\tan} = h|_{\tan} & \text{on } \Gamma, \\ u \cdot \nu = 0 & \text{on } \Gamma. \end{cases}$$

In order to show the generation of analytic semigroup, we define a linear operator $\ensuremath{\mathcal{H}}$ by

$$\mathcal{A}(\rho, u) = (-\gamma \operatorname{div} u, \alpha \Delta u + \beta \nabla \operatorname{div} u - \gamma \nabla \rho) \text{ for } (\rho, u) \in \mathcal{D}(\mathcal{A}),$$

$$\mathcal{D}(\mathcal{A}) = \{(\rho, u) \in W_q^{1,2}(\Omega) \mid S(u, \rho) \nu|_{\tan} = 0, u \cdot \nu = 0 \text{ on } \Gamma\},$$

where we set $W_q^{m,l}(\Omega) = \{(f,g) \mid f \in W_q^m(\Omega), g \in W_q^l(\Omega)^N\}.$

Let $0 < \varepsilon < \pi/2, \lambda_0 > 0$. we set

$$\Lambda_{\varepsilon,\lambda_0} = \Sigma_{\varepsilon,\lambda_0} \cap K_{\varepsilon}.$$

 $\Sigma_{arepsilon,\lambda_0}$ and $K_arepsilon$ is the set defined by

$$\Sigma_{\varepsilon,\lambda_0} = \left\{ \lambda \in \mathbb{C} \setminus \{0\} \mid |\arg \lambda| \le \pi - \varepsilon, |\lambda| \ge \lambda_0 \right\},$$

$$K_{\varepsilon} = \left\{ \lambda \in \mathbb{C} \mid \left(\operatorname{Re} \lambda + \frac{\gamma^2}{\alpha + \beta} + \varepsilon \right)^2 + (\operatorname{Im} \lambda)^2 \ge \left(\frac{\gamma^2}{\alpha + \beta} + \varepsilon \right)^2 \right\}.$$

The solution formula in \mathbb{R}^N :

$$u_j = \frac{1}{\alpha} \sum_{k=1}^N \mathcal{F}_\xi^{-1} \left[\frac{\delta_{jk} - \xi_j \xi_k |\xi|^{-2}}{\alpha^{-1}\lambda + |\xi|^2} \hat{f}_k \right](x) + \frac{1}{\alpha + \eta_\lambda} \sum_{k=1}^N \mathcal{F}_\xi^{-1} \left[\frac{\xi_j \xi_k |\xi|^{-2}}{(\alpha + \eta_\lambda)^{-1}\lambda + |\xi|^2} \hat{f}_k \right](x).$$

Let $0 < \varepsilon < \pi/2, \lambda_0 > 0$. we set

$$\Lambda_{\varepsilon,\lambda_0} = \Sigma_{\varepsilon,\lambda_0} \cap K_{\varepsilon}.$$

 $\Sigma_{\varepsilon,\lambda_0}$ and K_{ε} is the set defined by

$$\Sigma_{\varepsilon,\lambda_0} = \left\{ \lambda \in \mathbb{C} \setminus \{0\} \mid |\arg \lambda| \le \pi - \varepsilon, |\lambda| \ge \lambda_0 \right\},$$

$$K_{\varepsilon} = \left\{ \lambda \in \mathbb{C} \mid \left(\operatorname{Re} \lambda + \frac{\gamma^2}{\alpha + \beta} + \varepsilon \right)^2 + (\operatorname{Im} \lambda)^2 \ge \left(\frac{\gamma^2}{\alpha + \beta} + \varepsilon \right)^2 \right\}.$$

The solution formula in \mathbb{R}^N :

$$u_j = \frac{1}{\alpha} \sum_{k=1}^N \mathcal{F}_\xi^{-1} \left[\frac{\delta_{jk} - \xi_j \xi_k |\xi|^{-2}}{\alpha^{-1}\lambda + |\xi|^2} \hat{f}_k \right](x) + \frac{1}{\alpha + \eta_\lambda} \sum_{k=1}^N \mathcal{F}_\xi^{-1} \left[\frac{\xi_j \xi_k |\xi|^{-2}}{(\alpha + \eta_\lambda)^{-1}\lambda + |\xi|^2} \hat{f}_k \right](x).$$

Aim and key point

aim

- \mathcal{A} generates an analytic semigroup $\{T(t)\}_{t\geq 0}$ on $W_q^{1,0}(\Omega)$.
- the maximal L_p - L_q regularity for (P).

key point

The key of the proof is \mathcal{R} -boundedness of the solution operator to (RP).

Aim and key point

aim

- \mathcal{A} generates an analytic semigroup $\{T(t)\}_{t\geq 0}$ on $W_q^{1,0}(\Omega)$.
- the maximal L_p - L_q regularity for (P).

key point

The key of the proof is \mathcal{R} -boundedness of the solution operator to (RP).

R-boundedness

Definition (\mathcal{R} -boundedness)

A family of operators $\mathcal{T}\subset\mathcal{L}(X,Y)$ is called \mathcal{R} -bounded on $\mathcal{L}(X,Y)$, if there exist constants C>0 and $p\in[1,\infty)$ such that for each $m\in\mathbb{N}$, $T_j\in\mathcal{T}$, $f_j\in X$ $(j=1,\ldots,m)$ for all sequences $\{r_j(u)\}_{j=1}^m$ of independent, symmetric, $\{-1,1\}$ -valued random variables on [0,1], there holds the inequality :

$$\int_0^1 \left\| \sum_{j=1}^m r_j(u) T_j f_j \right\|_Y^p du \le C \int_0^1 \left\| \sum_{j=1}^m r_j(u) f_j \right\|_X^p du.$$

Remark

The smallest such C is called \mathcal{R} -bound of \mathcal{T} on $\mathcal{L}(X,Y)$, which is denoted by $\mathcal{R}_{\mathcal{L}(X,Y)}(\mathcal{T})$.

For any Banach spaces X and Y, $\mathcal{L}(X,Y)$ denotes the set of all bounded linear operators from X into Y. $\mathcal{L}(X) = \mathcal{L}(X,X)$.

Main theorem

Main theorem

Let $1 < q < \infty$, $0 < \varepsilon < \pi/2$. Then, there exist a $\lambda_0 \geq 1$ depending on ε , q, N and an operator $R(\lambda) \in \mathcal{L}(W_q^{1,0}(\Omega) \times L_q(\Omega)^{N^2+N}, W_q^{1,2}(\Omega))$ such that the following two assertions hold :

- (i) For any $(f,g) \in W_q^{1,0}(\Omega)$, $h \in W_q^1(\Omega)^N$ and $\lambda \in \Lambda_{\varepsilon,\lambda_0}$, $(\rho,u) = R(\lambda)(f,g,\nabla h,\lambda^{1/2}h) \in W_q^{1,2}(\Omega)$ solves the problem (RP) uniquely.
- $$\begin{split} &\text{(ii) There exist } \gamma_0 > 0 \text{ such that} \\ &\mathcal{R}_{\mathcal{L}(W_q^{1,0}(\Omega) \times L_q(\Omega)^{N^2+N}, \ W_q^{1,0}(\Omega))}(\{\lambda R(\lambda) \mid \lambda \in \Lambda_{\varepsilon,\lambda_0}\}) \leq \gamma_0, \\ &\mathcal{R}_{\mathcal{L}(W_q^{1,0}(\Omega) \times L_q(\Omega)^{N^2+N}, \ L_q(\Omega)^{N^2})}(\{\lambda^{1/2} \nabla P_{\nu} R(\lambda) \mid \lambda \in \Lambda_{\varepsilon,\lambda_0}\}) \leq \gamma_0, \\ &\mathcal{R}_{\mathcal{L}(W_q^{1,0}(\Omega) \times L_q(\Omega)^{N^2+N}, \ L_q(\Omega)^{N^3})}(\{\nabla^2 P_{\nu} R(\lambda) \mid \lambda \in \Lambda_{\varepsilon,\lambda_0}\}) \leq \gamma_0, \end{split}$$

where we set $P_{\nu}R(\lambda)(f,g,\nabla h,\lambda^{1/2}h)=u$.

The generation of analytic semigroup

Since the definition of \mathcal{R} -boundedness with m=1 implies the usual boundedness, it follows from that

$$\begin{split} |\lambda|||(\rho,u)||_{W^{1,0}_q(\Omega)} + |\lambda|^{1/2}||\nabla u||_{L_q(\Omega)} + ||\nabla^2 u||_{L_q(\Omega)} \\ & \leq C(||(f,g)||_{W^{1,0}_q(\Omega)} + ||(\lambda^{1/2}h,\nabla h)||_{L_q(\Omega)}). \end{split}$$

Theorem

Let $1 < q < \infty$. Then, the operator $\mathcal A$ generates an analytic semigroup $\{T(t)\}_{t \geq 0}$ on $W_q^{1,0}(\Omega)$.

Theorem(the maximal L_p - L_q regularity)

Let $1 < p, q < \infty$. Then, there exists a constant $\gamma_1 > 0$ satisfying

(i) For any $f \in L_{p,\gamma_1,0}(\mathbb{R},W_q^1(\Omega)), g \in L_{p,\gamma_1,0}(\mathbb{R},L_q(\Omega)^N)$ and $h \in L_{p,\gamma_1,0}(\mathbb{R},W_q^1(\Omega)^N) \cap H_{p,\gamma_1,0}^{1/2}(\mathbb{R},L_q(\Omega)^N)$, the problem (P) admits a unique solution (ρ,u) satisfying

$$\rho \in W^1_{p,\gamma_1,0}(\mathbb{R}, W^1_q(\Omega)),$$

$$u \in L_{p,\gamma_1,0}(\mathbb{R}, W^2_q(\Omega)^N) \cap W^1_{p,\gamma_1,0}(\mathbb{R}, L_q(\Omega)^N)$$

(ii)
$$\|e^{-\gamma t}(\rho_t, \gamma \rho)\|_{L_p(\mathbb{R}, W_q^1(\Omega))} + \|e^{-\gamma t}(u_t, \gamma u, \Lambda_{\gamma}^{1/2} \nabla u, \nabla^2 u)\|_{L_p(\mathbb{R}, L_q(\Omega))}$$

$$\leq C \|e^{-\gamma t}(f, \nabla f, \Lambda_{\gamma}^{\frac{1}{2}} h, \nabla h, g)\|_{L_p(\mathbb{R}, L_q(\Omega))} \ (\forall \gamma \geq \gamma_1).$$

$$L_{p,\gamma_{1}}(\mathbb{R},X) = \{ f(t) \in L_{p,loc}(\mathbb{R},X) \mid e^{-\gamma_{1}t}f(t) \in L_{p}(\mathbb{R},X) \},$$

$$L_{p,\gamma_{1},0}(\mathbb{R},X) = \{ f(t) \in L_{p,\gamma_{1}}(\mathbb{R},X) \mid f(t) = 0, t < 0 \},$$

$$H_{p,\gamma_{1}}^{1/2}(\mathbb{R},X) = \{ f \in L_{p}(\mathbb{R},X) \mid e^{-\gamma t} \Lambda_{\gamma}^{1/2}[f](t) \in L_{p}(\mathbb{R},X), \ \forall \gamma \geq \gamma_{1} \}.$$

$$\Lambda_{\gamma}^{1/2}[f](t) = \mathcal{L}_{\delta}^{-1}[|\lambda|]^{1/2}\mathcal{L}[f](\lambda)](t).$$

Theorem(the maximal L_p - L_q regularity)

Let $1 < p, q < \infty$. Then, there exists a constant $\gamma_1 > 0$ satisfying

(i) For any $f \in L_{p,\gamma_1,0}(\mathbb{R},W_q^1(\Omega)), g \in L_{p,\gamma_1,0}(\mathbb{R},L_q(\Omega)^N)$ and $h \in L_{p,\gamma_1,0}(\mathbb{R},W_q^1(\Omega)^N) \cap H_{p,\gamma_1,0}^{1/2}(\mathbb{R},L_q(\Omega)^N)$, the problem (P) admits a unique solution (ρ,u) satisfying

$$\rho \in W^1_{p,\gamma_1,0}(\mathbb{R}, W^1_q(\Omega)),$$

$$u \in L_{p,\gamma_1,0}(\mathbb{R}, W^2_q(\Omega)^N) \cap W^1_{p,\gamma_1,0}(\mathbb{R}, L_q(\Omega)^N)$$

(ii)
$$||e^{-\gamma t}(\rho_t, \gamma \rho)||_{L_p(\mathbb{R}, W_q^1(\Omega))} + ||e^{-\gamma t}(u_t, \gamma u, \Lambda_{\gamma}^{1/2} \nabla u, \nabla^2 u)||_{L_p(\mathbb{R}, L_q(\Omega))}$$

$$\leq C||e^{-\gamma t}(f, \nabla f, \Lambda_{\gamma}^{\frac{1}{2}} h, \nabla h, g)||_{L_p(\mathbb{R}, L_q(\Omega))} \ (\forall \gamma \geq \gamma_1).$$

$$L_{p,\gamma_{1}}(\mathbb{R},X) = \{ f(t) \in L_{p,loc}(\mathbb{R},X) \mid e^{-\gamma_{1}t}f(t) \in L_{p}(\mathbb{R},X) \},$$

$$L_{p,\gamma_{1},0}(\mathbb{R},X) = \{ f(t) \in L_{p,\gamma_{1}}(\mathbb{R},X) \mid f(t) = 0, t < 0 \},$$

$$H_{p,\gamma_{1}}^{1/2}(\mathbb{R},X) = \{ f \in L_{p}(\mathbb{R},X) \mid e^{-\gamma t} \Lambda_{\gamma}^{1/2}[f](t) \in L_{p}(\mathbb{R},X), \forall \gamma \geq \gamma_{1} \}.$$

$$\Lambda_{\gamma}^{1/2}[f](t) = \mathcal{L}_{\lambda}^{-1}[|\lambda|^{1/2}\mathcal{L}[f](\lambda)](t).$$

Thank you for your attention!

- whole-space and half-space
 ⇒calculate solution formula
- bent half-spaceperturbation method
- ⇒by unit decomposition, connect solution operator in R^N and bent half-space

- whole-space and half-space ⇒calculate solution formula
- bent half-spaceperturbation method
- ⇒ general domain
 ⇒ by unit decomposition, connect solution operator in R^N and bent half-space

- whole-space and half-space ⇒calculate solution formula
- ② bent half-space⇒perturbation method
- general domain
 ⇒ by unit decomposition, connect solution operator in R^N and bent half-space

- whole-space and half-space ⇒calculate solution formula
- ② bent half-space ⇒perturbation method
- general domain
 - \Rightarrow by unit decomposition, connect solution operator in \mathbb{R}^N and bent half-space

$$\begin{cases} \lambda \rho + \gamma \operatorname{div} u = f & \text{in } \Omega, \\ \lambda u - \alpha \Delta u - \beta \nabla \operatorname{div} u + \gamma \nabla \rho = g & \text{in } \Omega, \\ S(u, \rho) v|_{\tan} = h|_{\tan} & \text{on } \Gamma, \\ u \cdot v = 0 & \text{on } \Gamma. \end{cases}$$

Setting
$$\rho = \lambda^{-1}(f - \gamma \operatorname{div} u)$$
 and $\eta_{\lambda} = \beta + \gamma^{2} \lambda^{-1}$,

$$\lambda u - \alpha \Delta u - \eta_{\lambda} \nabla \operatorname{div} u = g - \gamma \lambda^{-1} \nabla f =: f \quad \text{in } \Omega.$$

(RP')
$$\begin{cases} \lambda u - \alpha \Delta u - \eta_{\lambda} \nabla \operatorname{div} u = f & \text{in } \Omega, \\ Bu = \begin{pmatrix} [2\alpha D(u)v + (\eta_{\lambda} - \alpha)\operatorname{div} uv]|_{\tan} \\ u \cdot v \end{pmatrix} = h = \begin{pmatrix} h|_{\tan} \\ 0 \end{pmatrix} & \text{on } \Gamma. \end{cases}$$

$$\begin{cases} \lambda \rho + \gamma \operatorname{div} u = f & \text{in } \Omega, \\ \lambda u - \alpha \Delta u - \beta \nabla \operatorname{div} u + \gamma \nabla \rho = g & \text{in } \Omega, \\ S(u, \rho) v|_{\tan} = h|_{\tan} & \text{on } \Gamma, \\ u \cdot v = 0 & \text{on } \Gamma. \end{cases}$$

Setting
$$\rho = \lambda^{-1}(f - \gamma \operatorname{div} u)$$
 and $\eta_{\lambda} = \beta + \gamma^2 \lambda^{-1}$,

$$\lambda u - \alpha \Delta u - \eta_{\lambda} \nabla \operatorname{div} u = g - \gamma \lambda^{-1} \nabla f =: f \quad \text{in } \Omega.$$

(RP')
$$\begin{cases} \lambda u - \alpha \Delta u - \eta_{\lambda} \nabla \operatorname{div} u = f & \text{in } \Omega, \\ Bu = \begin{pmatrix} [2\alpha D(u)v + (\eta_{\lambda} - \alpha)\operatorname{div} uv]|_{\tan} \\ u \cdot v \end{pmatrix} = h = \begin{pmatrix} h|_{\tan} \\ 0 \end{pmatrix} & \text{on } \Gamma. \end{cases}$$

$$\begin{cases} \lambda \rho + \gamma \operatorname{div} u = f & \text{in } \Omega, \\ \lambda u - \alpha \Delta u - \beta \nabla \operatorname{div} u + \gamma \nabla \rho = g & \text{in } \Omega, \\ S(u, \rho) \nu|_{\tan} = h|_{\tan} & \text{on } \Gamma, \\ u \cdot \nu = 0 & \text{on } \Gamma. \end{cases}$$

Setting
$$\rho = \lambda^{-1}(f - \gamma \operatorname{div} u)$$
 and $\eta_{\lambda} = \beta + \gamma^{2}\lambda^{-1}$,

$$\lambda u - \alpha \Delta u - \eta_{\lambda} \nabla \operatorname{div} u = g - \gamma \lambda^{-1} \nabla f =: f \quad \text{in } \Omega.$$

(RP')
$$\begin{cases} \lambda u - \alpha \Delta u - \eta_{\lambda} \nabla \operatorname{div} u = f & \text{in } \Omega, \\ Bu = \begin{pmatrix} [2\alpha D(u)v + (\eta_{\lambda} - \alpha) \operatorname{div} uv]|_{\tan} \\ u \cdot v \end{pmatrix} = h = \begin{pmatrix} h|_{\tan} \\ 0 \end{pmatrix} & \text{on } \Gamma. \end{cases}$$

$$\begin{cases} \lambda \rho + \gamma \operatorname{div} u = f & \text{in } \Omega, \\ \lambda u - \alpha \Delta u - \beta \nabla \operatorname{div} u + \gamma \nabla \rho = g & \text{in } \Omega, \\ S(u, \rho) \nu|_{\tan} = h|_{\tan} & \text{on } \Gamma, \\ u \cdot \nu = 0 & \text{on } \Gamma. \end{cases}$$

Setting
$$\rho = \lambda^{-1}(f - \gamma \operatorname{div} u)$$
 and $\eta_{\lambda} = \beta + \gamma^{2}\lambda^{-1}$,

$$\lambda u - \alpha \Delta u - \eta_{\lambda} \nabla \operatorname{div} u = g - \gamma \lambda^{-1} \nabla f =: f \quad \text{in } \Omega.$$

$$(\mathsf{RP'}) \quad \begin{cases} \lambda u - \alpha \Delta u - \eta_{\lambda} \nabla \operatorname{div} u = f & \text{in } \Omega, \\ Bu = \begin{pmatrix} [2\alpha D(u)\nu + (\eta_{\lambda} - \alpha)\operatorname{div} u\nu]|_{\tan} \\ u \cdot \nu \end{pmatrix} = h = \begin{pmatrix} h|_{\tan} \\ 0 \end{pmatrix} & \text{on } \Gamma. \end{cases}$$

Theorem (general domain)

Let $1 < q < \infty$, $N < r < \infty$ and $0 < \varepsilon < \pi/2$. Let Ω be a uniform $W_r^{2-1/r}$ domain in \mathbb{R}^N . Assume that $\max(q,q') \le r$. Then, there exist a constant $\lambda_0 \ge 1$ and an operator $\mathcal{U}_j(\lambda) \in \mathcal{L}(L_q(\Omega)^N, W_q^2(\Omega)^N)$ $(\lambda \in \Lambda_{\varepsilon,\lambda_0}, \ j=0,\ldots,N+1)$ satisfying the following assertions:

(i) For any $f \in L_q(\Omega)^N$ and $h \in W_q^1(\Omega)^N$,

$$u = \mathcal{U}_0(\lambda) f + \sum_{j=1}^N \mathcal{U}_j(\lambda)(D_j h) + |\lambda|^{\frac{1}{2}} \mathcal{U}_{N+1}(\lambda) h$$

solves the equations (RP') uniquely.

(ii) There exist $\gamma_1 > 0$ such that $\mathcal{R}_{\mathcal{L}(L_q(\Omega)^N)}(\{\lambda \mathcal{U}_j(\lambda) \mid \lambda \in \Lambda_{\varepsilon,\lambda_0}\}) \leq \gamma_1,$ $\mathcal{R}_{\mathcal{L}(L_q(\Omega)^N, \ L_q(\Omega)^{N^2})}(\{|\lambda|^{\frac{1}{2}} \nabla \mathcal{U}_j(\lambda) \mid \lambda \in \Lambda_{\varepsilon,\lambda_0}\}) \leq \gamma_1,$ $\mathcal{R}_{\mathcal{L}(L_q(\Omega)^N, \ L_q(\Omega)^{N^3})}(\{\nabla^2 \mathcal{U}_j(\lambda) \mid \lambda \in \Lambda_{\varepsilon,\lambda_0}\}) \leq \gamma_1. \ (j=0,\ldots,N+1)$

Main theorem

Let $1 < q < \infty$, $0 < \varepsilon < \pi/2$. Then, there exist a $\lambda_0 > 0$ depending on ε , q, N and an operator $R(\lambda) \in \mathcal{L}(W_q^{1,0}(\Omega) \times L_q(\Omega)^{N^2+N}, W_q^{1,2}(\Omega))$ such that the following two assertions hold :

- (i) For any $(f,g) \in W_q^{1,0}(\Omega)$, $h \in W_q^1(\Omega)^N$ and $\lambda \in \Lambda_{\varepsilon,\lambda_0}$, $(\rho,u) = R(\lambda)(f,g,\nabla h,|\lambda|^{\frac{1}{2}}h) \in W_q^{1,2}(\Omega)$ solves the equations (RP) uniquely.
- $$\begin{split} \text{(ii) There exist } & \gamma_0 > 0 \text{ such that} \\ & \mathcal{R}_{\mathcal{L}(W_q^{1,0}(\Omega) \times L_q(\Omega)^{N^2+N}, \ W_q^{1,0}(\Omega))}(\{\lambda R(\lambda) \mid \lambda \in \Lambda_{\varepsilon,\lambda_0}\}) \leq \gamma_0, \\ & \mathcal{R}_{\mathcal{L}(W_q^{1,0}(\Omega) \times L_q(\Omega)^{N^2+N}, \ L_q(\Omega)^{N^2})}(\{|\lambda|^{\frac{1}{2}} \nabla P_{\nu} R(\lambda) \mid \lambda \in \Lambda_{\varepsilon,\lambda_0}\}) \leq \gamma_0, \\ & \mathcal{R}_{\mathcal{L}(W_q^{1,0}(\Omega) \times L_q(\Omega)^{N^2+N}, \ L_q(\Omega)^{N^3})}(\{\nabla^2 P_{\nu} R(\lambda) \mid \lambda \in \Lambda_{\varepsilon,\lambda_0}\}) \leq \gamma_0, \end{split}$$

Theorem (operator-valued Fourier multiplier theorem)

Let X and Y be two UMD Banach spaces and 1 . Let <math>M be a function in $C^1(\mathbb{R} \setminus \{0\}, \mathcal{L}(X,Y))$ such that

$$\mathcal{R}_{\mathcal{L}(X,Y)}(\{M(\tau) \mid \tau \in \mathbb{R} \setminus \{0\}\}) = \kappa_0 < \infty,$$

$$\mathcal{R}_{\mathcal{L}(X,Y)}(\{\tau M'(\tau) \mid \tau \in \mathbb{R} \setminus \{0\}\}) = \kappa_1 < \infty.$$

If we define the operator $T_M: \mathcal{F}^{-1}\mathcal{D}(\mathbb{R},X) \to \mathcal{S}'(\mathbb{R},Y)$ by the formula:

$$T_M \phi = \mathcal{F}^{-1}[M\mathcal{F}[\phi]], \ (\mathcal{F}[\phi] \in \mathcal{D}(\mathbb{R}, X)).$$

Then, the operator T_M is extended to a bounded linear operator from $L_p(\mathbb{R}, X)$ into $L_p(\mathbb{R}, Y)$. Moreover, denoting this extension by T_M , we have

$$||T_M||_{\mathcal{L}(L_P(\mathbb{R},X),L_P(\mathbb{R},Y))} \le C(\kappa_0 + \kappa_1)$$

for some constant C > 0 depending on p, X and Y.