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Unbounded Domains of Half Space Type

I Rn
+ := {(x1, ... , xn) ∈ Rn : xn > 0} is the (upper) half space

I a bent half space is a domain of the form

Hω = {x = (x ′, xn) ∈ Rn : xn > ω(x ′)},

where ω : Rn−1 → R is a Lipschitz continuous function in W 2,1
loc (Rn−1), such

that the gradient ∇′ω = (∂1, ... , ∂n−1)ω is bounded in Rn−1

I a perturbed half space is domain of class C1,1 such that Ω\B = Rn
+\B for

some open ball B
I an aperture domain is a domain of class C1,1 such that Ω ∪ B = Rn

+ ∪ Rn
− ∪ B

for some open ball B = BR(0) ⊂ Rn of radius R and center 0, where

Rn
− := {x ∈ Rn : xn < −d}

for some d ≥ 0
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The Concept of Very Weak Solutions

Definition
Let n ≥ 2 and let Ω ⊂ Rn be an unbounded domain of half space type. Moreover,
let 1 < r < q <∞ such that 1

n + 1
q = 1

r . Then for given data

F ∈ Lr (Ω), k ∈ Lr (Ω), g ∈ W−
1
q ,q(∂Ω), (1)

we call a vector field u ∈ Lq(Ω) a very weak solution to the Stokes system if it
satisfies the following conditions:

−(u,∆w) = −(F ,∇w)− 〈g, n · ∇w〉∂Ω, w ∈ C2
0,σ(Ω),

−(u,∇ψ) = (k ,ψ)− 〈g,ψn〉∂Ω, ψ ∈ C1
0 (Ω),

(2)

where C2
0,σ(Ω) = {w ∈ C2(Ω) : div w = 0, supp w compact in Ω, w |∂Ω = 0}.
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Generalized Definition

Remark
For n′ < q <∞ and given data F , k and g as in the foregoing definition, F and K
defined via

〈F , w〉 := −(F ,∇w)− 〈g, N · ∇w〉∂Ω , w ∈ Ŷ 2,q′
σ (Ω),

〈K,ψ〉 := (k ,ψ)− 〈g,ψN〉∂Ω , ψ ∈ Ŵ 1,q′ (Ω)
(3)

yield elements in Ŷ−2,q
σ (Ω) and Ŵ−1,q(Ω), respectively. Moreover, it holds

‖F‖Ŷ−2,q
σ (Ω) + ‖K‖Ŵ−1,q (Ω) ≤ c(‖F‖r + ‖k‖r + ‖g‖Ŵ−1/q,q (∂Ω)). (4)
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Generalized Definition

Definition
Let n ≥ 2, 1 < q <∞, Ω an unbounded domain of half space type and let
F ∈ Ŷ−2,q

σ (Ω),K ∈ Ŵ−1,q(Ω) be given. Then u ∈ Lq(Ω) is called a very weak
solution of the Stokes problem with data F ,K, if

−(u,∆w) = 〈F , w〉 , w ∈ Ŷ 2,q′
σ (Ω),

−(u,∇ψ) = 〈K,ψ〉 , ψ ∈ Ŵ 1,q′ (Ω),
(5)

or, equivalently,

(u,−∆w −∇ψ) = 〈F , w〉 + 〈K,ψ〉 . (6)
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Solution for General Data

Observation
If for every v ∈ Lq′ (Ω) there exists a unique solution w ∈ Ŷ 2,q′

σ (Ω), ψ ∈ Ŵ 1,q′ (Ω) to
the problem

−∆w −∇ψ = v , div w = 0 in Ω, w = 0 on ∂Ω (7)

depending linearly on v and satisfying the estimate

‖∇2w‖q′ + ‖∇ψ‖q′ ≤ c ‖v‖q′ ,

then u ∈ Lq(Ω) defined via the relation

(u, v ) = 〈F , w〉 + 〈K,ψ〉 ∀v ∈ Lq′ (Ω),

is the unique very weak solution of the Stokes system with data F and K.
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System (*)

Definition
For a domain Ω ⊂ Rn, we call

−∆w −∇ψ = v in Ω
∇div w = ∇γ in Ω

w = 0 on ∂Ω,
(*)

the system (*) corresponding to Ω.

Nov 6, 2012 | Jonas Sauer | 7



Strong Solutions in the Half Space

Theorem (Farwig, Sohr 1994)
Let n ≥ 2, 1 < q <∞ and let Ω = Rn

+. Then to each

v ∈ Lq(Ω), γ ∈ W 1,q(Ω) ∩ Ŵ−1,q(Ω),

there is a solution (w ,ψ) ∈ Ŷ 2,q(Ω)× Ŵ 1,q(Ω) of the system (*) and it holds

‖∇2w‖q + ‖∇ψ‖q ≤ c
(
‖v‖q + ‖∇γ‖q

)
(8)

with a constant c = c(n, q) > 0.
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Strong Solutions in the Bent Half Space

Theorem
Let n ≥ 3, 1 < q < n − 1 and let Hω be a bent half space. Then there is a constant
K = K (n, q) > 0 such that if ‖∇′ω‖∞ ≤ K and if ‖∇′2ω‖Ln−1(Rn−1) ≤ K or
‖| · |∇′2ω‖∞ ≤ K , then for all v ∈ Lq(Hω) and γ ∈ Ŵ 1,q(Hω) there exists a solution
(w ,ψ) ∈ Ŷ 2,q(Hω)× Ŵ 1,q(Hω) of the system (*) satisfying the estimate

‖∇2w‖q + ‖∇ψ‖q ≤ c
(
‖v‖q + ‖∇γ‖q

)
(9)

with a constant c = c(ω, n, q) > 0.
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Strong Solutions in the Perturbed Half Space

Theorem
Let n ≥ 3, 1 < q < n/2. then for all v ∈ Lq(Ω) and γ ∈ Ŵ 1,q(Ω) there exists a
solution (w ,ψ) ∈ Ŷ 2,q(Ω)× Ŵ 1,q(Ω) of the system (*) with ‖∇2w‖q <∞ satisfying
the estimate

‖∇2w‖q + ‖∇ψ‖q ≤ c
(
‖v‖q + ‖∇γ‖q

)
(10)

with a constant c = c(Ω, n, q) > 0.
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Properties of the Aperture Domain

Lemma
Let Ω ⊂ Rn, n ≥ 2 be an aperture domain. Suppose 1 < q < n and let r be defined
via 1

n + 1
r = 1

q . Then for every ψ ∈ Ẇ 1,q(Ω) there are constants ψ± ∈ C such that

‖ψ − ψ+‖Lr (Ω+) + ‖ψ − ψ−‖Lr (Ω−) + |ψ+ − ψ−| ≤ c‖∇ψ‖q .

Furthermore, the sum

Ẇ 1,q(Ω) = Ŵ 1,q(Ω)⊕ {Kϕ0 : K ∈ C}

is direct. Here, ϕ0 ∈ C∞(Ω) is a function satisfying

ϕ0(x) =
{

1 for x ∈ Ω+

0 for x ∈ Ω−\B
and

∫
B∩Ω−

ϕ0 dx = 0.
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Theorem
Let Ω ⊂ Rn, n ≥ 3, be an aperture domain and let v ∈ Lq(Ω), γ = 0, 1 < q < n

2 .
Furthermore let r , ρ be defined via 1

n + 1
r = 1

q and 2
n + 1

ρ = 1
q , respectively. Then for

every α ∈ C there is a unique solution (w ,ψ) ∈ Ŷ 2,q(Ω)× Ẇ 1,q(Ω) of the system
(*) such that φ̂(w) = α. It holds

‖∇2w‖q + ‖∇ψ‖q ≤ c(‖v‖q + |α|)

for some c = c(n, q,Ω).
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Thank you very much for your attention!

Questions?
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