Very Weak Solutions of the Stationary Stokes Equations in Unbounded Domains of Half Space Type

TECHNISCHE UNIVERSITÄT DARMSTADT

Jonas Sauer Department of Mathematics Darmstadt University of Technology

▶ $\mathbb{R}^n_+ := \{(x_1, ..., x_n) \in \mathbb{R}^n : x_n > 0\}$ is the *(upper) half space*

- ▶ $\mathbb{R}^n_+ := \{(x_1, ..., x_n) \in \mathbb{R}^n : x_n > 0\}$ is the *(upper) half space*
- a bent half space is a domain of the form

$$H_{\omega} = \{ x = (x', x_n) \in \mathbb{R}^n : x_n > \omega(x') \},\$$

where $\omega : \mathbb{R}^{n-1} \to \mathbb{R}$ is a Lipschitz continuous function in $W^{2,1}_{loc}(\mathbb{R}^{n-1})$, such that the gradient $\nabla' \omega = (\partial_1, ..., \partial_{n-1})\omega$ is bounded in \mathbb{R}^{n-1}

- ▶ $\mathbb{R}^n_+ := \{(x_1, ..., x_n) \in \mathbb{R}^n : x_n > 0\}$ is the *(upper) half space*
- a bent half space is a domain of the form

$$H_{\omega} = \{ x = (x', x_n) \in \mathbb{R}^n : x_n > \omega(x') \},\$$

where $\omega : \mathbb{R}^{n-1} \to \mathbb{R}$ is a Lipschitz continuous function in $W^{2,1}_{loc}(\mathbb{R}^{n-1})$, such that the gradient $\nabla' \omega = (\partial_1, ..., \partial_{n-1})\omega$ is bounded in \mathbb{R}^{n-1}

A perturbed half space is domain of class C^{1,1} such that Ω\B = ℝⁿ₊\B for some open ball B

- ▶ $\mathbb{R}^n_+ := \{(x_1, ..., x_n) \in \mathbb{R}^n : x_n > 0\}$ is the *(upper) half space*
- a bent half space is a domain of the form

$$H_{\omega} = \{ x = (x', x_n) \in \mathbb{R}^n : x_n > \omega(x') \},\$$

where $\omega : \mathbb{R}^{n-1} \to \mathbb{R}$ is a Lipschitz continuous function in $W^{2,1}_{loc}(\mathbb{R}^{n-1})$, such that the gradient $\nabla' \omega = (\partial_1, \dots, \partial_{n-1})\omega$ is bounded in \mathbb{R}^{n-1}

- A perturbed half space is domain of class C^{1,1} such that Ω\B = ℝⁿ₊\B for some open ball B
- ► an *aperture domain* is a domain of class $C^{1,1}$ such that $\Omega \cup B = \mathbb{R}^n_+ \cup \mathbb{R}^n_- \cup B$ for some open ball $B = B_R(0) \subset \mathbb{R}^n$ of radius R and center 0, where

$$\mathbb{R}^n_- \coloneqq \{x \in \mathbb{R}^n : x_n < -d\}$$

for some $d \ge 0$

The Concept of Very Weak Solutions

Definition

Let $n \ge 2$ and let $\Omega \subset \mathbb{R}^n$ be an unbounded domain of half space type. Moreover, let $1 < r < q < \infty$ such that $\frac{1}{n} + \frac{1}{q} = \frac{1}{r}$. Then for given data

$$F \in L^{r}(\Omega), k \in L^{r}(\Omega), g \in W^{-\frac{1}{q},q}(\partial\Omega),$$
 (1)

we call a vector field $u \in L^q(\Omega)$ a *very weak solution* to the Stokes system if it satisfies the following conditions:

$$\begin{array}{lll} -(u,\Delta w) &=& -(F,\nabla w) - \langle g, \mathbf{n} \cdot \nabla w \rangle_{\partial\Omega}, & w \in C^2_{0,\sigma}(\overline{\Omega}), \\ -(u,\nabla \psi) &=& (k,\psi) - \langle g,\psi \mathbf{n} \rangle_{\partial\Omega}, & \psi \in C^1_0(\overline{\Omega}), \end{array}$$
(2)

where $C^2_{0,\sigma}(\overline{\Omega}) = \{ w \in C^2(\overline{\Omega}) : \text{div } w = 0, \text{supp } w \text{ compact in } \overline{\Omega}, w|_{\partial\Omega} = 0 \}.$

Generalized Definition

Remark

For $n' < q < \infty$ and given data *F*, *k* and *g* as in the foregoing definition, *F* and *K* defined via

$$\begin{array}{ll} \langle \mathcal{F}, \boldsymbol{w} \rangle & \coloneqq & -(F, \nabla \boldsymbol{w}) - \langle \boldsymbol{g}, \boldsymbol{N} \cdot \nabla \boldsymbol{w} \rangle_{\partial \Omega} \,, & \boldsymbol{w} \in \hat{Y}^{2, q'}_{\sigma}(\Omega), \\ \langle \mathcal{K}, \psi \rangle & \coloneqq & (k, \psi) - \langle \boldsymbol{g}, \psi \boldsymbol{N} \rangle_{\partial \Omega} \,, & \psi \in \hat{W}^{1, q'}(\Omega) \end{array}$$
(3)

yield elements in $\hat{Y}_{\sigma}^{-2,q}(\Omega)$ and $\hat{W}^{-1,q}(\Omega)$, respectively. Moreover, it holds

$$\|\mathcal{F}\|_{\hat{Y}^{-2,q}_{\sigma}(\Omega)} + \|\mathcal{K}\|_{\hat{W}^{-1,q}(\Omega)} \le c(\|\mathcal{F}\|_{r} + \|k\|_{r} + \|g\|_{\hat{W}^{-1/q,q}(\partial\Omega)}).$$
(4)

Generalized Definition

Definition

Let $n \geq 2$, $1 < q < \infty$, Ω an unbounded domain of half space type and let $\mathcal{F} \in \hat{Y}^{-2,q}_{\sigma}(\Omega), \mathcal{K} \in \hat{W}^{-1,q}(\Omega)$ be given. Then $u \in L^{q}(\Omega)$ is called a *very weak* solution of the Stokes problem with data \mathcal{F}, \mathcal{K} , if

$$\begin{array}{ll} -(u,\Delta w) &= \langle \mathcal{F},w\rangle, & w \in \hat{Y}^{2,q'}_{\sigma}(\Omega), \\ -(u,\nabla \psi) &= \langle \mathcal{K},\psi\rangle, & \psi \in \hat{W}^{1,q'}(\Omega), \end{array}$$
(5)

Generalized Definition

Definition

Let $n \geq 2$, $1 < q < \infty$, Ω an unbounded domain of half space type and let $\mathcal{F} \in \hat{Y}^{-2,q}_{\sigma}(\Omega), \mathcal{K} \in \hat{W}^{-1,q}(\Omega)$ be given. Then $u \in L^{q}(\Omega)$ is called a *very weak* solution of the Stokes problem with data \mathcal{F}, \mathcal{K} , if

$$\begin{array}{ll} -(u,\Delta w) &=& \langle \mathcal{F},w\rangle, & w\in \hat{Y}^{2,q'}_{\sigma}(\Omega), \\ -(u,\nabla\psi) &=& \langle \mathcal{K},\psi\rangle, & \psi\in \hat{W}^{1,q'}(\Omega), \end{array}$$
(5)

or, equivalently,

$$(\boldsymbol{u}, -\Delta \boldsymbol{w} - \nabla \psi) = \langle \mathcal{F}, \boldsymbol{w} \rangle + \langle \mathcal{K}, \psi \rangle.$$
(6)

Solution for General Data

Observation

If for every $v \in L^{q'}(\Omega)$ there exists a unique solution $w \in \hat{Y}^{2,q'}_{\sigma}(\Omega)$, $\psi \in \hat{W}^{1,q'}(\Omega)$ to the problem

$$-\Delta w - \nabla \psi = v, \quad \operatorname{div} w = 0 \text{ in } \Omega, \quad w = 0 \text{ on } \partial \Omega \tag{7}$$

depending linearly on v and satisfying the estimate

$$\|\nabla^2 w\|_{q'} + \|\nabla \psi\|_{q'} \le c \|v\|_{q'}$$
,

then $u \in L^q(\Omega)$ defined via the relation

$$(\boldsymbol{u},\boldsymbol{v})=\langle \mathcal{F},\boldsymbol{w}\rangle+\langle \mathcal{K},\psi\rangle \qquad \forall \boldsymbol{v}\in L^{q'}(\Omega),$$

is the unique very weak solution of the Stokes system with data \mathcal{F} and \mathcal{K} .

Nov 6, 2012 | Jonas Sauer | 6

System (*)

(*)

Definition

For a domain $\Omega \subset \mathbb{R}^n$, we call

$$\begin{aligned} -\Delta w - \nabla \psi &= v & \text{in } \Omega \\ \nabla \text{div } w &= \nabla \gamma & \text{in } \Omega \\ w &= 0 & \text{on } \partial \Omega, \end{aligned}$$

the system (*) corresponding to Ω .

Strong Solutions in the Half Space

Theorem (Farwig, Sohr 1994)

Let $n \ge 2$, $1 < q < \infty$ and let $\Omega = \mathbb{R}^n_+$. Then to each

 $v \in L^q(\Omega), \qquad \gamma \in W^{1,q}(\Omega) \cap \hat{W}^{-1,q}(\Omega),$

there is a solution $(w, \psi) \in \hat{Y}^{2,q}(\Omega) \times \hat{W}^{1,q}(\Omega)$ of the system (*) and it holds

$$\|\nabla^2 \boldsymbol{w}\|_{\boldsymbol{q}} + \|\nabla \boldsymbol{\psi}\|_{\boldsymbol{q}} \le \boldsymbol{c} \left(\|\boldsymbol{v}\|_{\boldsymbol{q}} + \|\nabla \boldsymbol{\gamma}\|_{\boldsymbol{q}}\right) \tag{8}$$

with a constant c = c(n, q) > 0.

Strong Solutions in the Half Space

Theorem (Farwig, Sohr 1994; Farwig, S. 2012) Let $n \ge 2$, $1 < q < \infty$ and let $\Omega = \mathbb{R}^n_+$. Then to each

 $v \in L^q(\Omega), \qquad \gamma \in \hat{W}^{1,q}(\Omega),$

there is a solution $(w, \psi) \in \hat{Y}^{2,q}(\Omega) \times \hat{W}^{1,q}(\Omega)$ of the system (*) and it holds

$$\|\nabla^2 \boldsymbol{w}\|_{\boldsymbol{q}} + \|\nabla \psi\|_{\boldsymbol{q}} \le \boldsymbol{c} \left(\|\boldsymbol{v}\|_{\boldsymbol{q}} + \|\nabla \gamma\|_{\boldsymbol{q}}\right) \tag{8}$$

with a constant c = c(n, q) > 0.

Strong Solutions in the Bent Half Space

Theorem

Let $n \ge 3$, 1 < q < n-1 and let H_{ω} be a bent half space. Then there is a constant K = K(n, q) > 0 such that if $\|\nabla' \omega\|_{\infty} \le K$ and if $\|\nabla'^2 \omega\|_{L^{n-1}(\mathbb{R}^{n-1})} \le K$ or $\|| \cdot |\nabla'^2 \omega\|_{\infty} \le K$, then for all $v \in L^q(H_{\omega})$ and $\gamma \in \hat{W}^{1,q}(H_{\omega})$ there exists a solution $(w, \psi) \in \hat{Y}^{2,q}(H_{\omega}) \times \hat{W}^{1,q}(H_{\omega})$ of the system (*) satisfying the estimate

$$\|\nabla^2 \boldsymbol{w}\|_{\boldsymbol{q}} + \|\nabla \boldsymbol{\psi}\|_{\boldsymbol{q}} \le \boldsymbol{c} \left(\|\boldsymbol{v}\|_{\boldsymbol{q}} + \|\nabla \boldsymbol{\gamma}\|_{\boldsymbol{q}}\right) \tag{9}$$

with a constant $c = c(\omega, n, q) > 0$.

Strong Solutions in the Perturbed Half Space

Theorem

Let $n \ge 3$, 1 < q < n/2. then for all $v \in L^q(\Omega)$ and $\gamma \in \hat{W}^{1,q}(\Omega)$ there exists a solution $(w, \psi) \in \hat{Y}^{2,q}(\Omega) \times \hat{W}^{1,q}(\Omega)$ of the system (*) with $\|\nabla^2 w\|_q < \infty$ satisfying the estimate

$$\|\nabla^2 w\|_q + \|\nabla \psi\|_q \le c \left(\|v\|_q + \|\nabla \gamma\|_q\right)$$
(10)

with a constant $c = c(\Omega, n, q) > 0$.

Properties of the Aperture Domain

Lemma

Let $\Omega \subset \mathbb{R}^n$, $n \ge 2$ be an aperture domain. Suppose 1 < q < n and let r be defined via $\frac{1}{n} + \frac{1}{r} = \frac{1}{q}$. Then for every $\psi \in \dot{W}^{1,q}(\Omega)$ there are constants $\psi_{\pm} \in \mathbb{C}$ such that

$$\|\psi - \psi_{+}\|_{L^{r}(\Omega_{+})} + \|\psi - \psi_{-}\|_{L^{r}(\Omega_{-})} + |\psi_{+} - \psi_{-}| \le c \|\nabla \psi\|_{q}$$

Furthermore, the sum

$$\dot{W}^{1,q}(\Omega) = \hat{W}^{1,q}(\Omega) \oplus \{K\varphi^0 : K \in \mathbb{C}\}$$

is direct. Here, $\varphi^0 \in C^{\infty}(\Omega)$ is a function satisfying

$$\varphi^0(x) = \begin{cases} 1 & \text{for } x \in \Omega_+ \\ 0 & \text{for } x \in \Omega_- \setminus B \end{cases} \text{ and } \int_{B \cap \Omega_-} \varphi^0 \, dx = 0.$$

Theorem

Let $\Omega \subset \mathbb{R}^n$, $n \geq 3$, be an aperture domain and let $v \in L^q(\Omega)$, $\gamma = 0$, $1 < q < \frac{n}{2}$. Furthermore let r, ρ be defined via $\frac{1}{n} + \frac{1}{r} = \frac{1}{q}$ and $\frac{2}{n} + \frac{1}{\rho} = \frac{1}{q}$, respectively. Then for every $\alpha \in \mathbb{C}$ there is a unique solution $(w, \psi) \in \hat{Y}^{2,q}(\Omega) \times \dot{W}^{1,q}(\Omega)$ of the system (*) such that $\hat{\phi}(w) = \alpha$. It holds

$$\|\nabla^2 \mathbf{w}\|_q + \|\nabla \psi\|_q \le c(\|\mathbf{v}\|_q + |\alpha|)$$

for some $c = c(n, q, \Omega)$.

Thank you very much for your attention!

Questions?

Nov 6, 2012 | Jonas Sauer | 13