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§1. Helmholtz decomposition and weak solutions

Helmholtz observed that smooth vector field can be decom-

posed of gradient field and solenoidal field. His observation has

influenced a great impact on science and mathematics. In fluid

mechanics Helmholtz decomposition appears in the formulation

of incompressibility due to volume preserving deformation.
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To be more specific, we consider a smooth vector field

u : R3 → R3

satisfying

u(x) = o(
1

|x|
).

Define Newtonian potential N(f ) for f = o( 1
|x|2) as |x| → ∞

by

N(f )(x) = −∆−1f (x) =
1

4π

∫
R3

f (y)

|x− y|
dy.

From the integration by parts and vector identity

∆u = −∇×∇× u +∇(div(u))

we have

u = −∇φ +∇× v
φ = N(div(u))

v = N(∇× u)

and the decomposition is unique.
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In view of analysis, we need more general framework to con-

sider various function spaces. For notational simplicity we do

not separate vectors and scalars and omit domains in symbols.

We let Ω ⊂ R3 be an open set and introduce the Lebesgue

measurable function spaces Lp(Ω) = {
∫

Ω |f |
pdx < ∞}, 1 ≤

p ≤ ∞ and C∞0 (Ω) that is the set of smooth function with

compact support in Ω.

C∞0,σ is a subset of solenoidal vectors in C∞0 and Lpσ is the

closure of C∞0,σ in Lp.

Since L2 is Hilbert space, we have Helmholtz decomposition

so that

L2(Ω) = L2
σ(Ω)⊕G2(Ω),

G2(Ω) = {∇p ∈ L2(Ω); p ∈ L1
loc(Ω)}.

Sometimes, there needs deeper understanding about domains.

For example, we let Ω be Lipscitz.

Definition 1.1. We call D ⊂ Rn, n ≥ 2 is Lipschitz if

for every Q ∈ S(= ∂D), there is a ball B(r,Q) = {P ∈
Rn | |P −Q| < r} and a coordinate system such that

B(r,Q)∩D = B(r,Q)∩{(x′, xn) | xn > φ(x′), ||∇φ||L∞ ≤M},

where M and r are independent of Q.
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For 1 ≤ p ≤ ∞ and −∞ < s <∞ Sobolev space Lps(R
n) is

defined by

Lps = {(I −∆)−s/2u : u ∈ Lp(Rn)}

with the norm

||u||Lps = ||(I −∆)s/2u||Lp(Rn)

and define for s ≥ 0 Lps(Ω) by the space of the restrictions of

functions in Lps(R
n) to Ω. Lps,0 is the subspace of functions with

support in Ω of Lps(R
n). We denote Hk = L2

k.

Define Besov space Bps(∂Ω) as the collection of all measurable

function f on ∂Ω such that

||f ||Bps(∂Ω) =: ||f ||Lp(∂Ω)+

(∫
∂Ω

∫
∂Ω

|f (P )− f (Q)|p

|P −Q|n−1+sp
dσ(P )dσ(Q)

)1
p

.

The case p =∞ corresponds to the non-homogeneous version

of the space of Holder continuous functions on ∂Ω. We also

define Bp−s(∂Ω) as the dual of Bps(∂Ω) satisfying 1
p + 1

q = 1, 0 <

s < 1, 1 < p ≤ ∞.
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Theorem 1.2. Suppose that u ∈ Lp(Ω) and divu ∈ Lp−1(Ω).

Then u ·N ∈ Bp−1
p
(∂Ω), where N is the outward unit normal

vector.

Proof

(1) We begin by noting that the pairing ofLq−s+1
q
(Ω) andLq

s−1+1
p
(Ω)

is well defined for any 0 < s < 1, 1 < p, q <∞ with 1
p + 1

q = 1.

(2) In fact, since C∞0 (Ω) is dense in Lqα(Ω) for 0 ≤ α < 1
q , it is

not difficult to see that Lqα,0(Ω) = Lqα(Ω) for 0 ≤ α < 1
q .

(3) In particular,

Lq−s+1
q
(Ω) =

(
Lp
s−1+1

p
(Ω)

)∗
if

1

q
≤ s

and

Lp
s−1+1

p
(Ω) =

(
Lq−s+1

q
(Ω)

)∗
if s ≤ 1

q
.

(4) For

f ∈
(
Lp
s+1

p
(Ω)

)∗
= Lq−s−1

p ,0
(Ω),

the distribution div f ∈ (C∞0 (Ω))′, we denote by f · N the

normal component of f and define it by the linear functional in

Bq−s(∂Ω) by

< f ·N, φ >:=< divf, φ̃ > + < f,∇φ̃ >

for all φ ∈ Bps(∂Ω), where φ̃ ∈ Lp
s+1

p
(Ω) is an extension of φ in

the trace sense.

(5) In particular, when s = 1
q , φ̃ ∈ L

p
1(Ω).
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(6) It remains to show that ∇φ̃ ∈ Lp
s−1

q
. But this follows from

extension lemma by [25] and duality lemma by [18].

Remark 1

From the proof, we can deduce

||u ·N ||Bp
−1
p

(∂Ω) ≤ c(Ω, p)
(
||u||Lp(Ω) + ||divu||Lp(Ω)

)
.

Remark 2

If u ∈ Lp(Ω) has divu = 0, then u · N as a functional in(
Bp

1−1
q
(∂Ω)

)∗
, annihilates all functions of the form χ∂Ω′ with

Ω′ connected component of Ω. We denote the collection of all

such functionals by B̃p−1
p
(∂Ω). We have

Lpσ(Ω) := {u ∈ Lp(Ω) : divu = 0 and u ·N = 0}

gradLp1(Ω) := {∇u : u ∈ Lp1(Ω)}.

They are easily seen to be closed subspaces of Lp(Ω) and , for

p = 2, we denote P,D the corresponding orthogonal projections

from L2(Ω) onto L2
σ(Ω) and G2(Ω) respectively. P is called

Helmholtz projection.

Theorem 1.3. For each Lipschitz domain Ω in Rn, with

arbitrary topology, there exists a positive number ε depend-

ing on Ω such that P,D extend to bounded operators from

Lp(Ω) onto Lpσ(Ω) and onto gradLp1(Ω), respectively, for

each 3
2 − ε < p < 3 + ε. Hence in this range

Lp(Ω) = gradLp1(Ω)⊕ Lpσ(Ω)
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where the sum is topological. In the class of Lipschitz do-

main the result is sharp. If however ∂Ω ∈ C1 then we may

take 1 < p <∞.
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For unbounded domain like infinite cylinder and various func-

tion spaces with weight, there are results by Farwig, Specovius-

Neugebauer, Fujiwara-Morimoto, Miyakawa, Sohr, Simader, Wieg-

ner. For Lipschitz domain, there results by Kenig-Jerison, Fabes-

Mitrea-Mendez.
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The Helmhotz decomposition depends essentially on Neu-

mann problem:

∆φ = 0 in Ω

∂φ

∂N
= (u−∇(div(N(u)))) ·N on ∂Ω
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In the whole domain R3 or periodic domain T 3 = R3/(2πZ)3

Riesz operator is useful to apply Navier-Stokes equations. In

R3, we define for u ∈ L2(R3)

Ri(u) = F−1(
ξi

|ξ|
û), i = 1, 2, 3

and for u(x) =
∑

k∈Z3 uke
ik·x in L2(T 3)

Ri(u) =
∑
k∈Z3

ki

|k|
uke

ik·x, i = 1, 2, 3.

The Helmholtz projection will be

P (u) = (I −R⊗R)u

in L2(R3) and

P (u) =
∑
k∈Z3

(I − k

|k|
⊗ k

|k|
)uke

ik·x

in L2(T 3).
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First, we consider a Cauchy problem in ΩT = R3× (0, T ) for

a fixed time T of the Navier-Stokes equations

∂

∂t
u− ν∆u + div(u⊗ u) +∇p = 0, (1.1)

divu = 0

with an initial data

u(x, 0) = u0(x),

where the velocity fields u and u0 are three dimensional solenoidal

vector fields and the pressure p is a scalar field. We let the vis-

cosity ν = 1.

Definition 1.4. We say u ∈ L2
loc(ΩT ) is a weak solution if

for Q an open subset of ΩT and φ ∈ C∞0 (Q)∫
u · ∇φdz = 0

and for ψ ∈ C∞0,σ(Q)∫
u · (ψt + ∆ψ) + u⊗ u : ∇⊗ ψdz = 0,

where z = (x, t).
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We construct Galerkin solution when the initial data u0 is in

L2
σ(T 3) for the periodic domain. Certainly our construction can

be modified for more general domain like Lipschitz domain. We

follow the idea of Hopf. For each n we let Pn the projection to

the finite dimensional space (span{eik·x, |k| ≤ n})σ such that

Pn(
∑
k∈Z3

ukeik·x) =
∑
|k|≤n

(I − k

|k|
⊗ k

|k|
)ukeik·x.

The n-th Galerkin approximation solution un is the solution to

∂

∂t
un = ∆un + Pn(div(un ⊗ un))

un(0) = Pn(u0)

with Pnun = un. Applying un as a test function to Galerkin

equation, we have an approximation energy estimate.

Theorem 1.5. Suppose u0 ∈ L2
σ(T 3), then the Galerkin ap-

proximation solution satisfies that for all T > 0∫
|un(T )|2dx + 2

∫ T

0

∫
|∇un(t)|2dxdt =

∫
|Pnu0|2dx

and

lim
T→0

∫
|un(T )|2dx =

∫
|Pnu0|2dx.
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By taking φ ∈ C∞σ (T ) we have∫
un(T ) · φdx +

∫ T

0

∫
∇un : ∇φdxdt

+

∫ T

0

∫
un ⊗ un : Pn∇φdxdt =

∫
Pnu0 · φdx

and from the a priori estimate of un and ∇un, we have∫ T

0

∫
∇un : ∇φdxdt→ 0 as T → 0∫ T

0

∫
un ⊗ un : Pn∇φdxdt→ 0 as T → 0.

Since φ is arbitrary periodic smooth function, un(T ) converges

u0 weakly in L2 as T goes to zero.Therefore the norm conver-

gence and weak convergence in L2 imply the strong convergence.

Theorem 1.6.∫
|un(T )− Pnu0|2dx→ 0 as T → 0.
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The norm convergence of un to Pnu0 as t goes to zero By

Sobolev embedding and compactness if necessary choosing a

subsequence there is u ∈ L∞(0, T : L2
σ(T 3))∩L2(0, T : H1(T 3))

such that

un → u weakly* in L∞(0, T : L2(T 3))

un → u weakly in L2(0, T : H1(T 3))

un → u strongly in Lp(ΩT ), 1 < p <
10

3
.

We denote the existence space by

V = L∞(0, T : L2
σ(T 3)) ∩ L2(0, T : H1(T 3)).
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From the completeness of L2
σ we have Pnu0 converges to

Pu0 = u0 strongly in L2 and we have the following theorem.

Theorem 1.7. u ∈ V is a weak solution and satisfies∫
|u(T )|2dx +

∫ T

0

∫
|∇u|2dxdt ≤

∫
|u0|2dx

and ∫
|u(T )− u0|2dx→ 0 as T → 0.

Theorem 1.8. u is in C(0, T : L2
weak), namely, for all v ∈

L2(T 3) ∫
u(t) · vdx→

∫
u(s) · vdx

as t goes to s.

17



Here is a question of energy inequality. If we the weak so-

lution satisfies strict inequality, we call it turbulent solution

referring to Kolmogorov energy spectrum structure. It means

a certain portion of energy dissipates through heat conduction

from viscous friction.

But, as far as I know, there has never been constructed tur-

bulent solution in Navier-Stokes flow.

To get equality, it is enough to construct solutions inCα(0, T :

L2) for some α > 0.

In case of inviscid Euler flow, Onsager conjectured that if

the flow is Cα, α > 1/3 then the energy identity holds and

if α < 1/3, the equality fails. The positive answer for α >

1/3 has already been answered by Constantin-Titi [8] in 1994.

Remarkably enough, when α < 1/5, De Lellis-Szekelyhidi [13]

constructed solutiions satisfies strict inequality recently.
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The Galerkin approximation solution doesn’t involved with

the pressure. However by defining the approximation pressure

as the solution to the Poisson equation

∆pn =
∂2

∂xi∂xj
uinu

j
n

we can recover n-th Galerkin pressure, where the double indices

mean summation up to 3. Introducing the residual projection

Qn = P − Pn, we write the Galerkin equation as

∂

∂t
un −∆un + div(un ⊗ un) +∇pn −Qn(div(un ⊗ un)) = 0.

Thus if the projection residual converges in appropriate sense,

we may say the Galerkin solution is associated with pressure.

Question:

lim
n

∫
Qnunφdz → 0 ?
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Definition 1.9. We say (u, p) ∈ V × L3/2(ΩT ) is suitable

weak solution to the initial value problem if for all φ ∈ C∞0∫
u·φtdz+

∫
∇u : ∇φdz+

∫
u⊗u : ∇φdz−

∫
pdivφdz = 0

(1.2)

and u is weakly divergence free for almost all time, satisfies

the localized energy inequality for almost all t∫
|u(x, t)|2φdx + 2

∫ t

0

∫
|∇u|2φdxds (1.3)

≤
∫ t

0

∫
|u|2(φt + ∆φ)dxds +

∫ t

0

∫
(|u|2 + 2p)u · φdxds

for all nonnegative φ ∈ C∞0 (R3 ×R+) and∫
|u(x, t)− u0(x)|2dx→ 0 as t→ 0,

where the initial data u0 is weakly divergence free in L2(R3
+).
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Here is a lemma due to Bryuk-Craig-Ibrahim:

Lemma 1.10. If for any constant c > 0

lim
n→∞

∫ T

0

∑
n−c<|k|≤n

|k|2|ukn(t)|2dt = 0,

then the Galerkin solution satisfies local energy inequality

in suitable sense.

Remark.If the Galerkin approximation has bi-Laplacian, then

it is suitable. Also recently, Guermond [23] showed that Finite

Element Solution (un, pn) in discrete space satisfying LBB con-

dition converges to a suitable weak solution.
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The existence theorem of suitable weak solutioon is due to

Scheffer and Caffarelli-Kohn-Nirenberg( [36] and [3]).

We introduce suitable approximation scheme: There exists

a sequence {(un, pn)} of smooth functions and a sequence of

positive numbers εn such that

un → u weakly* in L∞(0, T : L2(T 3))

un → u weakly in L2(0, T : H1(T 3))

un → u strongly in L3(ΩT ),

pn → p strongly in L3/2(ΩT ),

with (un, pn) satisfying

∂

∂t
un −∆un + (ηn ∗ un · ∇)un +∇pn = 0

divun = 0

un(0) = ηn ∗ u0.

Here η is a smooth nonnegative cutoff function and ηn(x) =
1
ε3n
η( xηn).
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Theorem 1.11. Let (u, p) be a limit of suitable approxima-

tion solutions of the Navier-Stokes system on the periodic

domain ΩT , then (u, p) is a suitable weak solution in ΩT .

Proof. Denote by {(un, pn)} a sequence of solutions of ap-

proximate equation which converges in the suitable sense to

(u, p), a suitable weak solution. Using Sobolev embedding

H1(T 3)→ L6(T 3) we deduce that {un} is a bounded sequence

in L2(0, T : L6) (where we are using the norm convention

that v ∈ Lq(0, T : Lp) means that
∫ T

0 (
∫
|v(x, t)|pdx)q/pdt <

1). From Hölder inequality we have un ∈ L10/3 with uniform

bound. By the compact embedding we get( if necessary subse-

quence)

(un, pn)→ (u, p) strongly in L3 × L3/2.

Now we want to prove that the limit (u, p) satisfies the local

energy inequality in ΩT . Let φ be a non-negative smooth cutoff

function with support in ΩT (in particular φ vanishes near t =

0). Multiplying the equation by φun and integrating by parts,

and using the integral identity∫
(ηn ∗ un · ∇)un · unφdx =

1

2

∫
ηn ∗ un|un|2 · ∇φdx

we have

2

∫
|∇un|2φdz =

∫
|un|2(φt + ∆φ)dz

+

∫
|un|2ηn ∗ un · ∇φ + 2pnun · ∇φdz
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and the strong convergence (un, pn) in L3 × L3/2 implies the

local energy inequality (3.4)∫
|u(x, t)|2φdx + 2

∫ t

0

∫
|∇u|2φdxds

≤
∫ t

0

∫
|u|2(φt + ∆φ)dxds +

∫ t

0

∫
(|u|2 + 2p)u · φdxds.
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Here is a brief argument of L3/2 integrability of pressure:

i) pn = RiRj((ηn ∗ un)iujn) for the Riesz operator Ri.

ii) Ri is bounded operator in Lp, p ∈ (1,∞).

iii) For almost all t, ηn ∗ un ⊗ un(t) converges strongly to

u⊗ u(t) in L3/2(T 3).

iv) We let p = RiRj(uiuj), then pn(t) converges to p(t) in

L3/2(T 3) for almost all t.

v) From the L3/2(0, T : L3/2(T 3)) convergence of un ⊗ un to

u⊗ u, we get p ∈ L3/2(ΩT ).
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Kato and Giga-Miyakawa proved that for the initial data

u0 ∈ L3 there exist T > 0 and at least one solution u in

C([0, T );L3) ∩ C((0, T );L∞)

such that u solves Navier-Stokes equations in the sense of the

following integral equation:

u(t) = etAu0 −
∫ t

0

e(t−s)APdiv(u⊗ u)(s)ds,

where etA denotes the heat semigroup and P denotes the Helmholtz

projection. Such u is called a mild solution.

Weak-Strong uniqueness implies uniqueness.
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§2. Partial regularity

§2..1 Introduction

In this section, we study partial regularity of the incompressible

Navier-Stokes equations for the weak solution in the sense of

Leray [31] and Hopf [24]. After Scheffer [36] introduced the idea

of suitable weak solution, Caffarelli, Kohn and Nirenberg [3]

established a criterion of ε regularity and Lin [32] simplified

the proof greatly. Choe and Lewis [7] improved the parabolic

Hausdorff dimension by logarithmic factor.
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All the previous results rely on the localized energy inequality

and higher integrability of pressure like L3/2 of the suitable weak

solutions. From the definition of the suitable weak solution,

the pressure satisfies Poisson equation and is represented by

Newtonian potential with density that is a quadratic function

of velocity gradient.

Meanwhile, Leray-Hopf solution is constructed by Galerkin

process with orthonormal basis of the parabolic solution space

and from the weak convergence, we have global energy inequal-

ity. Here, it is found a localized energy inequality from the

vorticity equation and Biot Savart law. In fact, for the Stokes

equations, a localized energy inequality is proved by Jin [26].
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We say u ∈ L∞(0, T : L2(R3))∩L2(0, T : H1(R3)) is Leray-

Hopf solution to the Cauchy problem if for a fixed v ∈ L2(R3)∫
u ·vdx(t) is continuous in t, for all φ ∈ C∞0 (R3× (0, T )) with

divφ = 0∫
u · φtdz −

∫
∇u : ∇φdz +

∫
u⊗ u : ∇φdz = 0, (2.1)

for almost all t0

1

2

∫
|u(x, t0)|2dx +

∫ t0

0

∫
|∇u|2dxdt ≤ 1

2

∫
|u0(x)|2dx

and ∫
|u(x, t)− u0(x)|2dx→ 0 as t→ 0,

where the initial data u0 is weakly divergence free in L2(R3).

The following existence theorem is due to Leray [31].

Theorem 2.1. There is a Leray-Hopf solution to the Cauchy

problem.
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We define a ball Br(x0) = {x : |x−x0| < r} and a parabolic

cylinder Qr(x0, t0) = Br(x0)× (t0− r2, t0 + r2
0), and we always

assume that the cylinders are in ΩT . Our main theorem is the

following:

Theorem 2.2. There is an absolute constant ε0 such that

lim sup
r→0

1

r

∫
Qr

|∇u|2dz ≤ ε0

implies that for an r0

sup
z∈Qr0

2

|u(z)| ≤ c

r0

for an absolute constant c
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Let h be an increasing function on (0, 1] with limr→0 h(r) = 0.

For fixed δ > 0 and E ⊂ R3 × R we let L(δ) be the family of

all coverings {Qri(zi), ri < δ} of E. We define

Ψδ(E, h) = inf
L(δ)

∑
i

h(ri) (2.2)

and set the corresponding Hausdorff measure

Λ(E, h) = lim
δ→0

Ψδ(E, h).

In particular we denote Λk(E) = Λ(E, rk).

The singular set S is the set of point z in ΩT such that in

any neighborhood of z u is unbounded.

Theorem 2.3. There is σ > 0 such that

Λ(S, t(log(1/t))σ) = 0.
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§2..2 Partial regularity

In this section we assume z0 is origin, omit z0 in various expres-

sions if obvious. The compactness of solution space is due to

Leray [31] and Lin [32]. Suppose vn ∈ L∞(−1, 1 : L2(B1)) ∩
L2(−1, 1 : H1(B1)) is a localized solution to (2.1) in Q1 with

the uniform bound

ess sup
t∈(−1,1)

∫
B1

|vn|2dx +

∫ 1

−1

∫
B1

|∇vn|2dxdt < c

for all n. The localized solution in Q1 means that the inte-

gral identity (2.1) holds for all test function φ ∈ C∞0 (Q1) with

divφ = 0. Then there is a subsequence vn by rewriting index

and v ∈ L∞(−1, 1 : L2(B1))) ∩ L2(−1, 1 : H1(B1)) such that

vn → v

weakly in L2(−1, 1 : H1(B1)) and weakly-* in L∞(−1, 1 :

L2(B1))), and the limit v is a solution to (2.1). Furthermore,

from Sobolev embedding,

vn → v

strongly in L3(Q1).
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One of the important step for ε-regularity is the localized

energy inequality which is essentially due to Jin [26]. We define

a bilinear form

< f, g >N=

∫
R3

∫
R3

f (x)g(y)

|x− y|
dxdy

and the corresponding norm

||f ||N =< f, f >
1/2
N .

Define the vorticity ω by

ω = ∇× v.

Since we do not know ω ∈ L∞(−1, 1 : L2(B1)), we need an

indirect definition of < ω, ω >N (t) from u ∈ L∞(−1, 1 :

L2(B1). To define < ω, ω >N (t) for almost all t, we let φ ∈
C∞0 and we note that

ωφ = ∇× (uφ) + u×∇φ

and from the definition

< ωφ, ωφ >N (t) =

∫
R3

∫
R3

1

|x− y|
(∇× (uφ)+u×∇φ)(x, t)·

(∇× (uφ) + u×∇φ)(y, t)dxdy

and the righthand side is well defined after integration by parts

almost all time t.
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Theorem 2.4. Suppose v ∈ L∞(−1, 1 : L2(B1)))∩L2(−1, 1 :

H1(B1)) is a solution to (2.1). Then, there is a constant c

such that for almost all t0 ∈ (−1, 1)

||ωφ||2N(t0) + ||∇vφ||2L2(Q1) ≤ c||v||2L2(Q1) + c||v||3L3(Q1) (2.3)

for a cutoff function φ ∈ C∞0 (Q1), and if we take φ ∈
C∞0 (B1) and φ = 1 in Br0, r0 ∈ (0, 1

2), then we have

||v||2L2(Br0) ≤ 2||ωφ||2N + 2||v ×∇φ||2N . (2.4)

Proof. The vorticity ω = ∇× v satisfies

∂

∂t
ω −∆ω + (u · ∇)ω + (ω · ∇)v = 0. (2.5)

We let φ ∈ C∞(Q1) and φ = 0 on the boundary ∂Q1, |∇φ| <
c and |φt| < c. We recall Newtonian potential N(f )(x) =
1

4π

∫
R3

f(y)
|x−y|dy.

At least formally, we take φN(ωφ) as a test function to (2.5)

and after integration by parts and observing the inverse relation

between Newtonian potential and Laplace operator, we have for

almost all t0

1

2
< ωφ, ωφ >N (t0) +

∫ t0

−1

∫
B1

|ωφ|2dxdt (2.6)

≤
∫ t0

−1

∫
B1

ωφtN(ωφ)dxdt + c

∫ t0

−1

∫
B1

|v|2dxdt

+

∫ t0

−1

∫
B1

(v · ∇)v∇× (φN(∇× vφ))dxdt.
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We can justify the computations by taking the test function

∇×(N(ωφ)φ) to (2.1). Indeed, it is solenoidal and in L∞(0, T :

L2(R3)) ∩ L2(0, T : H1
0(R3)).

Note that, for all 1 < p <∞, ||N(fχB1)||Lp(B1) ≤ c||f ||Lp(B1),

||∇N(fχB1)||Lp(B1) ≤ c||f ||Lp(B1) and ||∇2N(fχB1)||Lp(B1) ≤
c||f ||Lp(B1), where χA is the characteristic function of A.

On the other hand, since v is solenoidal, namely, ∇ × ω =

−∆v, we have for almost all t0∫ t0

−1

∫
B1

|∇vφ|2dxdt ≤
∫ t0

−1

∫
B1

|ωφ|2dxdt+c
∫ t0

−1

∫
B1

|v|2dxdt.

Combining these estimates, we have

< ωφ,ωφ >2
N (t0) +

∫ t0

−1

∫
B1

|∇vφ|2dxdt

≤ c

∫ t0

−1

∫
B1

ωφtN(ωφ)dxdt + c

∫ t0

−1

∫
B1

|v|2dxdt

+

∫ t0

−1

∫
B1

(v · ∇)v∇× (φN(∇× vφ))dxdt.

From the integration by parts and the potential estimates, we

have ∫ t0

−1

∫
B1

ωφtN(ωφ)dxdt ≤ c

∫ t0

−1

∫
B1

|v|2dxdt.
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In the potential expression, we have

∇× (φN(∇× vφ)) = ∇φ×N(∇× (vφ))−∇φ×N(∇φ× v)

+φ∇×N(∇× vφ)

and

||∇(∇φ×N(∇× (vφ))−∇φ×N(∇φ× v))||L3 ≤ c||v||L3.

The last term can be treated as

φ∇×N(∇×vφ) = −φN(∇φ×(∇×v))−φN(∇×(∇×v)φ)

= φN(∇φ× (∇× v))− φN(∇× (∇× v)φ)

and after integration by parts we have ||∇(φN(∇φ × (∇ ×
v)))||L3 ≤ c||v||L3. Since divv = 0, we have

∇× (∇× v)φ = −∆vφ = −2∇ · (v∇φ) + v∆φ + ∆(vφ)

and

φN(∇× (∇× v)φ) = −2φN(∇ · (v∇φ)) + φN(v∆φ) + vφ2.

We also have ||∇(−2φN(∇·(v∇φ))+φN(v∆φ))||L3 ≤ c||v||L3(B1).

Therefore we have∣∣∣∣∫ t0

−1

∫
B1

(v · ∇)v∇× (φN(∇× vφ))dxdt

∣∣∣∣
≤ c

∣∣∣∣∫ t0

−1

∫
B1

v ⊗ v : ∇Fdxdt
∣∣∣∣ + c

∫ t0

−1

∫
B1

|v|3dxdt

for some F with ||F ||L3 ≤ c||v||L3(B1). Applying Holder in-

equality on F with L3 norm, we obtain the localized energy

estimate (2.3).
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From integration by parts, the previous potential estimate

and the relation ωφ = ∇× (vφ)− v ×∇φ, we have

< ∇×(vφ),∇×(vφ) >N≤ 2 < ωφ, ωφ >N +2 < v×∇φ, v×∇φ >N

and, from vector calculus, we have that

< ∇×(vφ),∇×(vφ) >N=< div(vφ), div(vφ) >N +

∫
|vφ|2dx.

This proves (2.4).
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Theorem 2.5. Suppose that v is a Leray-Hopf solution to

(2.1) in Q1. Then, there is a constant ε such that(
sup

t∈(−1,1)

||vχB1||N(t)

)3

+

∫
Q1

|v|3dz ≤ ε (2.7)

implies

||v||Cα(Q1
2

) ≤ c

for α ≤ 1
3 and some c.

For the proof, since the pressure estimate is unnecessary, our

argument is much simple. Define the averages in cylinder and

ball by (v)Qr = 1
|Qr|
∫
Qr
vdz and (v)Br(t) = 1

|Br|
∫
Br
v(x, t)dx.

Lemma 2.6. There is an ε such that

sup
t∈(−1,1)

||vχB1||
3
N(t) +

∫
Q1

|v|3dz ≤ ε

implies that for a constant r ∈ (0, 1
2),

sup
t∈(−r,r)

(
r1/2

|Br|
||(v − (v)Br(t))χBr||N(t)

)3

+
1

|Qr|

∫
Qr

|v−(v)Qr|3dz

(2.8)

≤ 1

2

(
sup

t∈(−1,1)

||vχB1||
3
N(t) +

∫
Q1

|v|3dz

)
.

Proof. If the lemma is false, we would have a sequence of

Leray-Hopf solution vi with

εi = sup
t∈(−1,1)

||viχB1||
3
N(t) +

∫
Q1

|vi|3dz → 0
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but (2.8) is not valid. We let ui = vi
ε1/3

and qi = pi
ε1/3

, they satisfy

∂

∂t
ui −∆ui + ε1/3(ui · ∇)ui + qi = 0.

Then ui is bounded in L∞(−1, 1 : L2(B1))∩L2(−1, 1 : H1(B1))

and a subsequence converges to w in L3 strongly. By lower

semicontinuity of norms, we have

sup
t∈(−1,1)

||wχB1||
3
N(t) +

∫
Q1

|w|3dz ≤ 1.

Furthermore w is a solution to the Stokes equations in Q1 and

satisfies

sup
t∈(−1

2 ,
1
2)

1

|Br|

∫
Br

|w(x, t)− (w)Br(t)|2

r2
dx < c

1

|Qr|

∫
Qr

|w − (w)Qr|3

r
dz < c

for all r ∈ (0, 1
2) and a constant c. Therefore we have for all

t ∈ (−1
2,

1
2)

||(w − (w)Br(t))χBr||N(t) ≤ cr1/2|Br|.

There is r0 such that for r < r0

sup
t∈(−r,r)

(
r1/2

|Br|
||(w − (w)Br(t))χBr||N(t)

)3

+
1

|Qr|

∫
Qr

|w − (w)Qr|3dz < r2/3.
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Since ui, after rearranging indices, converges to w strongly in

L3, we have for sufficiently large i

sup
t∈(−r,r)

(
r1/2

|Br|
||(ui − (ui)Br(t))χBr||N(t)

)3

+
1

|Qr|

∫
Qr

|ui − (ui)Qr|3dz < r1/2

and this contradicts to our assumption.
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We prove Theorem 2.2.

Proof. Suppose v is Leray-Hopf solution satisfying

sup
t∈(−1,1)

||vχB1||
3
N(t) +

∫
Q1

|v|3dz ≤ ε

for ε appearing in Lemma 2.3. We let

v1(x, t) =
v − (v)Qr
r1/6

(rx, r2t), p1(x, t) = r5/6p(rx, r2t)

where r is the scale in Lemma 2.6. So v1 is a Leray-Hopf solution

to (2.1) in Q1. Moreover, from Lemma 2.6, v1 satisfies the

energy estimate

sup
t∈(−1,1)

||v1χB1||
3
N(t) +

∫
Q1

|v1|3dz ≤
ε

2
.

We follow the argument of Lemma 2.3 except the constant con-

vection term

∂

∂t
v1 −∆v1 + (b · ∇)v1 + p1 = 0,

b = limi r(vi)Qr is constant vector with |b| ≤ 1.

Therefore, after iteration, we prove that for all Qρ ⊂ Q1
2

1

|Qρ|

∫
Qρ

|v − (v)Qρ|3dz ≤ cρ

for all ρ < 1
2 and v ∈ C1/3(Q1

2
). This ends the proof.
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First we note that ||ωχBr||2N(t) ≤ ||ωφ||2N(t) if φ = 1 in Br.

We define several scale invariant quantities:

A0(r) = sup
−r2≤t≤r2

1

r
||ωχBr||2N(t), A1(r) =

1

r

∫
Qr

|∇u|2dz,

A2(r) = sup
−r2≤t≤r2

1

r

∫
Br

|u|2dx, A3(r) =
1

r2

∫
Qr

|u|3dz.

We have a lemma from Choe and Lewis [7].

Lemma 2.7. Suppose Qρ ⊂ ΩT and r < ρ and 9
5 ≤ b ≤ 2.

we have that

A3(r) ≤ c(ρ/r)2A1(ρ)A2(ρ)1/2 + cmin{(r/ρ)3A2(ρ)3/2, (r/ρ)A3(ρ)}
A3(r) ≤ c(ρ/r)2A1(ρ)3/4A2(ρ)3/4 + cmin{(r/ρ)3A2(ρ)3/2, (r/ρ)A3(ρ)}

A3(r) ≤ cr−2ρ2b−3A2(ρ)(3−b)/2
∫
Qρ

|∇u|bdz

+ cmin{(r/ρ)3A2(ρ)3/2, (r/ρ)A3(ρ)}.
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Theorem 2.8. There is an absolute constant ε0 such that

lim sup
r→0

1

r

∫
Qr

|∇u|2dz ≤ ε0

implies that for an r0 > 0

sup
z∈Qr0

|u(z)| ≤ c

r0

for an absolute constant c.

Proof.

We note that

sup
s∈(t−r2,t+r2)

1

r3
||uχBr||2N(s) ≤ cA2(r)

and from Lemma 2.4, we have

A3(r) ≤ c

[(
r

ρ

)3

A2(ρ)3/2 +
(ρ
r

)2

A1(ρ)3/4A2(ρ)3/4

]
(2.9)

for 0 < r < ρ
2. From the localized energy inequality (2.3) and

(2.4) with scaling, it follows that

A0(r) + A1(r) ≤ c

[
ρ

r
A

2/3
3 (ρ) +

(ρ
r

)2

A3(ρ)

]
(2.10)

for a c. Note that, for the cutoff function φ supported in Bρ,

u = ∇×N(ωφ) +∇×N(u×∇φ) +∇N(u · ∇φ)

and thus∫
Br

|u|2dx ≤ 3

∫
Br

|∇×N(ωφ)|2dx+3

∫
Br

|∇×N(u×∇φ)|2dx
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+3

∫
Br

|∇N(u · ∇φ)|2dx.

From the definition of bilinear form, we have for r ≤ ρ
4∫

Br

|∇ ×N(ωφ)|2dx ≤ c||ωχBρ||2N .

On the other hand∫
Br

|∇×N(u×∇φ)|2dx +

∫
Br

|∇N(u · ∇φ)|2dx

≤ c

∫
Br

(
1

ρ

∫
Bρ\Bρ/2

1

|x− y|2
|u(y)|dy

)2

dx

≤ c

(
r

ρ

)3

||u||2Bρ.

and for r ≤ ρ
4

A2(r) ≤ c
ρ

r
A0(ρ) + c

(
r

ρ

)2

A2(ρ). (2.11)

Combining (3.9), (2.10) and (2.11), we find that there is a large

integer n0 depending only on ε such that

A0(r/n0) + A2(r/n0) ≤ 1

2
(A0(r) + A2(r)) + ε

and after iteration with Theorem 2.2 under scaling we complete

the proof.
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§2..3 Logarithmic dimension of singular set

In this section, we improve one dimensional Hausdorff mea-

sure estimate of singular set by logarithmic factor. Choe and

Lewis [7] proved the same theorem for the suitable weak solu-

tion and we follow a similar path to improve Hausdorff measure.

Nonetheless, we do not need to consider the pressure and the ar-

gument becomes much simpler. We adopt the same definition

of A0(r;x, t), A1(r;x, t), A2(r;x, t) and A3(r;x, t) of Lemma

2.7 and we define

Fi(M) = {z ∈ ΩT : lim sup
r→0

Ai(r; z) ≤M}, i = 0, 1, 2, 3.

To treat A2, we need an intrinsic behavior of lim sup of func-

tions(see (2.16) in [7]). If g is a real valued function on (0, r0]

which is bounded on any closed subinterval of (0, r0] and if

lim supr→0 g(r) = ∞, then there is a decreasing sequence (sk)

converging to zero in (0, r0] with

g(sk)→∞, as k →∞ (2.12)

2g(sk) ≥ sup
s∈[sk,r0]

g(s).
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Theorem 2.8 implies the following theorem:

Theorem 2.9. The Hausdorff dimension of the singular

set S is less than or equal to one and

Λ1(S) = 0.

We need an equivalence lemma for Fi(M).

Lemma 2.10. Suppose z ∈ Fi(M) for i = 0, ..., 3, then

there is an absolute constant c such that for all j = 0, ..., 3,

z ∈ Fj(c(M 3 + 1)).

Proof. We start with i = 3. We assume M ≥ 1 and r0 so

small that

Ai(r) ≤ 2M

for r ∈ (0, r0). From (2.10), we have that with ρ = kr < r0 for

a large k

A0(r) + A1(r) ≤ c
[
A

2/3
3 (kr) + A3(kr)

]
≤ c(M + 1)

whenever Q2r ⊂ ΩT and this proves the cases i = 0, 1. Suppose

lim supA2 = ∞. From (2.11) and (2.12), if k is sufficiently

large, then

A2(sn) ≤ ck(M + 1) +
1

2
A2(sn)

so that A2(sn) ≤ 2ck(M + 1) and letting n → ∞ we get

contradiction. Once lim supA2 is bounded, it follows that

lim sup
r→0

A2(r) ≤ c(M + 1)

and z ∈ F2(c(M + 1)).
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Next we prove the case for i = 2. From (3.9), we have for

r < r0

A3(r) ≤ c
[
M 3/2 + A1(2r)3/4M 3/4

]
and (2.10) implies

A1(r) ≤ c
[
M 3/2 + A1(2r)3/4M 3/4

]
.

Then, as in the proof of the case i = 3, we have lim supA1(r)

is bounded and

lim supA1(r) ≤ cM 3

and thus A3 estimate follows too. The estimate (2.10) implies

lim supA0(r) ≤ cM 3.

We consider the case i = 1. First we prove that

lim sup
r→0

A2(r) <∞.

Let sk be in (2.12) for g = A2 and from Sobolev embedding

like (3.9)(also see (2.6a) in [7]) we have that if r
ρ is small and

sk < r < ρ, then

A3(r) ≤ cMA
1/2
2 (sk) +

1

2
A3(ρ).

Iterating this inequality, for sufficiently large enough k, we have

that for sk < r

A3(r) ≤ cMA
1/2
2 (sk)

and (2.10) implies that sk < r

A0(r) ≤ cMA
1/2
2 (sk).
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From (2.11), it follows that for sk < r < ρ

A2(r) ≤ c
ρ

r
MA

1/2
2 (sk) + c

(
r

ρ

)2

A2(ρ)

and replacing r = 2sk and ρ = 4csk and iterating we prove that

A2(2sk) ≤ cMA
1/2
2 (sk)

and this contradicts to (2.12). Therefore, setting ηi = lim supr→0Ai(r),

we have

η3 ≤ cMη
1/2
2 +

1

2
η3

η2 ≤ cη0 +
1

2
η2

η0 ≤ cη
2/3
3 + cη3

and we find

η0, η2, η3 ≤ cM 3.

Finally we assume that lim supr→0A0(r) = M . Like the

other cases, from (2.11) we can show that lim supA2 is bounded

and if limA0(sk) = M and limA2(rk) = η2, then for 4crn <

sk < with

A2(rn) ≤ 4c2A0(4crn) +
1

2
A2(4crn)

and taking limit we have

η2 ≤ cM

and η1 and η3 are estimated in the same way. This ends proof.
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For a given b satisfying 9
5 ≤ b < 2, we put a scale invariant

quantity

Jb(r) = J(r, z, b) = r2b−5

∫
Qr(z)

|∇u|bdz.

Lemma 2.11. Suppose that z ∈ Fi(M)∩S, i = 1, 2, 3. Then

there is δ > 0 depending on M such that

lim inf
r→0

Jb(r) ≥ δ.

Proof. Let N = c(M 3+1) and assume all cylinders considered

is contained in ΩT . We suppose that r1 so small that A2(r) ≤
2N for r < r1 and Lemma 2.7 implies that for r < ρ < r1

A3(r) ≤ c(ρ/r)2Jb(ρ) + cmin{(r/ρ)3A2(ρ)3/2, (r/ρ)A3(ρ)}.

Hence if Jb(ρ) < δ for a small δ, then

A3(r) ≤ c
(ρ
r

)2

δ + c(r/ρ)3N 3/2

and hence for given ε2 > 0 there are δ and r1 small enough so

that for r < r1

A3(r) ≤ ε2.

Indeed, we choose small r initially and then choose δ to make

c
(
ρ
r

)2
δ small. Also from (2.10), for r < r1

A0(r) + A1(r) ≤ c

[
r1

r
ε

2/3
2 +

(r1

r

)2

ε2

]
for a c and from (2.11), we have r ≤ ρ

4

A2(r) ≤ c
ρ

r
A0(ρ) + c

(
r

ρ

)2

A2(ρ).
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Combining these two estimates, we find that there is a large

integer n0 depending only on ε such that

A0(r/n0) + A2(r/n0) ≤ 1

2
(A0(r) + A2(r)) + cε

2/3
2

and after iteration we have for sufficiently small r

sup
t

1

r3
< vχBr, vχBr >N≤ cε

2/3
2 .

Therefore if ε2 is small enough, then the condition of Theorem

2.2 is satisfied and z is regular point. This contradicts z ∈ S if

δ is small. This ends the proof.
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Define the parabolic distance dist by

dist(z, A) = inf{|x− y| +
√
|t− s| : z = (x, t), (y, s) ∈ A}

and denote Si(M) = Fi(M) ∩ S.

Proposition 2.12. There is α > 0 depending only on M

such that ∫
ΩT

dist(z, Si(M))−α|∇u|2dz <∞

for i = 1, 2, 3.

Proof. For a fixed i, we let r(z) be the generic radius of z in

Si(M) such that for 0 < r < r(z)

Jb(r) ≥ δ/2 and A1(r) ≤ 2c(M 3 + 1) (2.13)

and since we can assume that Si(M) is compact, we have a

finite covering such that

∪zk∈Si(M)Qr(zk)(zk) ⊃ Si(M).

Hence we need only to prove the proposition in a neighborhood

E(r0) = {z : dist(z, Si(M)) < r0} with r0 ≤ min{r(zk)/100}.
Our condition (3.12) implies that if z ∈ Si(M), then

A1(r1) ≤ 4Nδ−1Jb(r2) for all r1, r2 < r0.

We let κ = (3δ/100)1/b and

K1 = K1(ρ, z) = {(y, s) ∈ Qρ(z) : |∇u(y, s)| ≤ κρ−2}
K2 = K2(ρ, z) = Qρ(z) \K1,
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then for ρ < r0, we have

δρ5−2b ≤
∫
Qρ(z)

|∇u|bdz =

∫
K1

· · · dz +

∫
K2

· · · dz

≤ δρ5−2b/4 +

∫
K2

· · · dz.

From Hölder inequality and (3.12) we have

Jb(ρ) ≤ cA1(ρ)b/2 ≤ cN b/2

and combining this with the previous two inequalities we see

that

Jb(ρ) ≤ cN b/2δ−1ρ2b−5

∫
K2

|∇u|bdz.

Given 0 < r < r0 we have a covering {Q5r(zi)} of E(r) such

that

zi ∈ Hi(M)

E(r) ⊂ ∪iQ5r(zi)

Qr(zi) ∩Qr(zj) = ∅ if i 6= j.

We define E1(r) = {z : |∇u(z)| > κr−2} ∩ E(r), then∫
Er

|∇u|2dz ≤
∑
i

∫
Q5r(zi)

|∇u|2dz

≤ cNδ−1r2b−4
∑
i

∫
Qr(zi)

|∇u|bdz

≤ cNδ−1r2b−4
∑
i

∫
K2(r,zi)

|∇u|bdz

≤ cNδ−1r2b−4

∫
E1(r)

|∇u|bdz.
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Let α be a positive constant specified later and denote dn(z) =

min{dist(z, Si(M)), 1
n}. For a large n with 1

n < r0, we have

that, after changing the order of integration,∫ r0

1
n

r−1−α
(∫

E(r)

|∇u|2dz
)
dr (2.14)

=

∫
E(r0)

1

α
(dn(z)−α − r−α0 )|∇u|2dz

≤cN (2+b)/2δ−2

∫ r0

1
n

r−1−α
(∫

E1(r)

|∇u|bdz
)
dr

≤cN (2+b)/2δ−2 1

4 + α− 2b

∫
E(r0)

min{dn(z)−2, |∇u|/κ}|∇u|bdz

and clearly

min{dn(z)−2, |∇u|/κ}|∇u|b ≤ d−αn |∇u|2

and hence if we choose

α =
κ2−b(4− b)δ2

cN (2+b)/2
,

the righthand side of (2.14) can be absorbed into the lefthand

side and∫
E(r0)

dn(z)−α|∇u|2dz ≤ cr−α0

∫
E(r0)

|∇u|2dz.

Sending n to infinity, we prove the proposition.
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Setting h(t) = t1−α in (2.2) and reminding the singularity

condition in (3.12) with b = 2, we have

Ψ5r(Si(M)) ≤ c

δ

∑
i

r−α
∫
Qr(zi)

|∇u|2dz

≤ c

δ

∑
i

∫
E(r0)

dist−α|∇u|2dz.

Letting r goes to zero, we have Λ1−α(Fi(M) ∩ S) = 0.

Corollary 2.13. We fix M . For b = 9
5 and κ = (3δ/100)1/b,

we have

Λ1−α(Fi(M) ∩ S) = 0, for i = 1, 2, 3

where

α =
κ2−b(4− b)δ2

c(M 3 + 1)(2+b)/2
.
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We start to improve Hausdorff dimension by log factor.

We let m : (0, 1) → R+ be positive monotone decreasing

function such that

lim
r→0+

m(r) =∞

and set

F (m) = {z : lim sup
r→0

A1(r)

m(r)
≤ 1}.

In fact, we need only

m(r) = log(1/r).
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Lemma 2.14. If z ∈ F (m), then there is c such that

lim sup
r→0

A2(r)

m2(r)
≤ c.

Proof. We prove by contradiction. We let A1(r0) ≤ 2m(r0).

Set g(r) = A2(r)
m2(r)

and assume that lim g(r) =∞. Then there is

a sequence rn in (2.12) such that 2g(rn) ≥ supr∈[rn,1] g(r) and

rn → 0. If 0 < r < ρ and r/ρ = λ is small enough, then from

the first inequality of Lemma 2.7 we deduce

A3(r) ≤ cm(rn)A
1/2
2 (rn) +

1

2
A3(ρ).

Iterating this inequality we deduce that for large n and 0 <

rn ≤ r < r0

A3(r) ≤ cm(rn)A
1/2
2 (rn)

and from (2.12)

A0(r) ≤ cA
2/3
3 (2r) + cA3(2r) ≤ cm(rn)A

1/2
2 (rn).

From (2.11), we have for rn ≤ r ≤ ρ
4c

A2(r) ≤ cm(rn)A
1/2
2 (rn) +

1

2
A2(ρ)

and iterating again we have for sufficiently large n

A2(rn) ≤ cm(rn)A
1/2
2 (rn).

This implies that
A2(rn)

m2(rn)
≤ c

and we conclude the proof.

56



Lemma 2.15. Suppose 9/5 ≤ b < 2. There is c such that

for z ∈ F (m) ∩ S

lim inf Jb(r)m(r)3−b ≥ c

Proof. There is r1 such that A1(r) ≤ cm(r) and A2(r) ≤
cm2(r) for 0 < r < r1. From the third inequality in Lemma

2.7,

A3(r) ≤ c(ρ/r)2A2(ρ)(3−b)/2Jb(ρ)+cmin{(r/ρ)3A2(ρ)3/2, (r/ρ)A3(ρ)}

and for r < r1 we have

A3(r) ≤ c(r1/r)
2m(r1)3−bJb(r1) + c(r/r1)3m(r1)3.

As in the proof of local estimate of localized energy estimate

A2(r) ≤ c
r1

r
A0(r1) + c

(
r

r1

)2

m(r1)2

and by Theorem 2.5 and the assumption that z ∈ S

ε ≤ A2(r)3/2+A3(r) ≤ c(r1/r)
2m(r1)3−bJb(r1)+c(r/r1)3m(r1)3.

After choosing r so small that c(r/r1)3m(r1)3 < ε
2, we have

ε

2
≤ c(r1/r)

2m(r1)3−bJb(r1).

and since r1 can be arbitrarily small and ε is an absolute con-

stant, we conclude that

lim inf Jb(r)m(r)3−b ≥ c.

This ends the proof.
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Now we are ready to prove Theorem 2.3.

Proof of Theorem 2.3 We let m(t) = log(1/t)σ where σ

will be specified later. We follow the proof of Proposition 3.4.

Let Gk, k = 1, 2, ..., the set of all z ∈ F (m) ∩ S such that for

0 < r < 1
k

c ≤ m(r)3−bJb(r) and A1(r) ≤ 2m(r) (2.15)

and then F (m)∩S = ∪Gk. Let d̂(x, t) = inf{|x−y|+|t−s|1/2 :

(y, s) ∈ Gk} and we define Ê(r) = {z : d̂(z) < r}. Since

Hausdorff measure is countably subadditive, we fix r0 = 1
k and

for z ∈ Ê(r0),

A1(r1) ≤ cm(r1)m(r2)3−bJb(r2) for 0 < r1, r2 ≤ r0.

Also if c1 is large enough and

K1 = K1(ρ, z, b) = {z1 ∈ Qρ(z) : |∇u(z1)| ≤ m(ρ)(b−3)/b 1

c1ρ2
}

K2 = Qρ(z) \K1,

then for ρ ≤ r0 we get

ρ5−2bm(ρ)b−3 ≤ c

∫
Qρ

|∇u|bdz (2.16)

= c

∫
K1

· · · dz + c

∫
K2

· · · dz

≤ 1

2
ρ5−2bm(ρ)b−3 + c

∫
K2

· · · dz.

From Hölder inequality, we have

Jb(ρ) ≤ cA1(ρ)b/2 ≤ cm(ρ)b/2. (2.17)
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Combining (3.15) and (3.16), we obtain that

Jb(ρ) ≤ cρ2b−5m(ρ)3−b/2
∫
K2

|∇u|bdz.

Choose the covering {Q5r(zi)} of Ê(r) satisfying the conditions

of Proposition 3.4 with Hk, d, E replaced by Gk, d̂, Ê. If we set

Ê1(r) = {z : cm(r)(b−3)/br−2 < |∇u(z)|} ∩ Ê(r)

then∫
Ê1(r)

|∇u|2dz ≤
∑
i

∫
Q5r(zi)

|∇u|2dz (2.18)

≤ cr2b−4m(r)4−b
∑
i

∫
Qr(zi)

|∇u|bdz

≤ cr2b−4m(r)(14−3b)/2
∑
i

∫
K2(r,zi,b)

|∇u|bdz

≤ cr2b−4m(r)(14−3b)/2

∫
Ê1(r)

|∇u|bdz.

As in [7] we multiply (3.17) by 1
r and integrate from n−1 to r0,

and if we set d̂n = max{d̂, n−1}, we have∫ r0

n−1

1

r

(∫
Ê(r)

|∇u|2dz
)
dr =

∫
Ê(r0)

log(r0/d̂n)|∇u|2dz

(2.19)

≤ c

∫ r0

n−1
r2b−5m(r)(14−3b)/2

(∫
Ê1(r)

|∇u|bdz
)
dr

≤ c

∫
Ê(r0)

min
{
|∇u|2−bm(|∇u|)(14−3b)/2+(3−b)/b,

d̂2b−4
n m(d̂−1

n )(14−3b)/2
}
|∇u|bdz.
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We take σ so small that

σ ((14− 3b)/2 + (3− b)/b) < 1,

then

min
{
|∇u|2−bm(|∇u|)(14−3b)/2+(3−b)/b, d̂2b−4

n m(d̂−1
n )(14−3b)/2

}
|∇u|b

≤ c log

(
1

d̂n

)σ(14−3b)/2

|∇u|2.

The righthand side of (3.18) can be absorbed by the lefthand

side and we have∫
Ê(r0)

log(1/d̂n)|∇u|2dz ≤ c(σ, b, r0)

and letting n→∞ with monotone convergence theorem∫
Ê(r0)

log(1/d̂)|∇u|2dz ≤ ∞. (2.20)

Letting b = 2 in (3.14), we have

Ψ5r(Gk, tm(t)) ≤ c log(1/r)
∑
i

∫
Qr(zi)

|∇u|2dz

≤ c

∫
E(r0)

log(1/d̂)|∇u|2dz

and letting r → 0 we have Λ(Gk, tm(t)) = 0 for all k. Arguing

like [7], we also have Λ(S \ F (m), tm(t)) = 0. This ends the

proof.
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Is there an isolated singular point

z ∈ F (M)?
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§3. Boundary regularity for the suitable solutions

§3..1 Introduction

In this section, we prove boundary partial regularity of Navier-

Stokes equations for the suitable weak solution. After Scheffer

[36] considered the boundary partial regularity of the suitable

weak solution, Seregin [37] established a criterion of ε regularity

similar to [3] on the boundary.

All the previous results rely on the boundary localized en-

ergy inequality and higher integrability of pressure like L3/2 of

the suitable weak solutions. From the definition of the suitable

weak solution, the pressure satisfies Poisson equation and is rep-

resented by Newtonian potential with density made of velocity.

Therefore, we need complicated estimates of pressure in vari-

ous forms. However, we obtain boundary localized estimates

of velocity and pressure from the representation of solution by

Green potential for the inhomogeneous Stokes equations due to

Solonnikov [40].
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Following [3] we introduce the suitable weak solution. Al-

though general boundary geometric conditions are important,

we consider merely an initial boundary value problem in the

half space ΩT = (0, T )×R3
+ of Navier-Stokes equations:

∂

∂t
u−∆u + div(u⊗ u) +∇p = 0, (3.1)

divu = 0

in (0, T )×R3
+ with an initial data

u(x, 0) = u0(x),

where the velocity fields u and u0 are three dimension solenoidal

vector fields and the pressure p is a scalar field.

The terminal time T is not important in our argument. Due

to viscosity, u satisfies no slip condition

u(x′, 0, t) = 0 for x′ = (x1, x2) ∈ R2, t > 0. (3.2)

Denote z = (x, t) and V (ΩT ) = L∞(0, T : L2(R3
+)) ∩

L2(0, T : H1
0(R3

+)).
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We say (u, p) ∈ V × L3/2(ΩT ) is suitable weak solution to

the initial boundary value problem if for all φ ∈ C∞0∫
u·φtdz+

∫
∇u : ∇φdz+

∫
u⊗u : ∇φdz−

∫
pdivφdz = 0

(3.3)

and u is weakly divergence free for almost all time, satisfies the

localized energy inequality for almost all t∫
|u(x, t)|2φdx + 2

∫ t

0

∫
|∇u|2φdxds (3.4)

≤
∫ t

0

∫
|u|2(φt + ∆φ)dxds +

∫ t

0

∫
(|u|2 + 2p)u · φdxds

for all nonnegative φ ∈ C∞0 (R3 ×R+) and∫
|u(x, t)− u0(x)|2dx→ 0 as t→ 0,

where the initial data u0 is weakly divergence free in L2(R3
+).
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For a boundary point x0 = (x′0, 0) we define a half ball

B+
r (x0) = {x : |x − x0| < r, x3 > 0} and a half parabolic

cylinder Q+
r (x0, t0) = B+

r (x0)× (t0 − r2, t0 + r2
0).

The following boundary ε regularity theorem is due to Sere-

gin(see Theorem 2.3 in [37]):

Theorem 3.1. There is an absolute constant ε0 such that

lim sup
r→0

1

r

∫
Q+
r

|∇u|2dz ≤ ε0

implies that for an r0

sup
z∈Q+

r0

|u(z)| ≤ c

r0

for an absolute constant c.

The boundary singular set S is the set of point z in {x3 =

0}× (0, T ) such that u is unbounded in any neighborhood of z.

Here, from the countably subadditivity of Hausdorff measure we

consider the case when time is greater than a positive constant

τ > 0 to avoid initial boundary which is 2 dimensional set.
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Theorem 3.2. For each τ > 0, define d(z) = inf{|x− y| +√
|t− s| : (y, s) ∈ S, s > τ} and d̃ = min{d, 1}. Then, there

is c depending only on τ such that∫
log(e/d̃)|∇u|2dz

and the boundary singular set S satisfies

Λ(S, t log(e/t)) = 0.
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§3..2 Hausdorff measure of boundary singular set

In this section we assume the center of cylinder z0 is origin, and

delete z0 if obvious. We define several scale invariant quantities:

A1(r) =
1

r

∫
Q+
r

|∇u|2dz, A2(r) = sup
−r2≤t≤r2

1

r

∫
B+
r

|u|2dx,

A3(r) =
1

r2

∫
Q+
r

|u|3dz, A4(r) =
1

r2

∫
Q+
r

|p− (p)r(s)|3/2dz,

where (p)r(s) = 1
|B+
r |

∫
B+
r
p(x, s)dx.

The localized energy inequality is written by the scale invari-

ant terms.

Lemma 3.3. Suppose Q+
ρ ∈ ΩT , then there is an absolute

constant c such that for 0 < r < ρ

A1(r) + A2(r) ≤ c
ρ

r

(
A

2/3
3 (ρ) + A3(ρ) + A

1/3
3 (ρ)A

2/3
4 (ρ)

)
.

(3.5)
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For the estimate of pressure near the boundary, we follows

essentially the theory for the inhomogeneous Stokes equations

established by Solonnikov [40]. We consider a cutoff function

φ in Q1 and write the localized Navier-Stokes equations as an

inhomogeneous Stokes equations

(uφ)t −∆(uφ) +∇(pφ) = f + g,

where f and g are defined as

f =uφt − u∆φ + 2∇(u∇φ) + pdivφ + u⊗ u : ∇φ
g =−∇ · (u⊗ uφ)

and if we let φ = 1 in Q3/4, f = 0 in Q+
3/4.

Thus if (u1, p1) is a solution to the inhomogeneous Stokes

equations in Q+
1

(u1)t −∆u1 +∇p1 = f

with zero initial boundary condition, the corresponding pressure

p1 expressed by the Green potential in the half space satisfies

for r < 1
2∫
Q+
r

|p1 − (p1)r(t)|3/2 ≤ cr5

(∫
Q+
1

|u|3dz

)1/2

(3.6)

+cr5

∫
Q+
1

|u|3dz + cr5

∫
Q+
1

|p− (p)1(t)|3/2dz

and (u2, p2) = (u − u1, p − p1) satisfies the inhomogeneous

Stokes equations in Q+
1

(u2)t −∆u2 +∇p2 = ∇ · (u⊗ uφ)
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with zero initial boundary condition and u ⊗ uφ ∈ L3/2(Q+
1 ).

Hence, by Calderon-Zygmund type Stokes estimate of the Green

potential in half space(see [40]), we also have∫
Q+
1

|p2 − (p2)1(t)|3/2dz ≤ c

∫
Q+
1

|u|3dz. (3.7)

Therefore from (3.6) and (3.7), we have for r < 1
2∫

Q+
r

|p− (p)(t)|3/2 ≤ cr5

(∫
Q+
1

|u|3dz

)1/2

+ cr5

∫
Q+
1

|p− (p)1(t)|3/2dz + c

∫
Q+
1

|u|3dz

and after scaling a localized pressure estimate follows:

Lemma 3.4. Suppose that Q+
ρ ∈ ΩT and 0 < r < ρ. Then

there is an absolute constant c such that

A4(r) ≤ c

(
r

ρ

)3

A
1/2
3 (ρ) + c

(
r

ρ

)3

A4(ρ) + cA3(ρ) (3.8)
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We have a proposition for the regularity criterion(see Propo-

sition 2.4 in [37]).

Proposition 3.5. There is an absolute constant ε0 such

that if

A3(r) + A4(r) ≤ ε0,

then there is a constant c such that

ess sup
Q+
r/2

|u| ≤ c

r
.

We have an interpolation lemma for A3 from Choe-Lewis [7].

Since the cylinder touches the boundary and u = 0 on the

boundary, we do not need to worry of the average of u and we

have even simpler inequalities. Compare with (2.6) in [7].

Lemma 3.6. Suppose Q+
ρ ⊂ ΩT and r < ρ and 9

5 ≤ b ≤ 2.

we have that

A3(r) ≤ c(ρ/r)2A1(ρ)A2(ρ)1/2 (3.9)

A3(r) ≤ c(ρ/r)2A1(ρ)3/4A2(ρ)3/4

A3(r) ≤ cr−2ρ2b−3A2(ρ)(3−b)/2
∫
Q+
ρ

|∇u|bdz.

We improve one dimensional Hausdorff measure estimate of

boundary singular set by logarithmic factor. Choe-Lewis [7]

proved the interior theorem and we follow a similar path to

improve Hausdorff measure. We define the intermediate sets by

Fi(M) = {z ∈ ∂ΩT∩{x3 = 0} : lim sup
r→0

Ai(r; z) ≤M}, i = 1, 2, 3.
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To treat A2, we need an intrinsic behavior of lim sup of func-

tions(see (2.16) in [7]). If g is a real valued function on (0, r0]

which is bounded on any closed subinterval of (0, r0] and if

lim supr→0 g(r) = ∞, then there is a decreasing sequence (sk)

converging to zero in (0, r0] with

g(sk)→∞, as k →∞ (3.10)

2g(sk) ≥ sup
s∈[sk,r0]

g(s).

Theorem 1.2 implies the following theorem:

Theorem 3.7. The Hausdorff dimension of the boundary

singular set S is less than or equal to one and

Λ1(S) = 0.
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We need an equivalence lemma among Fi(M)’s.

Lemma 3.8. Suppose z ∈ Fi(M) for i = 1, 2, 3, then there

is an absolute constant c such that for all j = 1, 2, 3,

z ∈ Fj(c(M 3 + 1)).

Proof. We start with i = 3. We assume M ≥ 1 and r0 so

small that

A3(r) ≤ 2M

for r ∈ (0, r0). From (3.8), we have that with 0 < r < ρ < r0

A4(r) ≤ c

(
r

ρ

)3

A
1/2
3 (ρ) + c

(
r

ρ

)3

A4(ρ) + cA3(ρ)

and we can argue like [7] to get the boundedness of A4. Then,

after choosing r small, we get

lim supA4 ≤ cM.

If we take ρ = 2r, then (3.5) implies that for all r

A1(r) + A2(r) ≤ c
(
A

2/3
3 (2r) + A3(2r) + A

1/3
3 (2r)A

2/3
4 (2r)

)
and with the estimate of A4

lim supA1 + lim supA2 ≤ cM.

Next we prove the case for i = 2. From (3.9), we have for

r < r0

A3(r) ≤ cA1(2r)3/4M 3/4. (3.11)

If A4 is not bounded, then from (2.12) and (3.8) there is a

sequence sk → 0 and

A4(sk) ≤ c(1 + A3(ρ))
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and this contradicts to the unboundedness of A4. Hence A4 is

bounded and again (3.8) implies for all ρ < r0

lim supA4(r) ≤ cA3(ρ).

If A3 is not bounded, we have a sequence {sk} satisfying (2.12)

for g = A3. From the localized energy inequality (3.5) in

Lemma 2.1, we have

A1(
sk
2

) + A2(
sk
2

) ≤ c (1 + A3(sk))

and (3.11) implies

A3(sk) ≤ cA
3/4
3 (sk)M

3/4.

This contradicts to the unboundedness of A3. If A3 is bounded,

we let {rk} be

lim
k
A3(rk) = lim supA3

and we assume lim supA3 > 1. Then, again, the localized

energy inequality implies that

A1(
r

2
) + A2(

r

2
) ≤ c (1 + A3(r)) ≤ c (1 + lim supA3)

for all sufficiently small r and (3.11) implies that

A3(rk) ≤ cM 3

and considering small r in (3.5) we conclude that

lim supA1 + lim supA2 ≤ cM 3.

Finally, we consider the case i = 1. If A4 is not bounded,

then from (2.12) and (3.8) there is a sequence sk → 0 for g = A4

such that

A4(sk) ≤ c(1 + A3(ρ))
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and this contradicts to the unboundedness of A4. Hence A4 is

bounded and again (3.8) implies for all ρ < r0

lim supA4 ≤ cA3(ρ).

Now we prove that

lim sup
r→0

A2(r) <∞.

We let {sk} be the sequence in (2.12) for g = A2. By Lemma

2.4, we have that for r < r0

A3(r) ≤ cMA
1/2
2 (2r).

From (3.5) and the estimate for lim supA4 by A3, it follows that

for sk ≤ r < ρ

A2(r) ≤ c
ρ

r

(
1 + MA

1/2
2 (sk)

)
and replacing r = sk and ρ = csk and iterating we prove that

A2(sk) ≤ cMA
1/2
2 (sk)

and this implies that lim supA2 is bounded. Hence lim supA2

and lim supA4 are bounded and again (3.8) implies for all ρ <

r0

lim supA4(r) ≤ cA3(ρ).

we have

lim supA2 ≤ cM 2.

With these estimates and Lemma 2.4, we have

lim supA3 ≤ cM 3.

This ends the proof.
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For a given b satisfying 9
5 ≤ b < 2, we put a scale invariant

quantity

Jb(r) = J(r, z, b) = r2b−5

∫
Q+
r (z)

|∇u|bdz.

Set Sτ = S ∩ {z ∈ ∂ΩT : t > τ}.

Lemma 3.9. Suppose that τ0 > 0 and z ∈ Fi(M) ∩ Sτ0, i =

1, 2, 3. Then there is δ > 0 depending on M such that

lim inf
r→0

Jb(r) ≥ δ.

Proof. Let N = c(M 3 + 1) and assume all cylinders Q+
r

considered is contained in ΩT . As in the proof of Lemma 2.6,

we have

lim supA4 ≤ N.

We suppose that r1 so small that A2(r) ≤ 2N for r < r1

and Lemma 2.4 implies that for r < ρ < r1

A3(r) ≤ c(ρ/r)2Jb(ρ).

Hence if Jb(ρ) < δ for a small δ, then

A3(r) ≤ c
(ρ
r

)2

δ

and hence for given ε1 > 0 there are δ and r2 small enough so

that

A3(r2) ≤ ε1.

Indeed, we choose small r2 initially and then choose δ to make

c
(
ρ
r2

)2

δ smaller than ε1. From (3.8), we have that with 0 <
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r < r2

A4(r) ≤ c

(
r

r2

)3

ε
1/2
1 + c

(
r

r2

)3

N + cε1

and if r3 is small enough, then

A4(r3) ≤ cε1.

Finally, from the definition of A3,

A3(r3) ≤
(
r1

r3

)2

A3(r1) ≤
(
r1

r3

)2

ε1

and we have

A3(r3) + A4(r3) ≤ cε1 +

(
r1

r3

)2

ε1.

Therefore if ε1 is so small that

cε1 +

(
r1

r3

)2

ε1 ≤ ε0,

then z is regular point from Proposition 2.3 and we obtain con-

tradiction.
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Define the parabolic distance dist by

dist(z, A) = inf{|x− y| +
√
|t− s| : z = (x, t), (y, s) ∈ A}

and denote Si(M) = Fi(M) ∩ Sτ0 for τ0 > 0. Since the Haus-

dorff measure is countably subadditive, we need only to consider

the case τ0 > 0 and the appearing cylinders have radii smaller

than
√
τ0. We follow the argument of [7].

Proposition 3.10. There is α > 0 depending only on M

such that ∫
ΩT

dist(z, Si(M))−α|∇u|2dz <∞

for i = 1, 2, 3.

Proof. For a fixed i, we let r(z) be the generic radius of z in

Si(M) such that for 0 < r < r(z)

Jb(r) ≥ δ/2 and A1(r) ≤ 2N (3.12)

and since we can assume that Si(M) is compact, we have a

finite covering such that

∪zk∈Si(M)Qr(zk)(zk) ⊃ Si(M).

Hence we need only to prove the proposition in a neighborhood

E(r0) = {z = (x′, 0, t) : dist(z, Si(M)) < r0, t > τ0 > 0} with

r0 ≤ min{r(zk)/100}. We extend the boundary set E(r0) to

interior by

D(r0) = {(x′, x3, t) : (x′, 0, t) ∈ E(r0), 0 < x3 < r0, τ0 < t < T}

Our condition (3.12) implies that if z ∈ Si(M), then

A1(r1) ≤ 4Nδ−1Jb(r2) for all r1, r2 < r0.
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We let κ = (3δ/100)1/b and

K1 = K1(ρ, z) = {(y, s) ∈ Q+
ρ (z) : |∇u(y, s)| ≤ κρ−2}

K2 = K2(ρ, z) = Q+
ρ (z) \K1,

then for ρ < r0, we have

δρ5−2b ≤
∫
Q+
ρ (z)

|∇u|bdz =

∫
K1

· · · dz +

∫
K2

· · · dz

≤ δρ5−2b/4 +

∫
K2

· · · dz.

From Hölder inequality and (3.12) we have

Jb(ρ) ≤ cA1(ρ)b/2 ≤ cN b/2

and combining this with the previous two inequalities we see

that

Jb(ρ) ≤ cN b/2δ−1ρ2b−5

∫
K2

|∇u|bdz.

Given 0 < r < r0 we have a covering {Q5r(zi)} of E(r) such

that

zi ∈ Sk(M), k = 1, 2, 3

E(r) ⊂ ∪iQ5r(zi)

Qr(zi) ∩Qr(zj) = ∅ if i 6= j.
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We define D1(r) = {z : |∇u(z)| > κr−2} ∩D(r), then∫
Dr

|∇u|2dz ≤
∑
i

∫
Q+
5r(zi)

|∇u|2dz

≤ cNδ−1r2b−4
∑
i

∫
Q+
r (zi)

|∇u|bdz

≤ cNδ−1r2b−4
∑
i

∫
K2(r,zi)

|∇u|bdz

≤ cNδ−1r2b−4

∫
D1(r)

|∇u|bdz.

Let α be a positive constant specified later and denote dn(z) =

min{dist(z, Si(M)), 1
n}. For a large n with 1

n < r0, we have

that, after changing the order of integration,∫ r0

1
n

r−1−α
(∫

D(r)

|∇u|2dz
)
dr (3.13)

=

∫
D(r0)

1

α
(dn(z)−α − r−α0 )|∇u|2dz

≤cN (2+b)/2δ−2

∫ r0

1
n

r−1−α
(∫

D1(r)

|∇u|bdz
)
dr

≤cN (2+b)/2δ−2 1

4 + α− 2b

∫
D(r0)

min{dn(z)−2, |∇u|/κ}|∇u|bdz

and clearly

min{dn(z)−2, |∇u|/κ}|∇u|b ≤ d−αn |∇u|2

and hence if we choose

α =
κ2−b(4− b)δ2

cN (2+b)/2
,

79



the righthand side of (2.14) can be absorbed into the lefthand

side and∫
D(r0)

dn(z)−α|∇u|2dz ≤ cr−α0

∫
D(r0)

|∇u|2dz.

Sending n to infinity, we prove the proposition.

Setting h(t) = t1−α in (2.2) and reminding the singularity

condition in (3.12) with b = 2, we have

Ψ5r(Si(M)) ≤ c

δ

∑
i

r−α
∫
Q+
r (zi)

|∇u|2dz

≤ c

δ

∑
i

∫
D(r0)

dist−α|∇u|2dz.

Letting r goes to zero, we have Λ1−α(Si(M)) = 0.

Corollary 3.11. We fix M . For b = 9
5 and κ = (3δ/100)1/b,

we have for all τ0 > 0

Λ1−α(Fi(M) ∩ Sτ0) = 0, for i = 1, 2, 3

where

α =
κ2−b(4− b)δ2

c(M 3 + 1)(2+b)/2
.
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We let m : (0, 1) → R+ be positive monotone decreasing

function such that

lim
r→0+

m(r) =∞

and set

F (m) = {z : lim sup
r→0

A1(r)

m(r)
≤ 1}.

Lemma 3.12. If z ∈ F (m), then there is c such that

lim sup
r→0

A2(r)

m2(r)
≤ c.

Proof. We prove by contradiction. We let A1(r0) ≤ 2m(r0).

Set g(r) = A2(r)
m2(r)

and assume that lim g(r) =∞. Then there is

a sequence rn in (2.12) such that 2g(rn) ≥ supr∈[rn,1] g(r) and

rn → 0. We deduce with the first inequality in Lemma 2.4 that

for large n and 0 < rn ≤ r < r0

A3(r) ≤ cm(rn)A
1/2
2 (rn)

and from Lemma 2.2

A4(r) ≤ c

(
r

ρ

)3

A
1/2
3 (ρ) + c

(
r

ρ

)3

A4(ρ). + cA3(ρ)

From our assumption m(rn)A
1/2
2 (rn) goes to infinity and thus

for sufficiently large n

A4(r) ≤ cm(rn)A
1/2
2 (rn).

From the localized energy inequality (3.5), we have for rn ≤
r ≤ ρ

4c

A2(r) ≤ cm(rn)A
1/2
2 (rn)
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and this implies that
A2(rn)

m2(rn)
≤ c

and we conclude the proof.

Lemma 3.13. Suppose 9/5 ≤ b < 2. There is c such that

for z ∈ F (m) ∩ Sτ0
lim inf Jb(r)m(r)3−b ≥ c

Proof. From Lemma 2.10, there is r1 such thatA1(r) ≤ cm(r)

and A2(r) ≤ cm2(r) for 0 < r < r1. From the third inequality

in Lemma 2.4,

A3(r) ≤ c(ρ/r)2A2(ρ)(3−b)/2Jb(ρ)

and for r < r1 we have

A3(r) ≤ c(r1/r)
2m(r1)3−bJb(r1).

From Lemma 2.2, for sufficiently small r < r1 we have

A4(r) ≤ A3(r1).

From Proposition 2.3 and the assumption that z ∈ S

ε0 ≤ A3(r) + A4(r) ≤ c(r1/r)
2m(r1)3−bJb(r1).

After choosing r so small that c(r/r1)3m(r1)3 < ε0
2 , we have

ε0

2
≤ c(r1/r)

2m(r1)3−bJb(r1).

and since r1 can be arbitrarily small and ε0 is an absolute con-

stant, we conclude that

lim inf Jb(r)m(r)3−b ≥ c.
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Proof of Theorem 3.3. We let m(t) = log(1/t)σ where

σ will be specified later. We follow a similar path to the proof

of Proposition 2.8. Let Gk, k = 1, 2, ..., the set of all z ∈
F (m) ∩ Sτ0 such that for 0 < r < 1

k

c ≤ m(r)3−bJb(r) and A1(r) ≤ 2m(r) (3.14)

and then F (m) ∩ Sτ0 = ∪Gk. We need only to consider a

sufficiently large k. Let d̂(x, t) = inf{|x − y| + |t − s|1/2 :

(y, s) ∈ Gk} and we define Ê(r) = {z : d̂(z) < r}. Since

Hausdorff measure is countably subadditive, we fix r0 = 1
k and

for z ∈ Ê(r0),

A1(r1) ≤ cm(r1)m(r2)3−bJb(r2) for 0 < r1, r2 ≤ r0.

Also if c1 is large enough and

K1 = K1(ρ, z, b) = {z1 ∈ Q+
ρ (z) : |∇u(z1)| ≤ m(ρ)(b−3)/b 1

c1ρ2
}

K2 = Q+
ρ (z) \K1,

then for ρ ≤ r0 we get

ρ5−2bm(ρ)b−3 ≤ c

∫
Q+
ρ

|∇u|bdz (3.15)

= c

∫
K1

· · · dz + c

∫
K2

· · · dz

≤ 1

2
ρ5−2bm(ρ)b−3 + c

∫
K2

· · · dz.

From Hölder inequality, we have

Jb(ρ) ≤ cA1(ρ)b/2 ≤ cm(ρ)b/2. (3.16)
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Combining (3.15) and (3.16), we obtain that

Jb(ρ) ≤ cρ2b−5m(ρ)3−b/2
∫
K2

|∇u|bdz.

Choose the covering {Q+
5r(zi)} of Ê(r) satisfying the conditions

of Proposition 2.8 with d,E replaced by d̂, Ê. If we set

Ê1(r) = {z : cm(r)(b−3)/br−2 < |∇u(z)|} ∩ Ê(r)

then

∫
Ê1(r)

|∇u|2dz ≤
∑
i

∫
Q+
5r(zi)

|∇u|2dz (3.17)

≤ cr2b−4m(r)4−b
∑
i

∫
Q+
r (zi)

|∇u|bdz

≤ cr2b−4m(r)(14−3b)/2
∑
i

∫
K2(r,zi,b)

|∇u|bdz

≤ cr2b−4m(r)(14−3b)/2

∫
Ê1(r)

|∇u|bdz.

As in [7] we multiply (3.17) by 1
r and integrate from n−1 to
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r0, and if we set d̂n = max{d̂, n−1}, we have∫ r0

n−1

1

r

(∫
Ê(r)

|∇u|2dz
)
dr =

∫
Ê(r0)

log(r0/d̂n)|∇u|2dz

(3.18)

≤ c

∫ r0

n−1
r2b−5m(r)(14−3b)/2

(∫
Ê1(r)

|∇u|bdz
)
dr

≤ c

∫
Ê(r0)

min{|∇u|2−bm(|∇u|)(14−3b)/2+(3−b)/b,

(3.19)

d̂2b−4
n m(d̂−1

n )(14−3b)/2}|∇u|bdz.

We take σ so small that

σ ((14− 3b)/2 + (3− b)/b) < 1,

then

min
{
|∇u|2−bm(|∇u|)(14−3b)/2+(3−b)/b, d̂2b−4

n m(d̂−1
n )(14−3b)/2

}
|∇u|b

≤ c log

(
1

d̂n

)σ(14−3b)/2

|∇u|2.

The righthand side of (3.18) can be absorbed by the lefthand

side and we have∫
Ê(r0)

log(1/d̂n)|∇u|2dz ≤ c(σ, b, r0)

and letting n→∞ with monotone convergence theorem∫
Ê(r0)

log(1/d̂)|∇u|2dz ≤ ∞. (3.20)
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Reminding the definition of Ψ, we have

Ψ5r(Gk, t log(e/t)) ≤ c log(1/r)
∑
i

∫
Q+
r (zi)

|∇u|2dz

≤ c

∫
E(r0)

log(1/d̂)|∇u|2dz

and letting r → 0 we have Λ(Gk, t log(e/t)) = 0 for all k.

Arguing like [7], we also have Λ(S, t log(e/t)) = 0.
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