The spin coating system in the singular limit of vanishing surface tension

TECHNISCHE UNIVERSITÄT DARMSTADT

Lorenz von Below

Joint work with Matthias Geissert (TU Darmstadt)

8th Japanese-German International Workshop on Mathematical Fluid Dynamics Waseda University, Tokyo, June 17, 2013

The Navier-Stokes equations with free boundary in an infinite layer

We study the dependence of solutions to the system

$$\int \partial_t v - \Delta v + v \nabla v + \nabla \pi = f \qquad \text{in } \Omega(t)$$

div
$$v = 0$$
 in $\Omega(t)$

$$-S(v,\pi)\nu = \sigma\kappa\nu$$
 on $\Gamma^+(t)$

$$V = V\nu$$
 on $\Gamma^+(t)$

$$v = 0$$
 on Γ^-
 $v(0) = v_0$ in $\Omega(0)$

for t > 0 on the surface tension parameter $\sigma \ge 0$, in particular as $\sigma \rightarrow 0$.

For σ = 0: Abels, Beale, Solonnikov ...

 (NS_{σ})

For σ > 0: Beale, Denk et al., Shibata and Shimizu, Solonnikov ...

The Navier-Stokes equations with free boundary in an infinite layer

We study the dependence of solutions to the system

$$\int \partial_t v - \Delta v + v \nabla v + \nabla \pi = f \qquad \text{in } \Omega(t)$$

div
$$v = 0$$
 in $\Omega(t)$

$$-S(\mathbf{v},\pi)\mathbf{v} = \sigma\kappa\mathbf{v}$$
 on $\Gamma^+(t)$

$$V = V\nu$$
 on $\Gamma^+(t)$

$$v = 0$$
 on Γ^-
 $v(0) = v_0$ in $\Omega(0)$

for t > 0 on the surface tension parameter $\sigma \ge 0$, in particular as $\sigma \rightarrow 0$.

For σ = 0: Abels, Beale, Solonnikov ...

 (NS_{σ})

For σ > 0: Beale, Denk et al., Shibata and Shimizu, Solonnikov ...

The Navier-Stokes equations with free boundary in an infinite layer

We study the dependence of solutions to the system

$$\int \partial_t v - \Delta v + v \nabla v + \nabla \pi = f \qquad \text{in } \Omega(t)$$

div
$$v = 0$$
 in $\Omega(t)$

$$-S(\mathbf{v},\pi)\mathbf{v} = \sigma\kappa\mathbf{v}$$
 on $\Gamma^+(t)$

$$V = V\nu$$
 on $\Gamma^+(t)$

$$v = 0$$
 on Γ^-
 $v(0) = v_0$ in $\Omega(0)$

for t > 0 on the surface tension parameter $\sigma \ge 0$, in particular as $\sigma \rightarrow 0$.

For σ = 0: Abels, Beale, Solonnikov ...

 (NS_{σ})

For σ > 0: Beale, Denk et al., Shibata and Shimizu, Solonnikov ...

Abels 2005 (σ = 0)

- Transformation to a fixed domain (Transformation to Lagrange coordinates)
- Analysis of the linear problem
- Fixed point argument to solve the nonlinear problem
- Obtain unique solution of the free boundary problem in L_p setting for n sufficiently small time intervals.

- Transformation to a fixed domain (Hanzawa transform)
- Analysis of the linear problem
- Fixed point argument to solve the nonlinear problem
- Obtain unique solution of the free boundary problem in L_{ρ} setting for ρ large enough on (0, T) for initial data $\leq \epsilon(\sigma)$ with $\epsilon(\sigma) \rightarrow 0$ for $\sigma \rightarrow 0$.

Abels 2005 (σ = 0)

- Transformation to a fixed domain (Transformation to Lagrange coordinates)
- Analysis of the linear problem
- Fixed point argument to solve the nonlinear problem
- Obtain unique solution of the free boundary problem in L_p setting for n

- Transformation to a fixed domain (Hanzawa transform)
- Analysis of the linear problem
- Fixed point argument to solve the nonlinear problem
- Obtain unique solution of the free boundary problem in L_ρ setting for *p* large enough on (0, *T*) for initial data ≤ ε(σ) with ε(σ) → 0 for σ → 0.

Abels 2005 (σ = 0)

- Transformation to a fixed domain (Transformation to Lagrange coordinates)
- Analysis of the linear problem
- Fixed point argument to solve the nonlinear problem
- ► Obtain unique solution of the free boundary problem in L_p setting for n

- Transformation to a fixed domain (Hanzawa transform)
- Analysis of the linear problem
- Fixed point argument to solve the nonlinear problem
- Obtain unique solution of the free boundary problem in L_{ρ} setting for ρ large enough on (0, T) for initial data $\leq \varepsilon(\sigma)$ with $\varepsilon(\sigma) \rightarrow 0$ for $\sigma \rightarrow 0$.

Abels 2005 (σ = 0)

- Transformation to a fixed domain (Transformation to Lagrange coordinates)
- Analysis of the linear problem
- Fixed point argument to solve the nonlinear problem
- Obtain unique solution of the free boundary problem in L_p setting for n

- Transformation to a fixed domain (Hanzawa transform)
- Analysis of the linear problem
- Fixed point argument to solve the nonlinear problem
- Obtain unique solution of the free boundary problem in L_{ρ} setting for ρ large enough on (0, T) for initial data $\leq \varepsilon(\sigma)$ with $\varepsilon(\sigma) \rightarrow 0$ for $\sigma \rightarrow 0$.

Abels 2005 (σ = 0)

- Transformation to a fixed domain (Transformation to Lagrange coordinates)
- Analysis of the linear problem
- Fixed point argument to solve the nonlinear problem
- ► Obtain unique solution of the free boundary problem in L_p setting for n

- Transformation to a fixed domain (Hanzawa transform)
- Analysis of the linear problem
- Fixed point argument to solve the nonlinear problem
- Obtain unique solution of the free boundary problem in L_{ρ} setting for ρ large enough on (0, T) for initial data $\leq \varepsilon(\sigma)$ with $\varepsilon(\sigma) \rightarrow 0$ for $\sigma \rightarrow 0$.

Abels 2005 (σ = 0)

- Transformation to a fixed domain (Transformation to Lagrange coordinates)
- Analysis of the linear problem
- Fixed point argument to solve the nonlinear problem
- ► Obtain unique solution of the free boundary problem in L_p setting for n

- Transformation to a fixed domain (Hanzawa transform)
- Analysis of the linear problem
- Fixed point argument to solve the nonlinear problem
- Obtain unique solution of the free boundary problem in L_p setting for p large enough on (0, T) for initial data $\leq \varepsilon(\sigma)$ with $\varepsilon(\sigma) \rightarrow 0$ for $\sigma \rightarrow 0$.

Abels 2005 (σ = 0)

- Transformation to a fixed domain (Transformation to Lagrange coordinates)
- Analysis of the linear problem
- Fixed point argument to solve the nonlinear problem
- ► Obtain unique solution of the free boundary problem in L_p setting for n

- Transformation to a fixed domain (Hanzawa transform)
- Analysis of the linear problem
- Fixed point argument to solve the nonlinear problem
- Obtain unique solution of the free boundary problem in L_p setting for *p* large enough on (0, *T*) for initial data $\leq \varepsilon(\sigma)$ with $\varepsilon(\sigma) \rightarrow 0$ for $\sigma \rightarrow 0$.

Abels 2005 (σ = 0)

- Transformation to a fixed domain (Transformation to Lagrange coordinates)
- Analysis of the linear problem
- Fixed point argument to solve the nonlinear problem
- ► Obtain unique solution of the free boundary problem in L_p setting for n

- Transformation to a fixed domain (Hanzawa transform)
- Analysis of the linear problem
- Fixed point argument to solve the nonlinear problem
- Obtain unique solution of the free boundary problem in L_p setting for *p* large enough on (0, *T*) for initial data $\leq \varepsilon(\sigma)$ with $\varepsilon(\sigma) \rightarrow 0$ for $\sigma \rightarrow 0$.

Abels 2005 (σ = 0)

- Transformation to a fixed domain (Transformation to Lagrange coordinates)
- Analysis of the linear problem
- Fixed point argument to solve the nonlinear problem
- ► Obtain unique solution of the free boundary problem in L_p setting for n

- Transformation to a fixed domain (Hanzawa transform)
- Analysis of the linear problem
- Fixed point argument to solve the nonlinear problem
- Obtain unique solution of the free boundary problem in L_p setting for *p* large enough on (0, *T*) for initial data $\leq \varepsilon(\sigma)$ with $\varepsilon(\sigma) \rightarrow 0$ for $\sigma \rightarrow 0$.

Main result

Theorem

Assume

- ► f, u₀ satisfy certain compatibility and regularity conditions
- Ω(0) is a flat layer

$$\blacktriangleright \ \sigma^* > \mathbf{0}.$$

Then there is T > 0 and C > 0 such that for $0 \le \sigma \le \sigma^*$ there is a unique solution (u, θ) of (NS_{σ}) with

$$\begin{aligned} \|u\|_{H^{1}_{p}(0,T;L^{p}(\Omega_{0}))\cap L_{p}(0,T;H^{2}_{p}(\Omega_{0}))} + \|\theta\|_{L_{p}(0,T;\hat{H}^{1}_{p}(\Omega_{0}))} \\ &+ \|\gamma\theta\|_{W^{1/2-1/2p}_{p}(0,T;L^{p}(\Gamma^{+}_{0}))\cap L^{p}(0,T;W^{1-1/p}_{p}(\Gamma^{+}_{0}))} \leq C \,\|(f,u_{0})\| \end{aligned}$$

Here T > 0 and C > 0 are independent of σ .

June 17, 2013 | TU Darmstadt, IRTG 1529 | Lorenz von Below | 4

Transformation to a fixed domain: Lagrange coordinates

$$\mathsf{VS}_{\sigma} \begin{cases} \partial_t v - \Delta v + v \nabla v + \nabla \pi = f & \text{in } \Omega(t) \\ \text{div } v = 0 & \text{in } \Omega(t) \\ -S(v, \pi)v = \sigma \kappa v & \text{on } \Gamma^+(t) \\ V = v v & \text{on } \Gamma^+(t) \\ v = 0 & \text{on } \Gamma^- \\ v(0) = v_0 & \text{in } \Omega(0) \end{cases}$$

 $v(t, x) = u(t, \xi)$ with

$$x = X_u(t,\xi) = \xi + \int_0^t u(\tau,\xi) \,\mathrm{d}\tau$$

(1

and $\pi(t, x) = \theta(t, \xi)$.

Transformation to a fixed domain: Lagrange coordinates

$$\mathsf{VS}_{\sigma} \begin{cases} \partial_t v - \Delta v + v \nabla v + \nabla \pi = f & \text{in } \Omega(t) \\ \text{div } v = 0 & \text{in } \Omega(t) \\ -S(v, \pi)v = \sigma \kappa v & \text{on } \Gamma^+(t) \\ V = v v & \text{on } \Gamma^+(t) \\ v = 0 & \text{on } \Gamma^- \\ v(0) = v_0 & \text{in } \Omega(0) \end{cases}$$

 $v(t, x) = u(t, \xi) \text{ with}$ $x = X_u(t, \xi) = \xi + \int_0^t u(\tau, \xi) \, d\tau$ and $\pi(t, x) = \theta(t, \xi).$

(1

Transformation to a fixed domain: Lagrange coordinates

($\partial_t u - \Delta u + \nabla \theta = F_1(u,\theta)$	in (0, T) $ imes$ Ω_0
	div $u = F_d(u)$	in (0, T) $ imes$ Ω_0
	$Euv _{tan} = G^+_{tan}(u)$	on (0, T) $ imes$ Γ_0^+
$\nu \cdot S(u, \theta)$	$\nu - \sigma(m - \Delta_{\Gamma_0^+})\eta = G_n^+(u, \theta)$	on (0, T) $ imes$ Γ_0^+
	$\partial_t \eta - u \cdot \nu = K^+(u)$	on (0, T) $ imes$ Γ_0^+
	<i>u</i> = 0	on (0, <i>T</i>) $ imes$ Γ^-
	$u(0) = u_0$	in Ω_0
	$\eta(0) = 0$	in Γ_0^+

We look for solutions of the system

$$\begin{array}{ll} \partial_t u - \Delta u + \nabla \theta = f_1 & \text{ in } (0, T) \times \Omega_0 \\ & \text{div } u = f_d & \text{ in } (0, T) \times \Omega_0 \\ & Eu\nu|_{\text{tan}} = g_{\text{tan}}^+ & \text{ on } (0, T) \times \Gamma_0^+ \\ \nu \cdot S(u, \theta)\nu - \sigma(m - \Delta_{\Gamma_0^+})\eta = g_n^+ & \text{ on } (0, T) \times \Gamma_0^+ \\ & \partial_t \eta - u \cdot \nu = k^+ & \text{ on } (0, T) \times \Gamma_0^+ \\ & u = 0 & \text{ on } (0, T) \times \Gamma^- \\ & u(0) = u_0 & \text{ in } \Omega_0 \\ & \eta(0) = 0 & \text{ in } \Gamma_0^+ \end{array}$$

for data satisfying certain compatibility and regularity assumptions.

Theorem

Given

• data f_1, f_d, g^+, k^+, u_0 satisfying certain compatibility and regularity conditions

for any $\sigma \in [0, \sigma^*]$ there is a unique solution (u, θ, η) of the linear problem satisfying

$$\begin{aligned} \|u\|_{H^{1}_{p}(L^{p}(\Omega_{0}))\cap L_{p}(H^{2}_{p}(\Omega_{0}))} + \|\theta\|_{L_{p}(\hat{H}^{1}_{p}(\Omega_{0}))} + \|\gamma\theta\|_{W^{1/2-1/2p}_{p}(L^{p}(\Gamma^{*}_{0}))\cap L^{p}(W^{1-1/p}_{p}(\Gamma^{*}_{0}))} \\ &+ \|\eta\|_{H^{1}_{p}(J;W^{2-1/p}_{p}(\Gamma^{*}_{0}))} + \sigma \left\|\Delta_{\Gamma^{*}_{0}}\eta\right\|_{L^{p}(W^{1-1/p}_{p}(\Gamma^{*}_{0}))} \leq C \left\|(f_{1}, f_{d}, g^{+}, k^{+}, u_{0})\right\| \end{aligned}$$

with a constant C > 0 independent of σ .

Ingredients of the proof:

- Derivation of an explicit solution formula: Fourier-Laplace transform, reduction to system of ODEs in normal direction
- Careful analysis of the representation formula and of dependence on σ : Newton polygon method, H^{∞} -calculus, Kalton-Weis theorem

Ingredients of the proof:

- Derivation of an explicit solution formula: Fourier-Laplace transform, reduction to system of ODEs in normal direction
- Careful analysis of the representation formula and of dependence on *σ*: Newton polygon method, H[∞]-calculus, Kalton-Weis theorem

The nonlinear problem

$$\begin{aligned} \partial_t u - \Delta u + \nabla \theta &= F_1(u, \theta) & \text{ in } (0, T) \times \Omega_0 \\ \text{ div } u &= F_d(u) & \text{ in } (0, T) \times \Omega_0 \\ Eu\nu|_{\text{tan}} &= G_{\text{tan}}^+(u) & \text{ on } (0, T) \times \Gamma_0^+ \\ \nu \cdot S(u, \theta)\nu - \sigma(m - \Delta_{\Gamma_0^+})\eta &= G_n^+(u, \theta) & \text{ on } (0, T) \times \Gamma_0^+ \\ \partial_t \eta - u \cdot \nu &= K^+(u) & \text{ on } (0, T) \times \Gamma_0^- \\ u &= 0 & \text{ on } (0, T) \times \Gamma^- \\ u(0) &= u_0 & \text{ in } \Omega_0 \\ \eta(0) &= 0 & \text{ in } \Gamma_0^+ \end{aligned}$$

• Estimates for the nonlinearities F_1 , F_d , G^+ , K^+ .

Employ fixed point iteration to solve the nonlinear problem.

The nonlinear problem

$$\begin{aligned} \partial_t u - \Delta u + \nabla \theta &= F_1(u, \theta) & \text{ in } (0, T) \times \Omega_0 \\ \text{div } u &= F_d(u) & \text{ in } (0, T) \times \Omega_0 \\ Eu\nu|_{\text{tan}} &= G_{\text{tan}}^+(u) & \text{ on } (0, T) \times \Gamma_0^+ \\ \nu \cdot S(u, \theta)\nu - \sigma(m - \Delta_{\Gamma_0^+})\eta &= G_n^+(u, \theta) & \text{ on } (0, T) \times \Gamma_0^+ \\ \partial_t \eta - u \cdot \nu &= K^+(u) & \text{ on } (0, T) \times \Gamma_0^+ \\ u &= 0 & \text{ on } (0, T) \times \Gamma^- \\ u(0) &= u_0 & \text{ in } \Omega_0 \\ \eta(0) &= 0 & \text{ in } \Gamma_0^+ \end{aligned}$$

- Estimates for the nonlinearities F_1 , F_d , G^+ , K^+ .
- Employ fixed point iteration to solve the nonlinear problem.

The nonlinear problem

$$\begin{cases} \partial_t u - \Delta u + \nabla \theta = F_1(u, \theta) & \text{in } (0, T) \times \Omega_0 \\ \text{div } u = F_d(u) & \text{in } (0, T) \times \Omega_0 \\ Eu\nu|_{\text{tan}} = G_{\text{tan}}^+(u) & \text{on } (0, T) \times \Gamma_0^+ \\ \nu \cdot S(u, \theta)\nu - \sigma(m - \Delta_{\Gamma_0^+})\eta = G_n^+(u, \theta) & \text{on } (0, T) \times \Gamma_0^+ \\ \partial_t \eta - u \cdot \nu = K^+(u) & \text{on } (0, T) \times \Gamma_0^- \\ u = 0 & \text{on } (0, T) \times \Gamma^- \\ u(0) = u_0 & \text{in } \Omega_0 \\ \eta(0) = 0 & \text{in } \Gamma_0^+ \end{cases}$$

- Estimates for the nonlinearities F_1 , F_d , G^+ , K^+ .
- Employ fixed point iteration to solve the nonlinear problem.

Outlook

Generalise our results to the case where Ω(0) is sufficiently close to a layer.

- Investigate convergence of solutions (u, θ) as $\sigma \rightarrow 0$.
- Obtain informaton on regularity of the upper boundary and behaviour as $\sigma \rightarrow 0$.

Outlook

- Generalise our results to the case where $\Omega(0)$ is sufficiently close to a layer.
- Investigate convergence of solutions (u, θ) as $\sigma \to 0$.
- Obtain informaton on regularity of the upper boundary and behaviour as $\sigma \rightarrow 0$.

Outlook

- Generalise our results to the case where $\Omega(0)$ is sufficiently close to a layer.
- Investigate convergence of solutions (u, θ) as $\sigma \to 0$.
- Obtain information on regularity of the upper boundary and behaviour as $\sigma \rightarrow 0$.

Thank you for your attention!

June 17, 2013 | TU Darmstadt, IRTG 1529 | Lorenz von Below | 12