Water entry at high horizontal speed

Moritz Reinhard

17 June 2013

IRTG

Waseda University

Wagner model for vertical impact

viscosity, surface tension, compressibility are neglected

Nondimensional variables:

 $x' = Lx, \ y' = Ly, \ t' = \frac{\varepsilon L}{V}t, \ \varphi' = LV\varphi, \ \eta' = \varepsilon L\eta$

$$\begin{split} &\Delta\varphi(x,y,t) = 0 \qquad ((x,y) \in \Omega(t)) \\ &\varphi_y = -1 + \varepsilon\varphi_x \operatorname{sgn}(x) \qquad (y = \varepsilon(|x| - t)) \\ &\varphi_y = \eta_t + \varepsilon\eta_x\varphi_x \qquad (y = \varepsilon\eta(x,t)) \\ &\varphi_t = -\frac{\varepsilon}{2}|\nabla\varphi|^2 - \frac{\varepsilon_g L}{V^2}y \qquad (y = \varepsilon\eta(x,t)) \\ &\varphi \to 0 \qquad (x^2 + y^2 \to \infty) \end{split}$$

initial conditions: $\eta(x, 0) = 0$, $\varphi(x, y, 0) = 0$

Hydrodynamic pressure: $p = -\varphi_t + \frac{\varepsilon}{2} |\nabla \varphi|^2 - \frac{\varepsilon gL}{V^2} y$ $((x, y) \in \Omega(t))$

Leading-order hydrodynamic problem for $\varepsilon \ll 1$

$$\begin{split} \Delta \varphi &= 0 \qquad (y < 0) \\ \varphi_y &= -1 \qquad (y = 0, |x| < d) \\ \varphi_y &= \eta_t \qquad (y = 0, |x| > d) \\ \varphi_t &= 0 \qquad (y = 0, |x| > d) \\ \varphi &\to 0 \qquad (x^2 + y^2 \to \infty) \\ p &= -\varphi_t \qquad (y = 0, |x| < d) \\ \eta(x, 0) &= 0 \qquad (x \in \mathbb{R}) \end{split}$$

Wagner's condition:

 $\eta(d,t) = d - t \qquad (d > 0)$

$$\varphi = O(1) \quad ((x, y) \to (\pm d, 0))$$

Solution: $d(t) = \frac{\pi}{2}t$

LOWT: Leading order Wagner theory SOWT: Second order Wagner theory (Oliver, 2007)

Z&F: Numerical solution exploiting selfsimilarity (Zhao & Faltinsen, 1993)

Oblique impact of a plate

Oblique impact of a plate

$$\begin{split} \Delta \varphi &= 0 & (y < 0) \\ \varphi_y &= \omega_t(x,t) & (y = 0, t < x < d) \\ \varphi &= 0 & (y = 0, x < 0, x > d) \\ \varphi_x &= A(x) & (y = 0, 0 < x < t) \\ \\ \varphi &\to 0 & (x^2 + y^2 \to \infty) \\ \varphi &= O(1) & ((x,y) \to (d,0)) \\ |\nabla \varphi| &= O(1) & ((x,y) \to (t,0)) \end{split}$$

where d = d(t) is given by:

$$\begin{aligned} \omega(d,t) &= \eta(d,t) \quad (d>t) \\ \varphi_y &= \eta_t \quad (y=0,\, x < t,\, x > d) \\ \eta(x,0) &= 0 \end{aligned}$$

$$\begin{split} \eta(t,t) &= \omega(t,t) \\ p &= -\varphi_t \qquad (y = 0, \ t < x < d) \end{split}$$

$$\mathsf{MBVP} \Longrightarrow \int_0^t \sqrt{\frac{d-\xi}{t-\xi}} A(\xi) \, \mathsf{d}\xi = \int_t^d \sqrt{\frac{d-\xi}{\xi-t}} \omega_t(\xi,t) \, \mathsf{d}\xi$$

displacement potential: $\Phi(x, y, t) = \int_0^{\tau} \varphi(x, y, \tau) \, d\tau$

 $\begin{aligned} \Delta \Phi &= 0 & (y < 0) \\ \Phi_y &= \omega(x, t) & (y = 0, t < x < d) \\ \Phi &= 0 & (y = 0, x < 0 \text{ and } x > d) \\ \Phi_x &= tA(x) + B(x) & (y = 0, 0 < x < t) \end{aligned}$

$$\begin{split} |\nabla \Phi| &= O(1) & ((x, y) \to (t, 0)) \\ \Phi &= O(((x - d)^2 + y^2)^{1/2}) & ((x, y) \to (d, 0)) \\ \Phi \to 0 & (x^2 + y^2 \to \infty) \end{split}$$

$$\int_0^t \sqrt{\frac{t-\xi}{d-\xi}} \left(tA(\xi) + B(\xi) \right) \, \mathrm{d}\xi = -\int_t^d \sqrt{\frac{\xi-t}{d-\xi}} \omega(\xi, t) \, \mathrm{d}\xi$$
$$\int_0^t \sqrt{\frac{d-\xi}{t-\xi}} \left(tA(\xi) + B(\xi) \right) \, \mathrm{d}\xi = \int_t^d \sqrt{\frac{d-\xi}{\xi-t}} \omega(\xi, t) \, \mathrm{d}\xi$$

$$\int_0^t \sqrt{\frac{d-\xi}{t-\xi}} A(\xi) \, \mathrm{d}\xi = \int_t^d \sqrt{\frac{d-\xi}{\xi-t}} \omega_t(\xi,t) \, \mathrm{d}\xi$$
$$\int_0^t \sqrt{\frac{t-\xi}{d-\xi}} \left(t A(\xi) + B(\xi) \right) \, \mathrm{d}\xi = -\int_t^d \sqrt{\frac{\xi-t}{d-\xi}} \omega(\xi,t) \, \mathrm{d}\xi$$
$$\int_0^t \sqrt{\frac{d-\xi}{t-\xi}} \left(t A(\xi) + B(\xi) \right) \, \mathrm{d}\xi = \int_t^d \sqrt{\frac{d-\xi}{\xi-t}} \omega(\xi,t) \, \mathrm{d}\xi$$

For rigid-plate plate impact at constant velocity:

$$\omega(x,t) = x - t(1 + \chi), \qquad \chi = \frac{V}{\varepsilon U}$$

 $\implies \text{Solution is self-similar solution: } A(x) = A^* \,, \quad B(x) = B^*x \,, \quad \dot{d}(t) = \dot{d}_*t$

Solution of the problem:

$$\dot{d}_* = q^{-2}$$
, $A^* = -\frac{\pi}{4q} \frac{\chi - 1 + 2q^2(1 + 2\chi)}{(q^2 + 1)^{3/2}}$, $B^* = -A^* \frac{4q^2 + 1}{2q^2 + 2}$,

$$\operatorname{arsinh}(q) = q\sqrt{q^2 + 1} \, \frac{\chi + 3 - 2\chi q^2}{\chi - 1 + 2q^2(1 + 2\chi)}$$

Structural part of the problem for free elastic plate

Euler's beam equation:

h plate thickness

$$\begin{split} \mu \frac{\partial^2}{\partial t^2} \zeta & + \theta \frac{\partial^4}{\partial s^4} \zeta = p(s+t,0,t) - \mu \kappa \\ \frac{\partial^2}{\partial s^2} \zeta & = \frac{\partial^3}{\partial s^3} \zeta = 0 \quad (s=0,\,s=1) \end{split} \qquad \begin{array}{c} \mu = \frac{\varrho_S h}{\varrho_F L} & D \text{ flexural rigidity} \\ \theta = \frac{\varrho_S h}{\varrho_F L^3 U^2} & \varrho_S \text{ plate density} \\ \kappa = \frac{gL}{eL^2} & \varrho_F \text{ fluid density} \end{array}$$

$$\zeta(s,t) = \sum_{k=0}^{\infty} a_k(t)\psi_k(s) \qquad \qquad \frac{\partial^4}{\partial s^2}\psi_k = \lambda_k^4\psi_k \qquad (0 < s < 1)$$
$$\frac{\partial^2}{\partial s^2}\psi_k = \frac{\partial^3}{\partial s^3}\psi_k = 0 \qquad (s = 0, s = 1)$$

rigid modes of translation and rotation: $\psi_0(s), \quad \psi_1(s)$ normal modes for elastic deflection: $\psi_k(s), \quad k \ge 2$

Coupling of structural and hydrodynamic part

$$\mu \frac{\mathrm{d}^2 a_k}{\mathrm{d}t^2} + \theta \lambda_k^4 a_k = \int_t^d p(x,0,t) \psi_k(x-t) \,\mathrm{d}x - \mu \kappa \delta_{0k}$$

Hydrodynamic pressure:

$$p(x,0,t) = -\frac{\dot{d}S(t)}{\pi(d-t)}\sqrt{\frac{x-t}{d-x}} - \frac{1}{\pi}\sqrt{(x-t)(d-x)}T(x,t),$$

where

$$S(t) = \int_0^t \sqrt{\frac{t-\xi}{d-\xi}} A(\xi) \, \mathrm{d}\xi + \int_t^d \sqrt{\frac{\xi-t}{d-\xi}} \omega_t(\xi,t) \, \mathrm{d}\xi \,,$$

$$T(x,t) = \int_t^d \frac{\hat{\omega}_{tt}(\xi,t)}{(\xi-x)\sqrt{(\xi-t)(d-\xi)}} \, \mathrm{d}\xi \,,$$

$$\hat{\omega}_{tt}(x,t) = \int_t^x \omega_{tt}(\xi,t) \, \mathrm{d}\xi \,.$$

Final equations

Euler's beam equation:

Wagner's condition:

update of A and B:

$$\begin{aligned} \frac{\mathrm{d}^2 \vec{a}}{\mathrm{d}t^2} &= \vec{F}\left(t, d, \vec{a}, \frac{\mathrm{d}\vec{a}}{\mathrm{d}t}, A(x)|_{x \in \{0, t\}}\right) \\ \frac{\mathrm{d}d}{\mathrm{d}t} &= G\left(t, d, \vec{a}, \frac{\mathrm{d}\vec{a}}{\mathrm{d}t}, A(x)|_{x \in \{0, t\}}, B(x)|_{x \in \{0, t\}}\right) \\ \int_0^t \sqrt{\frac{d-\xi}{t-\xi}} A(\xi) \,\mathrm{d}\xi &= K(t, d, \vec{a}, \frac{\mathrm{d}\vec{a}}{\mathrm{d}t}) \\ \int_0^t \sqrt{\frac{d-\xi}{t-\xi}} B(\xi) \,\mathrm{d}\xi &= L(t, d, \vec{a}, \frac{\mathrm{d}\vec{a}}{\mathrm{d}t}) \end{aligned}$$

with initial conditions:

$$\vec{a}(0) = (\frac{1}{2}, \frac{1}{6}\sqrt{3}, 0, 0, \cdots), \qquad \frac{d\vec{a}}{dt}(0) = (-\frac{V}{\varepsilon U}, 0, 0, \cdots), \quad d(0) = 0$$

Results for steel plate:

$$L = 2.4 \text{m}, h = 5 \text{cm}, \varepsilon = 8.6^{\circ}, V = 6 \text{ms}^{-1}, U = 24 \text{ms}^{-1}$$

timestep $\Delta t = 5 \times 10^{-4}$, 8 elastic modes

Summary

- The Wagner model for impact problems of bodies with small deadrise angle into water was introduced.
- 2. A model for the impact of an elastic plate at high horizontal speed has been presented.
- 3. Influence of hydroelasticity on the force is significant. Large negative forces appear on the rear part of the plate during impact.

Thank you.

Any questions or comments?

References

A. lafrati and D. Calcani.

Numerical and experimental studies of plate ditching.

In 28th International Workshop for Water Waves and Floating Bodies, page Marseille, Copenhagen, 2013.

A. A. Korobkin.

Second-order Wagner theory of wave impact.

J. Eng. Math., 58:121-139, 2007.

M. Reinhard, A. A. Korobkin, and M. J. Cooker.

Water entry of a flat elastic plate at high horizontal speed.

J. Fluid Mech., 724:123-153, 2013.

H. Wagner.

Über Stoß- und Gleitvorgänge an der Oberfläche von Flüssigkeiten.

ZAMM, 12:193-215, 1932.