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A—Au+Vp = f in Q,
dvu = g in Q, in L9-setting (R)
u =0 on 012,
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Cylinders with Non-Constant Cross-Section

» Stokes resolvent problem

A—Au+Vp = f in Q,
dvu = g in Q, in L9-setting (R)
u =0 on 012,

with A € —a+ Xy, 0 € (7/2,m), a € (0, ap)
» Q={(r,0,2) €R3:r < R(p,2)}

> R(yp,z) > & > 0 Lipschitz continuous
» V'R has compact support and there is K > 0 s.t.

[V'Rlloo. [V2Rllee < K (K)

> R(y, 0) parametrizes the boundary of a reference cross section &
» ¥ C R?: bounded C"'-domain, star-shaped w.r.t. some ball around 0
> «ap > 0: smallest eigenvalue of the Dirichlet Laplacian in &
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Resolvent Estimate

Theorem 1
> 2<g< oo

» smallness assumption (K)
> (f,g) € LYQ)® x (W'9(Q) N W—9(Q))
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Resolvent Estimate

Theorem 1
» 2<g< @
» smallness assumption (K)
> (f,9) € L9Q)® x (W'9(Q) N W"9(Q))
= 3 unique solution to (R)
(u,p) € (WZQ(Q)3 N wg'q(m?») x WH(Q)
» a priori estimate

I+ @), V2u, Vpllg < c(llfllg + llgllq + (Al + Dl glli-1o0))
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Resolvent Estimate

Theorem 1
> 1 <g<oo

» smallness assumption (K)
> (f,0) € LYQ)® x (W'9(Q) N W—9(Q))
= 3 unique solution to (R)
(u,p) € (WZQ(Q)3 N wg'q(m?») x WH(Q)
» a priori estimate
A+ a)u, V2u, Vp|lq < c| |
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H*>°-calculus

Definition
» sectorial operator B on Banach space X admits bounded H>°(Xy)-calculus if
1Bl 2o < cllhlloo
for all holomorphic and bounded functions on ¥
» how to define h(B) ~» Complex Analysis

1
h(B) .= —
(B) 2mi

/h(>\)(>\ —B)~'dx
.
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H*>°-calculus

Definition

» sectorial operator B on Banach space X admits bounded H>°(Xy)-calculus if
1h(B)ll.ceo < cllhllos

for all holomorphic and bounded functions on ¥
» how to define h(B) ~» Complex Analysis

1

/h(>\)(>\ —B)~'dA
.

Theorem 2
For 1 < g < oo the Stokes operator A; admits a bounded H>°(¥)-calculus in
L9($2) for any 6 € (0, 7).
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Proof

Ingredients

» Theorem 1 has been shown for a straight cylinder Q=Y xR by Farwig and Ri
(2007) for2 < g < .
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Proof

Ingredients

» Theorem 1 has been shown for a straight cylinder Q2 = ¥ x R by Farwig and Ri
(2007) for2 < g < .
» Perturbation arguments:
» Define solution operators S(u, p) = (A\u — Au + Vp, —div u) on Q and
analogously on 2
» Write S(u, p) = S(&1, p) + R(@i, p) with remainder term R
» Show that R is small with respect to S (work ~~ see next slide)
» Since S is a isomorphism of Banach spaces, so are small perturbations by a
Neumann series argument

» For1 < g < 2, g =0 use duality arguments for the Stokes operator.

» For domains with certain regularity properties such that 0 € p(Ag), the Stokes
operator admits a bounded H>°(¥y)-calculus by a result by Abels (2004).
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Proof

Transformation back to the straight cylinder in cylindrical coordinates via

(?s (;5:2) = ng(r,ga,z) = <P((;Z)’ @!Z)

with P(¢, 2) = R(p, 2)/R(, 0).
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Proof

Transformation back to the straight cylinder in cylindrical coordinates via
r
(?s (:5: 2) = ¢(rs ®s Z) = <7 P Z)
P(p, 2)

with P(¢, 2) = R(p, 2)/R(, 0).

» divi = 10,(F ) + 10,0, + 0.0,
» Transformed divergence

divu =div I

I 1
+ (?6,(r o) + ?8¢u¢> (P(cp, 2 1)

= (0,P(0,2)\ .x. (0:P(p,2)
— 8rU<p (P(QO,Z)Z) — FO, U, (P((p,Z))
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Proof

Transformation back to the straight cylinder in cylindrical coordinates via
r
(?s ~s 2) = ng(r, ®s Z) = <’ P Z)
7 P(p,2)
with P(y, z) = R(p, 2)/R(, 0).
> divi = 13,(F i) + 1,0, + 0,0,
» Transformed divergence
div u =div &
1~ o 1. 1
+ (?6,0‘ Ur) + ?8¢U¢> <P((7Q’ Z) — 1)

« . (0,P(,2)\ .x. [0:P(p,2)
-0 (g ) o)
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Proof

Transformation back to the straight cylinder in cylindrical coordinates via
r
(?s ~32)=¢(r5 ,Z)= <7 ,Z)
7 i Plp.2)"
with P(y, z) = R(p, 2)/R(, 0).
> Vp=dpe +1d,pe, +d,pe,
» Transformed gradient
Vp =§i)
bbe + 3 pe LI
+ rPer + 7 0P €y P(s, 2)

~ P = . 0,P(p,
om0 rion (22)
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Proof

Transformation back to the straight cylinder in cylindrical coordinates via
r
(?s ~32)=¢(r! sz)= <1SOSZ)
7 v P(p,2)
with P(y, z) = R(p, 2)/R(, 0).
> Vp=dpe +1d,pe, +d,pe,
» Transformed gradient
Vp =§i)
~ . 1. . 1
+ | O0per+ F&ppe@ Po2) 1

- aﬂpw,z)) o <azP<sa,z))
— af e B — rar ez A
g “’( P(s, 27 P\ Pl 2)
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Proof

Transformation back to the straight cylinder in cylindrical coordinates via
r
(?s (:5: 2) = ng(r, ®s Z) = <’ P Z)
P(p, 2)
with P(¢, z) = R(, 2)/R(¢, 0).
~ —~ ~ —2
» Al=divVi—curl U
» Transformed Laplacian

Au=AU+..

June 19, 2013 | Jonas Sauer



Proof

Transformation back to the straight cylinder in cylindrical coordinates via

(?s (:5: 2) = ¢(rs 2 Z) = <P((;,Z)7 ©, Z)
with P, 2) = R(e, 2)/R(¢, 0).

~ —~ ~ —2
» Al=divVi—curl U
» Transformed Laplacian

Au=Al+...

> S(u,p) = (\u— Au+ Vp, —div u) is close to (T, p) = (AT — AL+ Vp, —div ))!
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Thank you very much for your attention!

Questions?
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