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Cylinders with Non-Constant Cross-Section

I Stokes resolvent problem

λu −∆u +∇p = f in Ω,
div u = g in Ω,

u = 0 on ∂Ω,
in Lq-setting (R)

with λ ∈ −α + Σθ, θ ∈ (π/2,π), α ∈ (0,α0)

I Ω = {(r ,ϕ, z) ∈ R3 : r < R(ϕ, z)}
I R(ϕ, z) ≥ δ > 0 Lipschitz continuous

I ∇′R has compact support and there is K > 0 s.t.

‖∇′R‖∞, ‖∇′2R‖∞ < K (K)

I R(ϕ, 0) parametrizes the boundary of a reference cross section Σ

I Σ ⊂ R2: bounded C1,1-domain, star-shaped w.r.t. some ball around 0
I α0 > 0: smallest eigenvalue of the Dirichlet Laplacian in Σ
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Resolvent Estimate

Theorem 1
I 2 ≤ q <∞
I smallness assumption (K)
I (f , g) ∈ Lq(Ω)3 ×

(
W 1,q(Ω) ∩ Ŵ−1,q(Ω)

)

⇒ ∃ unique solution to (R)

(u, p) ∈
(

W 2,q(Ω)3 ∩W 1,q
0 (Ω)3

)
× Ŵ 1,q(Ω)

I a priori estimate

‖(λ + α)u,∇2u,∇p‖q ≤ c(‖f‖q + ‖g‖1,q + (|λ| + 1)‖g‖Ŵ−1,q (Ω))

I c(q,α, θ,Ω) > 0 independent of λ
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H∞-calculus

Definition
I sectorial operator B on Banach space X admits bounded H∞(Σθ)-calculus if

‖h(B)‖L(X ) ≤ c‖h‖∞

for all holomorphic and bounded functions on Σθ
I how to define h(B) Complex Analysis

h(B) :=
1

2πi

∫
Γ

h(λ)(λ− B)−1 dλ

Theorem 2
For 1 < q <∞ the Stokes operator Aq admits a bounded H∞(Σθ)-calculus in
Lq
σ(Ω) for any θ ∈ (0,π).
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Proof

Ingredients

I Theorem 1 has been shown for a straight cylinder Ω̃ = Σ×R by Farwig and Ri
(2007) for 2 ≤ q <∞.

I Perturbation arguments:
I Define solution operators S(u, p) = (λu −∆u +∇p,−div u) on Ω and

analogously on Ω̃

I Write S(u, p) = S̃(ũ, p̃) + R̃(ũ, p̃) with remainder term R̃
I Show that R̃ is small with respect to S̃ (work see next slide)
I Since S̃ is a isomorphism of Banach spaces, so are small perturbations by a

Neumann series argument

I For 1 < q < 2, g = 0 use duality arguments for the Stokes operator.

I For domains with certain regularity properties such that 0 ∈ ρ(Aq), the Stokes
operator admits a bounded H∞(Σθ)-calculus by a result by Abels (2004).
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Proof

Transformation back to the straight cylinder in cylindrical coordinates via

(r̃ , ϕ̃, z̃) = φ(r ,ϕ, z) =
(

r
P(ϕ, z)

,ϕ, z
)

with P(ϕ, z) = R(ϕ, z)/R(ϕ, 0).
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+
(

1
r̃
∂̃r (r̃ ũr ) +
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(
∂ϕP(ϕ, z)
P(ϕ, z)2

)
− r̃ ∂̃r ũz
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Thank you very much for your attention!

Questions?
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