

Numerical tests on some viscoelastic flows

-multiscale approach

Bangwei She, Mária Lukáčová

Institute of Mathematics, JGU-Mainz

June 18, 2013

The 8th Japanese-German International Workshop on Mathematical Fluid Dynamics, Tokyo

Outline

Introduction

Multiscale approach

Numeric

Governing equations

$$\begin{cases} Re(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u}) = -\nabla p + \alpha \Delta \mathbf{u} + \nabla \cdot \boldsymbol{\sigma} \\ \nabla \cdot \mathbf{u} = 0 \end{cases}$$
(1)

 $\mathbf{u}, \mathbf{p}, \mathbf{\sigma}, \alpha, Re = \rho \frac{UL}{\mu}$ are velocity, pressure, elastic stress, and portion of Newtonian viscosity in total viscosity, Reynolds number.

Governing equations

$$\begin{cases} Re(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u}) = -\nabla p + \alpha \Delta \mathbf{u} + \nabla \cdot \boldsymbol{\sigma} \\ \nabla \cdot \mathbf{u} = 0 \end{cases}$$
(1)

 $\mathbf{u}, \mathbf{p}, \mathbf{\sigma}, \alpha, Re = \rho \frac{UL}{\mu}$ are velocity, pressure, elastic stress, and portion of Newtonian viscosity in total viscosity, Reynolds number.

Two approaches describing the elastic stress

Macro: constitutive law (Oldroyd-B model):

$$\frac{\partial \mathbf{C}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{C} - \nabla \mathbf{u} \cdot \mathbf{C} - \mathbf{C} \cdot (\nabla \mathbf{u})^{T} = \frac{1}{We} (\mathbf{I} - \mathbf{C}) \qquad (2)$$

where $\mathbf{C} = \frac{1-\alpha}{We} (\boldsymbol{\sigma} - \mathbf{I}), We = \lambda \frac{U}{L}$ is Weissenberg number, λ is relaxation time.

Results do not converge for high We.

Micro: molecular theory

End to end dumbbell

Assumption: a chain of beads and spring, dilute, zero-mass.

¹H. C. Öttinger, Stochastic Processes in Polymeric Fluids: Tools and Examples fc Developing Simulation Algorithms.

B. She, M. Lukáčová (JGU-Mainz)

End to end dumbbell Assumption:

Assumption: a chain of beads and spring, dilute, zero-mass.

Spring force: F(R) = R (Hooke law)

Stochastic force¹: $\mathbf{B}_i = \sqrt{2kT\zeta}d\mathbf{W}_i/dt$

Friction force: $\mathbf{f} = \zeta(\dot{\mathbf{r}} - \mathbf{v}(\mathbf{r}, t))$

k Boltzmann constant, *T* absolute temperature, $\zeta = 6\pi\mu_s a$ friction coefficient, μ_s solvent viscosity, *a* radius of bead.

 $^1\mathrm{H.}$ C. Öttinger, Stochastic Processes in Polymeric Fluids: Tools and Examples fc Developing Simulation Algorithms.

B. She, M. Lukáčová (JGU-Mainz)

Newton's second law

$$-\zeta(\dot{\mathbf{r}}_1 - \mathbf{v}(\mathbf{r}_1, t)) + \mathbf{F}(\mathbf{R}) + \mathbf{B}_1 = 0, \qquad (3)$$

$$-\zeta(\dot{\mathbf{r}}_2 - \mathbf{v}(\mathbf{r}_2, t)) - \mathbf{F}(\mathbf{R}) + \mathbf{B}_2 = 0.$$
(4)

$$\dot{\mathbf{R}} = \nabla \mathbf{v} \cdot \mathbf{R} - \frac{2}{\zeta} \mathbf{F}(\mathbf{R}) + \sqrt{\frac{4kT}{\zeta}} \frac{d\mathbf{W}_t}{dt}.$$
 (5)

Newton's second law

$$-\zeta(\dot{\mathbf{r}}_1 - \mathbf{v}(\mathbf{r}_1, t)) + \mathbf{F}(\mathbf{R}) + \mathbf{B}_1 = 0, \qquad (3)$$

$$-\zeta(\dot{\mathbf{r}}_2-\mathbf{v}(\mathbf{r}_2,t))-\mathbf{F}(\mathbf{R})+\mathbf{B}_2=0. \tag{4}$$

$$\dot{\mathbf{R}} = \nabla \mathbf{v} \cdot \mathbf{R} - \frac{2}{\zeta} \mathbf{F}(\mathbf{R}) + \sqrt{\frac{4kT}{\zeta}} \frac{d\mathbf{W}_t}{dt}.$$
 (5)

Probability distribution function $\psi(\mathbf{x}, \mathbf{R}, t)$: at a position \mathbf{x} and time t, the probability of a dumbbell vector that stays between \mathbf{R} and $\mathbf{R} + d\mathbf{R}$.

$$\iint \psi(\mathbf{x}, \mathbf{R}, t) d\mathbf{R} = 1.$$

Newton's second law

$$-\zeta(\dot{\mathbf{r}}_1 - \mathbf{v}(\mathbf{r}_1, t)) + \mathbf{F}(\mathbf{R}) + \mathbf{B}_1 = 0, \qquad (3)$$

$$-\zeta(\dot{\mathbf{r}}_2-\mathbf{v}(\mathbf{r}_2,t))-\mathbf{F}(\mathbf{R})+\mathbf{B}_2=0. \tag{4}$$

$$\dot{\mathbf{R}} = \nabla \mathbf{v} \cdot \mathbf{R} - \frac{2}{\zeta} \mathbf{F}(\mathbf{R}) + \sqrt{\frac{4kT}{\zeta}} \frac{d\mathbf{W}_t}{dt}.$$
 (5)

Probability distribution function $\psi(\mathbf{x}, \mathbf{R}, t)$: at a position \mathbf{x} and time t, the probability of a dumbbell vector that stays between \mathbf{R} and $\mathbf{R} + d\mathbf{R}$.

$$\iint \psi(\mathbf{x}, \mathbf{R}, t) d\mathbf{R} = 1.$$

Fokker-Planck equation

$$\frac{\partial \psi}{\partial t} + \mathbf{u} \cdot \nabla \psi = \nabla_{\mathbf{R}} \cdot \left(\left(-\nabla \mathbf{u} \cdot \mathbf{R} + \frac{1}{2We} \mathbf{F}(\mathbf{R}) \right) \psi \right) + \frac{1}{2We} \Delta_{\mathbf{R}} \psi$$
(6)

Relation between micro and macro

$$\sigma = \frac{1 - \alpha}{We} (-\mathbf{I} + \iint \mathbf{R} \otimes \mathbf{R} \psi d\mathbf{R}).$$
$$\iint \mathbf{R} \otimes \mathbf{R} \times (6) d_{\mathbf{R}} \Rightarrow (2).$$

The micro approach is equivalent to the Oldroyd-B model!

Relation between micro and macro

$$\sigma = \frac{1 - \alpha}{We} (-\mathbf{I} + \iint \mathbf{R} \otimes \mathbf{R} \psi d\mathbf{R}).$$
$$\iint \mathbf{R} \otimes \mathbf{R} \times (6) d_{\mathbf{R}} \Rightarrow (2).$$

The micro approach is equivalent to the Oldroyd-B model!

Multiscale system

$$Re(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u}) = -\nabla p + \alpha \Delta \mathbf{u} + \nabla \cdot \boldsymbol{\sigma}$$

$$\nabla \cdot \mathbf{u} = 0$$

$$\boldsymbol{\sigma} = \frac{1-\alpha}{We}(-\mathbf{l} + \iint \mathbf{R} \otimes \mathbf{R}\psi d\mathbf{R})$$

$$\frac{\partial \psi}{\partial t} + \mathbf{u} \cdot \nabla \psi = \nabla_{\mathbf{R}} \cdot ((-\nabla \mathbf{u} \cdot \mathbf{R} + \frac{1}{2We}\mathbf{R})\psi) + \frac{1}{2We}\Delta_{\mathbf{R}}\psi$$
(7)

1. Navier-Stokes

1. Navier-Stokes

2. Fokker-Planck: space splitting $\frac{\partial \psi}{\partial t} + \mathbf{u} \cdot \nabla \psi = \nabla_{\mathbf{R}} \cdot \left(\left(-\nabla \mathbf{u} \cdot \mathbf{R} + \frac{1}{2We} \mathbf{F}(\mathbf{R}) \right) \psi \right) + \frac{1}{2We} \Delta_{\mathbf{R}} \psi$

In physical space $\mathbf{x} \in \Omega(\text{geometry})$ we have

$$\frac{\partial \psi}{\partial t} + \mathbf{u} \cdot \nabla \psi = 0 \tag{8}$$

Upwind in physical space.

In configuration space $R\in(-\infty,+\infty)\times(-\infty,+\infty),$ we use an implicit scheme

$$\frac{\psi^* - \psi^n}{\Delta t} = \nabla_{\mathbf{R}} \cdot \left(\left(-\nabla \mathbf{u} \cdot \mathbf{R} + \frac{1}{2We} \mathbf{F}(\mathbf{R}) \right) \psi^* \right) + \frac{1}{2We} \Delta_{\mathbf{R}} \psi^* \quad (9)$$

The configuration space is infinite!

FENE, A. Lozinski, C. Chauviere, $\mathbf{F} = \frac{\mathbf{R}}{1 - \frac{|\mathbf{R}|^2}{R_0^2}}, |\mathbf{R}| \in (0, R_0).$

The configuration space is infinite!

FENE, A. Lozinski, C. Chauviere, $\mathbf{F} = \frac{\mathbf{R}}{1 - \frac{|\mathbf{R}|^2}{R_0^2}}, |\mathbf{R}| \in (0, R_0).$

Idea:

polar coordinates $(\rho, \theta) = (|\mathbf{R}|, \arctan \frac{R_2}{R_1})$, infinite plane to unit circle $r = \frac{1}{\rho+1}$.

$$\frac{\partial \phi}{\partial t} = b_0(\boldsymbol{\kappa}, \theta) L_0 \phi - b_1(\boldsymbol{\kappa}, \theta) \frac{\partial \phi}{\partial \theta} + L_1 \phi, \qquad (10)$$

where L_0 and L_1 are linear operators, $b_0 = \kappa_{11} \cos 2\theta + \frac{\kappa_{12} + \kappa_{21}}{2} \sin 2\theta$, $L_0\phi = -4r(1-r)^2 [-s(1-\eta)^{-1}\phi + \frac{\partial\phi}{\partial\eta}]$, $b_1 = -\kappa_{11} \sin 2\theta + \frac{\kappa_{12} + \kappa_{21}}{2} \cos 2\theta + \frac{\kappa_{21} - \kappa_{12}}{2}$, $L_1\phi = c_1\phi + c_2\frac{\partial\phi}{\partial\eta} + c_3\frac{\partial^2\phi}{\partial\eta^2} + c_4\frac{\partial^2\phi}{\partial\theta^2}$ $c_1 = \frac{1}{We} [1 + 2s(1-\eta)^{-1}(-3r^4 + 2r^3 - r) + 8r^4(r-1)^2s(s-1)(1-\eta)^{-2}]$, $c_2 = \frac{2}{We} (3r^4 - 2r^2 + r) - \frac{16}{We}r^4(r-1)^2s(1-\eta)^{-1}$, $c_3 = \frac{8}{We}r^4(r-1)^2$, $c_4 = \frac{1}{2We}(\frac{r}{1-r})^2$, $\kappa = \nabla \mathbf{u}$, $\psi(t, \mathbf{x}, \mathbf{R}) = (1-\eta)^s\phi(t, \mathbf{x}, \eta, \theta)$, s = 2, $\eta = 2(1-r)^2 - 1$.

Pseudo-spectral method

We look for an approximate solution to the Eq.(10) of the following form

$$\phi(t, \mathbf{x}, \eta, \theta) = \sum_{i=0}^{1} \sum_{l=i}^{N_{\theta}} \sum_{k=1}^{N_{\eta}} \phi_{kl}^{i} h_{k}(\eta) \Phi_{il}(\theta), \qquad (11)$$

where $\Phi_{il}(\theta) = (1 - i) \cos(2l\theta) + i \sin(2l\theta)$, N_{θ}, N_{η} number of discretization points, $h_k(\eta)$ Lagrange interpolating polynomial, $\eta_m(m = 1, \cdots, N_{\eta})$ Gauss-Legendre points $\eta \in (-1, 1)$.

$$\bar{\boldsymbol{\phi}}^* = [\mathbf{I} - \Delta t (\mathbf{M}_0 + \mathbf{M}_1 + \mathbf{M}_2)]^{-1} \bar{\boldsymbol{\phi}}^n, \qquad (12)$$

where $\bar{\phi}^n$ is the vector of the expansion coefficients ϕ^i_{kl} at time $t_n = n\Delta t$.

$$M_0, M_1, M_2 \cdots$$

Numeric test for Peterlin model

$$\begin{cases} Re(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u}) = -\nabla p + \alpha \Delta \mathbf{u} + \nabla \cdot \boldsymbol{\sigma} \\ \nabla \cdot \mathbf{u} = 0 \\ \boldsymbol{\sigma} = (tr\mathbf{C})\mathbf{C} \\ \frac{\partial \mathbf{C}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{C} - \nabla \mathbf{u} \cdot \mathbf{C} - \mathbf{C} \cdot (\nabla \mathbf{u})^{T} = \frac{1}{We}(tr\mathbf{C})\mathbf{I} - \frac{1}{We}(tr\mathbf{C})^{2}\mathbf{C} + \epsilon \Delta \mathbf{C} \end{cases}$$

and $\frac{\partial \textbf{C}}{\partial \textbf{n}}=0$ on the boundary.

Slight modification $tr\mathbf{C} \longrightarrow max(tr\mathbf{C})$.

Table: L2-error of σ

mesh points	$ \sigma_1 - \sigma_1(256) _{L_2}$	EOC	$ \sigma_3 - \sigma_3(256) _{L_2}$	EOC
32	0.0636		0.4466	
64	0.0559	0.1858	0.3165	0.4969
128	0.0355	0.6538	0.1643	0.9457

Convergent!

Thank you for your attention!

