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o In brief: We wish to prove, for arbitrary open sets Q) C R®, that
solutions of the steady Stokes problem

—Au=-Vp+f, V.u=0, ulo=0,
along with zero flux conditions when needed,

satisfy (on setting Au = —Pf)
sup |ul? < —— ||V | 2]
u — :
Qp — 3
@ In trying to prove this, solutions of the Poisson problem
—AU:f, U|aQ:01

were proven (in the 1991 thesis of Wenzheng Xie) to satisfy

9 1
< — YA .
sup |ul” < o [|Vu [[Aul
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e To be precise: Let () be an arbitrary open subset of R3. Let
D(Q)={pecCy(Q):V-9¢=0}.Let J(Q) and Jy () be the
completions of D (Q) in the L2-norm ||-|| and the Dirichlet-norm
|IV-]|, respectively. Then, given u € Jo (Q2), there is at most one
f € J(Q) such that (Vu,V¢) = — (f,¢) for all ¢ € D (Q)) . If such

a function f exists, it is denoted by Au, and we wish to prove that
uP < o= | Vul | Zul 1)
sup |u — ||Vu uf| .
Qp — 3
e Important applications of (1), beginning with
~ 2 ~ ~
1g [Vul®> +v HAUH = (u - Vu, Au) < sup|ul ||Vul| HAUH
0

< vl Rl <
(2)

would settle many problems for general domains by circumventing the
use of domain dependent inequalities, like the famous Solonnikov

inequality HD2uH < cn (

‘AUH + ||Vu||> , in some key arguements.
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ut+u-Vu:—Vp+Au, V-u=0, u[;n=0 ul,_,=u
zdt @l + 9l =

£ s o = e < [ et

4

th IIUrII + ([ Vue|* < flull® flue]
~ 2

fHVUrH2+HAut <---

2dt ||“tt|| + | Vug|® <

~ 2
5& HVuter =+ HAutt <. e.t.c., e.t.c.

Assuming regularity of dQ), and up € Jo (2) we can integrate all of these,
starting with the second, on the same interval common (0, T) and get (for
bounded Q) u € C® ((0, T); WZ (Q)) . Then more spatial regularity.
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Among the results that would be freed of assumptions about the boundary:

@ The existence and uniqueness of a nonstationary solution for any
up € Jo (Q) : "Theorem" For any open Q) C R® and ug € Jo (Q)
there exists a solution u,p € C*® (2 x (0, T)) of
usr+u-Vu=-Vp+vAu V-u=0 ul=0 u(0) = Uo.

25673 o [Vuo
Further, T = 27 Vo S independent of Q), || Vu ()| < Wi T

and supq, [u (t)| < t71/2b(t), where b (t) is continuous on [0, T).
e For any open Q) C R3, and any up € Jo (Q) NW3 (Q),
Ladyzhenskaya proved the existence and uniqueness of a ‘generalized
solution’. But, it's full natural regularity has depended on the
regularity of the entire boundary 9Q). Given (1), her solution is
identical to that discussed for ug € Jo (Q2), and no less regular.

@ The existence of steady solutions satisfying sup |u| < oco.
9)

o Etc., etc.
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o Considering the Poisson problem for the Laplacian as a model
problem, Wenzheng Xie (in his 1991 thesis) proved

2 1
< — ||V A

for any open O C R®, and any u € HE (Q) with Au € 12 (Q), where
H; (Q) is the completion of C§° (QQ) in the Dirichlet norm || Vu]|.

@ The only point in Xie's proof of (3) that doesn't carry over to a proof
of (1) is his use of the maximum principle to show that

/QG; (x,y)dx < /Qg;f (x,y)dx, (4)
for all y € Q), where Gﬂ is the Green's function for — A +u, and
e_\/ﬁ‘x_yl
8y = —— is the corresponding fundamental singularity.
At|x —y|

(Institute) Japanese-German Workshop, November 2013 November 5-8, 2013 6 /69



We begin Xie's proof of (3) under three simplifying assumptions,
considering first

@ Smoothly bounded domains Q).

e Functions upy, (x) = Y1 ¢, (x), where {¢,} are the
[?-orthonormal eigenfunctions, — A ¢, = Ap@,, @,|5q = 0.

@ An arbitrary fixed choice of y € (), henceforth considered fixed.

For this fixed y, and any fixed m, the ratio Ry, (y) of the two sides of (3)

2 () (£ . (”)2

R = = 5
m (v) IVt [ 12t | m /2 , ., ) 1/2 (5)
n=1 n=1
is a homogeneous function of (cl, Co, -, Cm) € R™, constant on lines
through the origin and smooth except at the origin. If (¢1,C2,- -+, €m) is a

point at which it attains its maximum R, (y), then, at that point,
ORm (y) /9c, = 0, or equivalently 9 (log R, (y)) /9c, = 0, for
n = 1, cee,m.
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Setting to zero the derivative with respect to ¢, of

log Rm (y) = 2log ( 5 &, (y)> — % log < Y An65> - % log ( 5 AiCﬁ)
n=1 n=1 n=1

we obtain

20, (y) _ AsGa N A2E,
L cp, () LA A%
n=1 n=1 n=
or
2(Pn (.y) _ /\nfn A%En (6)
Un(y)  |VEa|® AT
Introducing
— 2
— _ [1AUa]
= o= 112
"IV
one can rewrite (6) as
2¢n ()/) =7 A”E”
20 (it A
in(y) T Aa, )

which, on multiplying by Tm (y) / (7, + An) becomes

(Institute) Japanese-German Workshop, November 2013 November 5-8, 2013



becomes B
2(Pn(y) — Um(_)/)/\f
= 1 — .
P A0 [ Al
Squaring and summing gives

m 2 2
200’ ( > @ )
o3 () - NS
=1 \Fm 4 18T | | A
Multiplying by \/Ji,, = || AUm|| / || VUm|| and changing sides, one obtains

R (y) = Vi, 0), =i 2 (2 ))2- ")

| AT Fm A

Miracle of miracles, we recognize this! Since the {¢,} satisfy

(—A+w) e, =(H+A)e,, @,lon=0,

they can be represented in terms of the Green's function G, (x,y) for the
Helmholtz operator — A 4. That is,

0, () = [ G (%) (1+An) @, (x) dx
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or dividing by (u + A,),

900 [ 6, ()9, () o

which is the n®" Fourier coefficient of G, (-, y). Thus (7) implies

_4\ﬁ2<ym+?»><4\ﬁ/

The fundamental singularity for the Helmholtz operator — A +u is
ef\/ﬁ‘xfﬂ
4rt|x —yl|’

g (x.y) =

and Gy (x,y) = gu (x,y) — hy (x,y), where hy is the unique solution of

Ahy = phy, in Q satisfying by, (x,y)|,q = 84 (x,¥) |5 - Clearly, hy (x, )
is positive on d() and cannot have a negative minmum. Therefore, hy (x, )
is positive throughout (), and Gy (x, y) < gy (x, y) throughout Q). Hence

/szx</ d /w<e_ﬁr>4 2gp = 1
gy X = Tredr = )
0 Amtr 8t/
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In summary, setting

| AU ||

Um = anzl E”q)n and ﬁm = — 2
[V ||

Xie found that

2
Pm(y \ﬁz <.”m+)‘ )
_4\ﬁz </ ﬂmgondx>2 (9)
§4\/E/(2Gﬁmdx§4\/ﬁ/,?3gﬁmdxzzln,

End of proof. The only point which isn't known to carry over to Stokes is
the needed analogue of fQ Gﬁ dx < fﬂgﬁ dx, which is ‘Xie's conjecture’.
It is noteworthy that we have gained no information about 7.
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L

5= is optimal, first for () = R3, by observing that

Xie proved the constant

1 , x=0
u(x) =4m (g (|x]) — & (Ix])) :{ Le Ml x £0

Ix]

is locally H? and satisfies
|Aull®> =27, ||Vu]? =27

Further, this constant is attained for the whole family of rescaled functions
Ve (x) = u(ax), for a >0,

since

|Av|]? = 2mata3 =2, |Vva|]® = 27maa3 = 27ta L.

Increasing & rescales v, into increasingly ‘pointy’ functions, for which

_lawl®
A

— 00, as & — 00.
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Graphs of u(x), u(3x) and u(x/3), in black, red and blue.

Consider now an arbitrary open set QO C R3, and point y € Q). The
functions u (a« (x — y)) all equal 1 at x = y. As & — oo, they become

increasingly singular at y, and smaller and flater away from y, near 9(),

2
ermiting truncation with minimal changes to the ratio ) - L
P & g IVall[&a] — 27

The optimality of the constant 3% in (1) is shown similarly. | expect the

maximum ratio can only be approached by functions close to these.
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Proof of (3) for any u € H} (Q) with Au € 2 (Q).

At tAhis point we are still assuming ) is bounded and that dQ) is smooth.
So H} (Q)) = H3 (Q)) . By elliptic regularity and a Sobolev embedding
u€ H2(Q) C C(Q). In terms of its eigenfunction expansion

u=Y," 1 cn@,, with c; = [qu@, dx, the norms of u satisfy

00 00 o
2 2 2
lull® =Y e IVull® =Y Ancy o 1AU] = ) Ader
n=1 n=1 n=1

So each up = Y011 ch,, satisfies ||Vun| < ||Vul| and |[Aup|| < ||Aull.
Thus if (3) were not true, there would be some xy € ) such that

2 1 1 2
ml” < — [|[Vun|| |Aun|| < — ||V A (1
sup |um|” < 7t [Vum| [[Aum|| < o7 IVul [Aull < |u(x0)] (10)

Therefore |u (xp)|? would exceed sup |up|®, for all m, by at least the
0

difference between 5= ||Vu|| || Aul| and lu(x0)|? . Since u is continuous,
that would make impossible the L?-convergence lim, o ||tum — ul| = 0 of
the eigenfunction expansion. This completes the proof of (3) for bounded

smooth domains.
(Institute) Japanese-German Workshop, November 2013 November 5-8, 2013 14 / 69



Lemma. For any open () C R", there exist smoothly bounded open sets
0 C Oy C - - - such that U?ozlﬂ,' = Q.
Proof: Let f € C5° (Q)) be real valued. According to the Morse-Sard
theorem, the set of values taken at critical points has measure zero.
Therefore, almost every level surface f (x) = const. is everywhere smooth.
Now, for every € > 0, let

= 1 if dist (x,0Q0) > 2e and |x| < 1/¢

fo (x) = .

0 otherwise

and let f, be the mollification of/f; with smoothing radius €. Then
f: (x) =0 if dist (x,0Q0) < eor |x| >1/e+e And £ (x) =1 if
dist (x,0Q)) > 3¢ and |x| < 1/e —¢€. So f; is constant except in its region

of variation
{x e < dist (x,000) <3eorl/e+e<|x| <1/e+¢e}

Leteg =1, =1/3,e3=1/9, &4 =1/27, e.t.c. Then the {f,} have
disjoint regions of variation And by Sard’s theorem almost every level
curve of f;, is smooth. For each n, choose one and let (), be the enclosed
set of points.
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Finally, let QO C R? be an arbitrary open set, and suppose u € H& (Q)
has Au € L2 (Q). Choose smoothly bounded ()3 C )y C - - - such that
Uy, Q, = Q.

Lemma. There exists {up} such that u, € FI(} (Qn), Aup = Auin Oy,
IV enll oy < 1Vl and [lum — ull sy — 0 as 1 — oo

Proof: For each n there exists a unique u, € H} (Q,) such that
/ Vu, - Vedx = / Vu-Vedx, foreverypc H(Q,), (11)
Qn Qp

by the Riesz representation theorem. Integrating the right side of (11) by
parts, we obtain

/ Vu, - Vedx = —/ (Au) @dx, forevery ¢ € H (Q)
Q, 0

n

which implies Au, = Auin Q) and therefore || Aup[ 2,y < [|Aul| .
We get [|[Vunl|j2(q,) < [|Vul| by letting ¢ = u, in (11) and using the
SchwaArz inequality. Setting u, equal to zero in Q\ ), we get

u, € H} (Q) . Therefore (11) implies
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implies

lim /Vu,, -Vodx = / Vu-Vedx, forevery ¢ e (5°(Q)),
n—o /O 0

which is the weak convergence u, — u in I/-\I& (Q)) . That along with the
bound ||Vu,|| < [[Vu| implies the strong convergence u, — u in

Hp (Q)) . Therefore, [|uy — ull s(q) — O, in view of the Sobolev inequality
[¢ll16(0) < cl[V@|l. So the lemma is proven.

Now, if (3) were not true for the domain (), there would be some xp € ()
such that

2 1 1 2
S£f|un\ < 5o IVunllz o) 1Bl 2,y < 5 IVull [ Aull < lu ()] -

Since u € H2_(Q)) C C(Q) by the elliptic regularity theorem, this would
make impossible the convergence [|u, — ul|;6() — O that we just proved.
This completes the proof of the inequality (3) for arbitrary open sets

Q C R and functions u € H} (Q) with Au € % (Q).
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Second Lecture: Attempt to Circumvent Xie’s Conjecture

fQGﬁ dx < fogﬁ dx

by proving
/ Gﬁ dx
QO
= 1, as U — 00
2
R3g’4 dx
and )
— _ AU
m= T—— 12 — 00, as m — O0.
V||
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Let's first review Xie's argument in the context of the Stokes problem. As
for the Laplacian, the Stokes eigenvalue problem

- A@,=-Vp+Ap,, V-@,=0, @,l|,n=0
better written as

_A(pn:A”qon’ V'q)nzo’ (Pn’aQZO

has a system of eigenfunctions {¢,} which are complete in both J (Q2)
and Jo (), and orthonormal in J (Q)) . The eigenvalues {A,} are positive.
Corresponding to the Helmholtz operator — A +u and its fundamental
singularity g, and Green's function G, we have the "spectral Stokes
operator" —A+ p and its fundamental singularity g, e and Green's
function G e. Both g, e and G, e depend not only on the point of
singularity y, but also on a directional unit vector e. The singularity is

e VHiIx=yl Ve—\/ﬁlx—y\ —1
B ) = a1 Y T

which is the solution of
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the problem (in which y is the point of singularity, considered fixed)

(—A+pu)gue(x,y) +Vp=95d(x—y)e inQ,
Vogue(x,y)=0, ‘X”ifoo 8ue (Xv)’)‘aQ =0.

The Green's function is Gy e (X,y) = 8ue (X,¥) —hye (x,y) where
hj e (x,y) is the solution of

(—A+pu)hye(x,y) +Vp=0 inQ,
Vi hye(x,y) =0, hﬂ-e(X'Y)‘aQ:gﬂye(xv)’)‘an-

There are probably domains which contain points x and y for which
|Gy,e (X,y)‘ > }gy,e (x,y)| . Certainly, | can find two domains, one within
the other, containing specific points x and y for which |G (x,y)] is
larger for the smaller domain. Because of such difficulties, the crucial
inequality

JoGhe () dx < frule (x,y) o

remains "Xie's conjecture". But | would bet anything it's true!
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To review in the Stokes context, note that sup |u| = sup sup e-u(y) .
Q

yeQ |e|=1
Fixing y and e, and temporarily m, consider functions u, =3 ", c,@,
depending on (c1, ¢, - -+, Cm) . Let (€1,Co, - -+, Cm) maximize
m 2
2 Y. cre,(y)
cun(y (Eoemr)
Rm (y,e) = ( - (~)) = - X 72, 7z - (12)
|Vun| | Bun| (£na) (£e)
n=1 n=1
[

Setting U, = Y 11 Cag,, and Hpy = HVﬁmH2 and using Xie’s conjecture
5 (e-Tm (y))° — " (e, ()’
Rm(y.e) = 4 = =4/ Z il ' B4

R N M G

m 2
:4\/ ﬁm Zl </0Gym,e'(Pn dX)
1
i 2 =7 2 —
< 4‘/Vm/QGﬁm,e dx < 4‘/Vm/,?3gﬁmve dx = I

(13)
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The optimality of the constant in the conjectured inequality

37r
) ~
< g 1Vl | 2
supluf’ < o |Vul] | Bu
is proven analgously to that of the constant in the inequality
1
2
< — |V Aul| .
supuf® < 5 [Vl | 2]

The role in the latter played by the difference of singularities

u(x) =4 (g (x,0)— g1 (x,0)) = 1_|f‘\x\

is replaced by
u(x) =4m(goe(x,0)—gie(x,0))
_ 17e7‘x‘e_(e'v)v (‘X| + l1—e lX),

] [x]
where g, e (x, y) is the singular solution introduced earlier, satisfying

(—-A+u)g+VP=56(x—y)e, V-g=0.
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Perhaps, if the maximum principle had not been available in proving (3),
the last line of Xie's proof of (3), namely

1
= 2 — 2 _ L
§4‘/Vm/QGﬁm dx < 4«/‘um/R3gﬁm dx = o

could have been replaced by arguing that

4\/*7/G;2 dx

1
4\/ﬁm/Gﬁ2 dx = — ~— , as U, — o,
Q" 87T/ /g2 dx 27
and that
I A s M oo,
TV

If this reasoning were to prove successful in dealing with the Poisson
problem, it might very well carry over to Stokes problem. | will now
describe some of my efforts in this direction.
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For — A+, the exponential decay of the fundamental singularity

e~

gu(r) = 4£r makes easy the proof that

G2d
/o”ﬂ
2

8 dx

1, as y — oo.

For the spectral Stokes operator A+ u, the fundamental singularity

e VI “VET 1
ve L T -

Artur

presents more of a challenge, but the desired result

/G2 dx
g2

R3

ydx

, as U — o0,

was proven in my 2000 "Ferrara" paper. Thus to prove (1), it only remains
to show i, — co0 as m — co. | am persuaded of this by considering Xie's
proofs of the optimality of the constants in the inequalities (3) and (1).
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To determine 7, for the Poisson problem, reconsider the maximization of

m 2
Cp
o) (Lo 0)
" Nunll[Ban] ~ 7m . NP m o, N2
(z A?) (2 A%c%)
n=1

n=1

by the method of Lagrange multipliers. Since R, is homogeneous, the
maximizing point (El,EQ, .. -,Em) can be chosen to satisfy the constraint

gl )= L g, (y) =1

while minimizing the denominator of R,,, or its square

flc,- - cm) = ( gl/\,,c,3> ( g}l A%cﬁ) )

Setting Vf = AV g and eliminating the Lagrange multiplier A, it is shown
in my 2001 "Advances" paper that i, is a root of the equation

L A N
fm(‘u>_n§1<y+/\n)2 |:An 1]_0'
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Obviously,

fm (1) = L »

n=1 (p + /\n)2

is negative for p € [0, A1) and positive for u € (A, 00). Hence
A1 <, < Ap. Furthermore, the infinite series

= gy [
0= £ 20 b (14)

m gn(y) [u _1}

is absolutely and uniformly covergent for u in any bounded subinterval of
0,c0).

Conjecture: For every y € (), we suspect that f, () < 0, for all u > 0.
This conjecture implies 71, — 00 as m — oo, which implies (3) without

using the maximum principle. All of this reasoning carries over to a similar
conjecture that implies (1) for the Stokes problem.
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One indication that f (1) < 0, for all > 0, follows from the comparison

_ 2 e ly) [m
oo (1) = ngl (n+ A,,)Z [/\n a 1]

~ . ® Vo' U
foo () = ngl (n+ n2/3)2 [n2/3 B 1}

_e v n _
fine (1) = /0 ( + x2/3)? {x2/3 B 1} dx =0,

suggested by the asymptotics (after normalizing the volume of Q) to be
V = 67?)

Ay~ n2/3
‘Large averages’ of {¢2(y)} — VL.
It can be shown that fo, (u) < finr () = 0, suggesting that fs (1) < 0.

But seeking a proof I've pushed further with another approach.
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The function fs can be expressed in terms of the Green's functions
e VHr
47tr

Go (x,y) = L+Wo (x.y) . Gulxy) =

4mtr + W (x.y)

for —/A and — A +pu by rearranging it as follows:

2 gy [n
f°° (y.y) - n§1 (‘u + An)Z [An 1:|
_ 3 AP 100

N n=1An (,u‘i‘)\n) n=1 (‘Ll—|—)\n)2
2
= /QGu (x,¥) Go (x,y) dx = 2| Gy (-, y) "
In attempting to evaluate the first term, note that

— A (Go(x,y) = Gu(x,y)) = uGyu (x,y),
suggesting the representation of Go (x,y) — Gy (x,y) in terms of Gp ,

V/QGM (z,y) Go(z,x) dz = Go (x,y) — Gu (x,y) , forallx,y € Q.
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In fact, the representation
]J/ Gu(z,y)Go(z,x) dz =Gy (x,y) — Gu(x,y) , forallx,y € Q)
0

is justified, since, for fixed y and x # y,

— A (Go(x,y) = Gu(xy)) = puGy (x,y)
and the singularity is not very bad. Indeed,

< 1 _e—\/ﬁ’)_\/ﬁ

lim
r—0

Artr Artr Y

is finite and Gy (x,y) — Gy (x,y) € H_ (R®). Thus, on taking the limit
as x — y, one obtains

/QGH (z,y) Gy (z,y) dz = 2

and therefore

1w (yy) —wu(y,y)

n\/ﬁ U

foo (4 ¥) = 4n1\/ﬁ+ "0 (y'y);wu (v.y)

| haven't a general proof that f (y, y) < 0 for all 1 >.0, for all y € Q).

—2[|G (- y)|*
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But suppose () is the sphere |x| < R and y = 0. Then we know
1 e VIR eV — g~ VHr
Wo(X,O):—m and WM(X'O):_<e\/ﬁR—e—\/VR) :

Setting a = % , we find after a rather lengthy calculation that

d
1 1 1
/QGH (x,0) Gy (x,0) dx = 47T\f_47T,uR+a27I\/ﬁ ,

e \f’ e\/ﬁ’—e*\/ﬁ’ ? 9
2(|Gu (-, 0) 2/ ( - yp— ) Arredr

dmr

and finally, combining these, the following identity. For all > 0,

2
> ¢, (0) [ 4 } 1 R
fo (1,0) = — = 1| = - + <0
(V ) ngl (]/l —|—)L,7)2 An 47T,MR 47ISinh2 IR
This proves, for at least the center of 2 sphere, that foo (11,0) < 0 for all
# > 0, and hence that 71, = | AT ||? / | VTm]||> — 00, as m — oo, in

Xie's proof of the inequality (3) for the Poisson problem. Using the

maximum principle I've gone a bit further.
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Proposition. Let y € () C R® and suppose that for some R > 0 the balls
of radii R and R/2 centered at y satisfy Bg,» C {0 C Bg. Then
foo (1, y) < 0 for all u > 0, and hence 71,, — oo in Xie's first proof of (3).

Corollary. If () is a ball of radius R, then, for all points within a distance
R/3 of its center, there holds fo (3, y) < 0 for all 4 > 0, and hence
#, — oo in Xie's first proof of (3).
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Homework. For my next lecture, | would be greatful for help proving
that, for every fixed nonzero point y € (0, 77), the early terms in the
sequence {sin? ny} do not dominate the later ones, in the sense that

= sin? ny U
fo (1Y) = ;1 T [Fs-1] <0 foralpe o). (15)

This, of course, is an analogue of the conjecture

00 2
fo (1) zngm [)f‘n—q <0, forall ue 0,00

that | failed to completely prove above. It may be insightful and easier to
first consider the corresponding integral, and to try to show that

©  sin? xy 7
/0 (u +x2/3>2 [x2/3 - 1} dx <0, forall uel0,00). (16)

Remember that if sin? xy is replaced by 1, this integral is identically zero
for all p.
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References (for second lecture):

W. Xie, On a three-norm inequality for the Stokes operator in nonsmooth
domains, in the Navier-Stokes Equations Il: Theory and Numerical
Methods, Springer-Verlag Lecture Notes in Math., 1530 (1992), pp.
310-315.

J. G. Heywood, An alternative to Xie's conjecture concerning the Stokes
problem in nonsmooth domains, Annali dell' Universita’ di Ferrara set VII,
n. 46, 2000, 267-284.

J. G. Heywood, On a conjecture concerning the Stokes problem in
nonsmooth domains, in Mathematical Fluid Mechanics; Recent Results
and Open Questions, Jiri Neustupa and Patrick Penel editors, Vol. 2 of
Advances in Mathematical Fluid Mechanics, Birkhduser Verlag, Basel
(2001), 195-206.

J. G. Heywood, Seeking a proof of Xie's inequality: on the conjecture that
i, — oo, preprint, submitted for the volume in honour of Y. Shibata
(2013), 16 pages.
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Third Lecture: Other Applications of the Preceding Arguments
For example:

For a Fourier cosine series f (x) = Y1 ¢, COs nx , we prove

o
L2(—m,m)

(x) = Yopei Chsinnx , we conjecture

e
L2(—7t,7)

The proofs and difficulties are analogous to those we encountered for

sup |f (x)* <31/

(=7mt,7)

L2(—7t,m)

and for a Fourier sine series

f
3
sup |f (x)° < 3 |[F07?

(=)

L2(—7t,m)

sup |u® < = |Vl || Aul Poisson problem
Q

sgp luf®> < = || Vu] H&u” Stokes problem.
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I've found Xie's first argument can be used to prove other inequalities.
One is a short, simple proof of Holder's inequality for series. Another is:

Theorem 1. For any sequence ¢, ¢, - - - of real numbers,

o 2 1/2 / o 1/2
< ;1 Cn> <3r < Y. n?/3 2) < ;1 n4/3c§> . (17)

Corollary. If f (x) = Y cscosnx , then
n=1

sup |f (x)|> <3 Hf<1/3 ‘

(=m,7)

ol

L2(— L2(-mm)

Clarifying Definitions: For any a > 0, the L?-norm of the fractional
2 2 1/2 .
7T — C n
L2(—m, 7 ( Zn )
agreement with the standard definitions when « is a non- negative integer.

Clearly, sup(_r ) |f| = f (0) = Y321 ca, if ¢y > 0 for all n. If some of the
Cn are negative, the supremum of f will be only smaller.

derivative of f of order « is Hf("‘)

(Institute) Japanese-German Workshop, November 2013 November 5-8, 2013 36 / 69



Notice that the direct application of Holder's inequality (first for ¢, > 0)
(n1/6\/CT,) (n2/6\/a)

o1
N ngl W
m 1/2 m 1/4 m 1/4
n=1 n=1 n=1

implies an inequality similar to (17) for finite sums,

m 2 m 1 m 1/2 m 1/2
(£ = (£ (E) " (Ee)”
n=1 n=1N n=1 n=1

but with the m-dependent constant Y ; % instead of 37t.

(Institute) Japanese-German Workshop, November 2013 November 5-8, 2013 37 /69



Proof of Theorem: We follow Xie's argument line by line. For fixed m,
the ratio of the left to right sides of (17), namely

R, = (nil Cn) (18)

. 172 ;. 172
(5 003)" (£na)
n=1 n=1

is a smooth function of (c¢i, ¢, -+, ¢m) € R™\ {0} . Since it is constant
on lines through the origin, it has a maximum value which is attained on
every sphere about the origin. Let ((‘:1, Co, -, (‘:m) # 0 be a point where

the maximum is attained. Differentiating
m 1 m 1 m
log Ry, = 2log < ) c,,) — —log < ) n2/3c,2,> — —log < ) n4/3c§>
n=1 2 n=1 2 n=1
with respect to ¢, at the critical point (¢1, &, - - -, ) gives

2/3 =~ 4/3
2 n?/3¢, n*/3¢,

(£) (5) ()
n=1 n=1 n=1
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Setting

m
po= (£ 02a) /(£ ee) (20)
n=1 n=1
and proceeding exactly as before, etc., etc., one obtains
m 1/2 m 2
(£wrc) (La)
n=1 n=1
1/2 m
o) (£ 6)
n=1 " n=1

— 4 T
= IMITI —_— —_—
L (i + 27 Zl (7o +n2/3>

X
3
|
13

X

4d __ 3w
< \/ / —2/3>2 = \/;l/lmﬁ = 371.

The comparison of the series with an integral takes the place of the
inequality [G?dx < [;g2dx or of Xie's conjecture. Nothing is learned
about the &, or ji,,, and the optmality of the constant 377 is not_proven.
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Theorem 2. In the preceeding proof, ji,, — c0 as m — oo.

Proof: Since R, (cl, - cm) is constant on lines through the origin, its
maxima (&1, &, - - -, Cm) can be chosen to satisfy the constraint

Y, € = 1. Assuming that is done, the problem of maximizing Ry,
subject to this constraint (that its numerator should equal one) is
equivalent to that of minimizing its denominator (or the square of its
denominator) subject to this constraint. Thus the maximizing critical
points in the ‘normalized’ proof are points where

fle, - cm) = < é nz/ac,%) ( é ,,4/353) (22)

is minimized subject to the constraint

gla, - cm) =Y =1 (23)

The maximizing critical points can be found by the method of Lagrange
multipliers. The proof is line for line like that we developed trying to prove
fl,, — 00 as m— oo in Xie's arguments for the Laplacian and Stokes
operator. Since we didn't give the details in that context we will_-now.
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Lemma 1. In the ‘normalized’ proof of Theorem 1, the maximizing
coefficients &, satisfy the equations (25) below.

m m
Proof: If (¢1, &, - - -, €m) minimizes (Z n2/3c3) <Z n4/3c§> subject

n=1 n=1

m
to the constraint Y ¢, = 1, there exists a Lagrange multiplier A such that
n=1

2e,n% 3By +28,n*3 A, = A, forn=1---m, (24)
where " .
Am= Y n*c}, Bn= Y n*3c.
n=1 n=1
Multiplying (24) by €,, summing, and using the constraint gives
4A,Bn = A.
Substituting this value for A into (24) gives

2AmBn

2B+ A forn=1,---,m. (25)

Ch =
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Lemma 2. i, = B, /An is a root of the equation

)= Y o [ =0 (26)

Proof. Square (25), multiply by n?/3, and sum to obtain

) oo m n2/3
An =4A.B

m _ (27)
Z Vm
= y + ,,2/3) /3 )
Similarly, square (25), multiply by n*/3, and sum to obtain
m 4/3
B Z 2/33 : 4/3 A
=1 (n +n ) (28)

i 1
=4B2YyY ——————
n;l (7l +n23)°
Finally, multiply (28) by An/ By, and subtract from (27) to obtain (26)
with fi,in place of u.
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So u =j,, is a root of

Ei y+n2/3) [nf/3 _1} =0

Lemma 3. Since f, (1) < 0 for u < 1, and f,, (1) > 0 for u > m?/3, all
roots of fy, () = 0 lie in the interval [1, m*/3] . Furthermore, the
convergence
fm foo = —1 29
) = ) = Yo [ =) (29)

is uniform for u in any bounded subinterval of [0, o).

Proof: These claims are obvious.
Lemma 4. f (u) <0 for all pu € [0, ).

Proof: Obviously, fo (1) < 0 for € [0,1]. For every p > 0, we can
compare f (p) with the integral
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Remarkably, for all 2 > 0, the integral in x,

! (r 2P n

_ 2 X3 1% _
- [ }l3+x2 — 3 3-i-><2 +3u )3(+x2:|0 =0.

fint (1)

The series foo (1) < fine (1) for all > 1, but the proof is a bit tedious
because the integrand is not monotonically decreasing in x. It decreases

monotonically from +oco to a negative value of (17\/ 17 — 71) /16‘142 at

3/2
X = éy3/2 (\/ 17 + 3) , and then increases monotonically toward 0 as

x — oo. Fortunately, the integral over (0, 1] exceeds the first term of the
series by an amount that dominates the comparison.

We can now complete the proof of Theorem 2. Since the sequence of
functions £, (i) is uniformly convergent to the negative function f (3) on
every bounded subinterval of [0, c0), the roots of fy, (#) = 0 are pushed
out further and further to the right as m increases. Thus ji, — oo, as

m — 00,
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Next we seek conditions on a given sequence {a,} that will ensure

0 2 0 1/2 / « 1/2
( Y ancn> <3m < Y n2/3c,2,> < Y n4/3c,3>
n=1 n=1 n=1

for every other sequence {c,} . Simply following the proof of Theorem 1,
in which every a, = 1, we find at the end that it suffices to asume
> 432
limsup ) n > <3m, (31)
u—oo (;’l3/4 + ‘u—1/4n2/3)
along with an assumption replacing Lemma 4, to ensure that ji,, — o as
m — co. We interpret the sum in (31) as a weighted average, noting that

b 4 dx

/ S =3m, forallp>0, (32)
0 (V3/4 + ]/1_1/4X2/3)

and that the integrand is a decreasing function of x, which becomes

smaller and more nearly constant over ever longer intervals of x, as

y — o00. The assumption replacing Lemma 4 is that

o)=Y 2 |55 —1] <0, forall pe[0,e)
T By e | e
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Theorem 3. Let aj, ay, - - - be a sequence of real numbers satisfying (34)
and (35) below. Then, for any other sequence ci, ¢, - - -, one has

o 2 0 1/2 / « 1/2
< ;1 a,,cn) <3rm < ;l n2/3c,2,> < ;l n4/3c,2,> . (33)

The first assumption about {a,} is that large averages of the numbers
{3,2,} tend to values less than or equal to 1, in the sense that

d 422
lim sup Z & 5
oo gy (U374 + u=1/4n2/3)
The second hypothesis is that the ‘first terms’ of the sequence {a,},
which are weighted positively, i.e., those for n < y3/2, should not be too
large relative to the ‘later terms’, which are weighted negatively, in the
sense that

<3r. (34)

)=y +n2/3> [nfm - 1] <0, forallye0,00). (35)

n:1

Note that (35) is a test to be satisfied for every ‘dividing point’ ]/13/2 > 0.
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Proof: We begin the proof as we did Theorem 1, following Xie's argument
for the Laplacian line by line. For fixed m, let (¢1, &, - - -, €m) maximize

m 2
< Y ancn>
R, = n=1

m /2 , . 1/2
(Z n2/3c,%) (Z n4/3c,27)
n=1 n=1

etc., etc., etc.. In the end, without yet using our hypotheses, we find that

R = VT Y 2
Rm — ﬁm .. n
074 (i + 12/2)°
4a2

- (36)
Z" 13/4 4 i-1/4n2/3)? 2 = Bm-

Thus, {Ry} is an increasing sequence of numbers bounded by another
sequence { By, }. Our hypothesis (34) is that limsup,,_., Bm < 37
provided ji, — oo as m — oo. It therefore follows that R, < 37 for all m,
if f1,, — o0 as m — oo. We will show this now using our hypothesis (35).
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Lemma 5. i, — o0 as m — co in the proof of Theorem 3.

Proof: (similarly to Theorem 2 and its lemmas 1,2,3,4). Since

Rm (c1,- -+ cm) is constant on lines through the origin, its maxima
m

(¢1,%, - -+, Tm) can be ‘normalized’ to satisfy the constraint Y. a,c, =1,
n=1

that its numerator should equal 1, while the square of its denominator

m m
<2 n2/3cﬁ> Y n4/3c,2, is minimized. The normalized critical points

n=1 n=
are shown by the method of Lagrange multipliers to satisfy

2a,AmBm

n2/3Bmy, + n*/3A, "
and then, continuing as before, i, is shown to be a root of the equation

forn=1,--- m, (37)

Ch =

m 32 o
fm (V) = 1 —1| = O
n=1 (}l+n2/3)2 Ln2/3 }
Such roots are ‘pushed’ to co using our hypothesis (35) that

_v a4 B ]
fo (1) = ; PR [n2/3 —1] <0, forall u€0,00).
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Let us try to prove, as a corollary of Theorem 3, that a Fourier sine
series f (y) = Y_p—1 cpsinny satisfies the inequality

3
sup [f° < 3 |47 (38)

(—=m,7)

e

L2(—7t,7) L2(—7t,m) .

To that end, consider a fixed value of y € (=71, 7), and let a, = sin ny.
We need to verify two hypotheses. Note that the proposed constant is half
of what it was for a cosine series. Consequently the limit in the first
hypothesis, (34), must be reduced by half. For the proof of the following
lemma | am greatful to my colleague, Professor John Fournier.

Lemma 6. For every nonzero y € (—m, ),

[ee]

4sin? ny
=3+ V71/4n2/3)2

3
—>77T, as 4 — oo. (39)

Proof: Using the identity sin?0 = % — %cos 20, one has

Z sin® ny \f y 1 \f Z cos 2ny
v + n2/3)? A=l (+ n2/3)? (1 + n2/3)*
40
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The first sum on the right tends to 37t/8 as y — oo, since

ﬂ :377r' for all u >0,

/0 (u+x2/3)> 8

and
1

o< [f Y
0 (,u—l—x2/3 ; ,Lt+n2/3 2p?

The second term on the right of (40) tends to zero as y — oo, for every
nonzero y € (—7'[, 7'[) . To show this, let z = e'?Y, so that z" = e/2" and
Re z" = cos 2ny. Then

cos 2ny
and it will suffice to show that

VI (1—2) E

=1 y+n2/3)
for all z € C satisfying |z| =1 and z # 1. To this end,

H+”2/3)

as y — o, (41)
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let ¢, (u) = v Then
G-+ n23)
1 —z Z =

=1 y+n2/3)
=(1-2z)(azt+ o+ a2l +az*+-)
:Clzl+[(C2_C1)22+(C3—C2)23+(C4—C3)z4+...]_

Since ¢cpy1 (1) —cn (u) <0and |z| =1,

IN

=a () +(a)—a@)+(a@) @)+
=2 (u) —0, aspu— oo

Thus the second term on the right of (40) tends to zero as y — oo,
completing the proof of Lemma 6.

[ (#)! 2 + e (1) — a (W] |2°] + |e3 (1) — 2 ()] | 2] + - -
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The second hypothesis to be checked is that, for every fixed nonzero
point y € (—7t, 1), the early terms in the sequence {sin? ny} do not
dominate later ones, in the sense that

& sinfny
(i, y) = ; T [nfm ~1] <0, forallpe0,). (42)

It is the analogue of this hypothesis that remains to be verified in the pde
context, and which is the principal motivation for this study.

It may be insightful and easier to first consider the corresponding integral,
and to try to show that

©  sin xy i
/0 (m +x2/3>2 [x2/3 - 1} dx <0, forall uel0,00). (43)

At this time we haven’t a proof of either (43) or (42), but there is
strong numerical evidence and good intuitive reasoning to support them.
Of course, a proof of (42) will complete the proof of (38) for a sine series.
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How widely can Xie’s method be applied? What happens if one varies
the powers of n, say to n'/2 and n3/2, and tries to prove

o 2 o 12 /& 1/2
< Y cn> <c < y n1/2C,2,> < y n3/2c,2,> 227? (44)
n=1 n=1

n=1
Can Xie's argument be used to prove Holder's inequality for two sequences
{an} and {b,}, and p and g satisfying % —I—% =1,
) ) 1/p ) 1/q
Y anb, < <Z aﬁ,’) (Z bg) 2?2? (45)
n=1 n=1 n=1

In fact, one gets a simple proof of (45): Regard the numbers a1, ap, - - -
as given and fixed, while the numbers by, by, - - - are varied. Let

m
Y. anby
n=1

m 1/q "
(£2)
n=1

Since R is constant along rays emanating from the origin, it attains its
maximum at points where it is smooth. At such a point (b1, by, : -, bp),

Rm (b]_, b2| T bm)

(46)
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and for k =1, -+, mone has

d d J 1 m
0= log Ry, = I nby — =——1 b?
b, 8 by °gn¥ b~ Sb g B L
pI~1 (47)
== 3k — ook for k=1,2
Y anb, ¥ bi
n=1
and hence . .
ax ¥ b9 = Ezfl Y. anb,. (48)
n=1 n=1

Taking the pt" power of this, noting that (g—1) p= g, and summing

over k gives
m _ \P © m _\"*
#(£8) = Lo (Eab) . (49)
k=1 n=1 k=1 n=1

Finally, taking the p® root of this, one finds that (45) holds with equality
for any choice of (b1, by, - - -, byy) that maximizes Ry,. This completes the
proof.

13
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Reference (for the third lecture)

J. G. Heywood, Seeking a proof of Xie's inequality: analogues for series
and Fourier series, preprint which will be submitted for publication in the
Ferrara Univ. Math. journal volume in honour of M. Padula (2013), 20

pages.
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Fourth Lecture: Xie's Potential Theoretic Arguments

Using potential theoretic methods, Xie reproved

sup [ul® < & || Vu|l | Au Poisson problem
0

for any open Q) C R3, and finally, at least for Q) = R3, proved
sup |ul* < = || Vu] HAUH Stokes problem.
R3

He also obtained two-dimensional results, proving

s(u)p|u|2 <4 <||uH | Aull + ||VUH2) Poisson problem

for any open Q) C R?, and for the special domain Q) = R?

S:3P ul? < L (||uH HAUH + HVuH2> Stokes problem.

(Institute) Japanese-German Workshop, November 2013 November 5-8, 2013

56 / 69



Theorem (Xie 1995) For any open Q) C R® and every u € H} (Q) with
Au € L?(Q),

5 1
< ||V Aull . 50
sup [uf” < | Vull [ Au] (50)

The constant is optimal for any domain and equality holds if and only if
1— ef\/ﬁ|X7Y|

QO=R¥andu(x)=c
x|

, (51)

for some y € R3, u>0and ceR.

Theorem (Xie 1996) For Q) = R3, and u € Jo (Q) with Au € J(Q),
?PWFf§£;HVuHHAUH. (52)

Equality holds if and only if

u(x)z(A—VV-)(

—VHEx=y| _ _
e 1 |x y|>c, (53)

Hix—y| 2
for some y € R3, u > 0 and vector ¢ € R3.
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Proof for the Laplacian in a smoothly bounded domain Q) C R3.

As before, y will be an arbitrary fixed point of (). And, of course, the
fundamental singularity for the Helmholtz operator — A +pu is

e_\/mx_”

AR, 54
47 |x — y| (54)

8u (xy) =

and satisfies

[ —\/Hr 2 1
2 (. _ € 2 g
/R3gy(x,y)d><—/0 (47”) arcr dr_87r\/ﬁ'

The corresponding Green's function G, (x, y) for () was seen to satisfy

0<Gu(xy) <egulxiy) (55)
by the maximum principle, and therefore
2 1
16 il < (56)

8 /i

1
as dist (y,0Q)) — co.

8/

with || G, (-;y)H2 —
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Lemma 1. One has

19 (6o~ 6P < [ ps (a0~ ) ox= Y2, (o)

with the inequality approaching equality as dist (y, 0Q)) — oo.
Proof: We have reasoned that Gy (;y) — G, (1) € H3. (Q) and thus

—A(Go—GH) :yG , and Go—G],,|aQ:O, (58)

justifying the representation

Go (x;y) = Gu(xy) = P‘/QGO (z:x) Gy (z:y) dz. (59)
Similarly, if Q) = R3,

& (xiy) g (iy) =1 | g (zix)gu(ziy)dz.  (60)

By the maximum principle, the right side of (60) exceeds that of (59), and
therefore the left sides are in the same relation,

0< Go(xy) = Gu(xiy) <go(xiy) —gu(xiy) . (61)
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Lemma 1 is completed by integrating by parts and using (58) and (61):
IV(G@-6)" =] 2(6G=-6)(G~6) d

:/yG (Go — Gy) dx using (58)
< / U8y (go - ) dx using (61)
—VHr 1 _ a—Hr
—/ ye 1-e¢ 4nr2dr:ﬂ.
47tr 47tr 81

Proceeding now, we are assuming () is bounded and 9Q) is smooth. So by
elliptic regularity our given function u € H} (Q) with Au € L2 (Q)
belongs to H3 () N H? (Q)) and by the Poisson formula we have

u(y) :—/ Go A udx
QO
—/G Audx—/ (GO—G)AudX

/G Audx—/v (Go— Gy) - Vudx.
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Writing this last line again, we have

u(y):—/QGyAudx—/QV(GO—G;,)-Vudx, (62)
and can apply the Schwarz inequality to obtain
lu()| < (|Gl AUl + [V (Go = Gu)[[ [ Vull - (63)

Then, remembering our estimates (56) and (57) for || G,|| and
HV (Go — GM)H , we have

4] <[z 12+ 17 (64)

The minimum with respect to u occurs when u = || Aul® / || Vul|* .
Substituting that value of u into (64) gives

u(y)| < Fuv ul 2 | Al (65)

proving, for smoothly bounded domains, the inequality (50) claimed in the
theorem. We pass from such domains to arbitrary open sets as before.
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It remains to prove the uniqueness of the maximizing functions claimed in
line (51) of the theorem. Equality is approached in (65) only by
approaching equality in (64). That requires, first of all, that the Green's
functions Go and G, must approach gy and gy, in order that HGA‘ and

HV (Go - GM)H will approach their limits ,/ﬁ and 4/ 8—\/5. But then,

further, in order for the application of the Schwarz inequality to be sharp,
in its application above to

/G Audx—/v (Go— G,) - Vudx,

it is necessary that
—Au=caG,=cagy and Vu=cV (Go — Gy) =V (go —gy) )

One need only consider the second of these to conclude that
u=c (g —gu). since both u and gy — g, belong to H (Q0) . That
completes the proof of the Theorem.
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Proof for the Stokes operator in R3.

We begin by finding the Green's function for the generalized Stokes
problem. Remember that in R® the fundamental solution gy, (x, y) for the
Helmholtz equation

(—A+p)g=0(xy)
is, setting r = |x — y|,

—\/ﬁr
g =" n>0, (66)
# d7tr
and for u >0,
2 1
HgP‘H = 87T\/ﬁ (67)
Now let
8u — 80 >0
D, =3 . (68)
8’ =
It satisfies
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Let € be the unit vector in the x; direction, 1 < k < 3. And let
U, =(A-VV:)D.ek
P, =(—A+u)VV- ek 22

It is "easy" to verify that they are the fundamental solution of the
generalized Stokes system

(—A4+u)U+VP, =6(xy) ek
V . U‘u — 0

We won't need them, but the explicit three-dimensional expressions for Uy,
and Py are

1 rir
Uy = (a(var) e +b(yir) %)
r
Po = A3’
where
1+s+s2—¢° 3e°* —3— 35— 52
a(s) = e and b(s) = ey
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Lemma. If u > 0,
1

127, /1

Jup]* =

and

|9 (U o) = 32

Proof: Let (-,-) denote the L? inner product. From (70) we have
2

0
v =|oeet -V e,
2

2 02 d
— @7 -2 (8, S50, ) + Ve,

2 0’
= |20 - (29, 5594)

and hence, since HU},” is independent of k,

3 Uall® = -1 o,
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Therefore, by (69),
G g,

which together with (67) implies (71). By a similar argument,
22 2
IV (U = Vo) " = 3 [V (g — &0) [|” -
Thus we obtain (72) since

Juul* =

N
8’
The last step here is by straightforward integration. This completes the
proof of the lemma.

IV (g — &) | = — (g — &0, & (8 — &) = (8x — 80, Hey) =

Proof of the theorem: Similarly to (62) we obtain the representation
formula

uc(y) = (Vo, ~Au)
= Uy—Uo,Au>—(Uy,Au)
:_(v(uy_uo),Vu)—<Uy,ﬁu>.
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Repeating the last line,
u (y) = = (V (Uy = Up) . Vu) = (Uy,, Bu)
and we can apply the Schwarz inequality to obtain

o ()] < (|9 (U = o) [ 170 + [[U,]| | Bu|

Then, remembering our estimates (71) and (72) for HUHH2 and
HV (Uy — Uo) H2 we have

o] <= 1Vl g B 09)

The minimum with respect to u occurs when

~ 2
p=Bul" /vl (74)
Substituting that value of u into (73) finally proves the inequality (52).

luk (y)] < 12 HAUH (75)

FIIV ul|
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It remains to prove the uniqueness of the optimizing functions (53). The
Schwarz inequality for the first integral achieves equality if and only if

u=c(U,—Uo) (76)

for some constant c. Suppose u is given in the form of (76) with an
arbitrary p > 0. Then we have

Au = culy,

so that the Schwarz inequality for the second integral also becomes an
equality. Furthermore, (74) is satisfied since by (71) and (72)

~ 2

2_ 1
L 7T e S
Vul P vl

Therefore equality is indeed achieved by functions in the form (76), or
(53), in view of the formulas (70),(68) and (66).

(Institute) Japanese-German Workshop, November 2013 November 5-8, 2013 68 / 69



References (for the fourth lecture):

W. Xie, Integral representations and L* bounds for solutions of the
Helmholtz equation on arbitrary open sets in R? and R3, Diff. and Int.

Eq., 8 (1995), 689-698.

W. Xie, Sharp Sobolev interpolation inequalities for the Stokes operator,

Diff. and Int. Eq., 10 (1997), 393-399.
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