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In brief: We wish to prove, for arbitrary open sets Ω ⊂ R3, that
solutions of the steady Stokes problem

−4 u = −∇p + f , ∇ · u = 0, u|∂Ω = 0,

along with zero flux conditions when needed,

satisfy (on setting 4̃u ≡ −Pf )

sup
Ω
|u|2 ≤ 1

3π
‖∇u‖

∥∥∥4̃u∥∥∥ .
In trying to prove this, solutions of the Poisson problem

−4 u = f , u|∂Ω = 0,

were proven (in the 1991 thesis of Wenzheng Xie) to satisfy

sup
Ω
|u|2 ≤ 1

2π
‖∇u‖ ‖4u‖ .
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To be precise: Let Ω be an arbitrary open subset of R3. Let
D (Ω) ≡ {ϕ ∈ C∞

0 (Ω) : ∇ ·ϕ= 0} . Let J (Ω) and J0 (Ω) be the
completions of D (Ω) in the L2-norm ‖·‖ and the Dirichlet-norm
‖∇·‖ , respectively. Then, given u ∈ J0 (Ω) , there is at most one
f ∈ J (Ω) such that (∇u,∇ϕ) = − (f,ϕ) for all ϕ ∈ D (Ω) . If such
a function f exists, it is denoted by 4̃u, and we wish to prove that

sup
Ω
|u|2 ≤ 1

3π
‖∇u‖

∥∥∥4̃u∥∥∥ . (1)

Important applications of (1), beginning with

1
2
d
dt ‖∇u‖

2 + υ
∥∥∥4̃u∥∥∥2 = (u · ∇u, 4̃u) ≤ sup

Ω
|u| ‖∇u‖

∥∥∥4̃u∥∥∥
≤ 1√

3π
‖∇u‖3/2

∥∥∥4̃u∥∥∥3/2
≤ · · ·

(2)
would settle many problems for general domains by circumventing the
use of domain dependent inequalities, like the famous Solonnikov
inequality

∥∥D2u∥∥ ≤ cΩ

(∥∥∥4̃u∥∥∥+ ‖∇u‖) , in some key arguements.
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ut + u · ∇u = −∇p + 4̃u, ∇ · u = 0, u|∂Ω = 0, u|t=0 = u0

1
2
d
dt
‖u‖2 + ‖∇u‖2 = 0

1
2
d
dt
‖∇u‖2 +

∥∥∥4̃u∥∥∥2 = (u·∇u,4̃u) ≤ 1
2

∥∥∥4̃u∥∥∥2 + c ‖∇u‖6
1
2
d
dt
‖ut‖2 + ‖∇ut‖2 ≤ c ‖u‖2 ‖ut‖4

1
2
d
dt
‖∇ut‖2 +

∥∥∥4̃ut∥∥∥2 ≤ · · ·
1
2
d
dt
‖utt‖2 + ‖∇utt‖2 ≤ · · ·

1
2
d
dt
‖∇utt‖2 +

∥∥∥4̃utt∥∥∥2 ≤ · · · e.t.c., e.t.c.

Assuming regularity of ∂Ω, and u0 ∈ J0 (Ω) we can integrate all of these,
starting with the second, on the same interval common (0,T ) and get (for
bounded Ω) u ∈ C∞ ((0,T ) ;W 2

2 (Ω)
)
. Then more spatial regularity.

(Institute) Japanese-German Workshop, November 2013 November 5-8, 2013 4 / 69



Among the results that would be freed of assumptions about the boundary:

The existence and uniqueness of a nonstationary solution for any
u0 ∈ J0 (Ω) : "Theorem" For any open Ω ⊂ R3 and u0 ∈ J0 (Ω)
there exists a solution u, p ∈ C∞ (Ω× (0,T )) of
ut + u · ∇u = −∇p + ν4 u, ∇ · u = 0, u|∂Ω = 0, u (0) = u0.

Further, T = 256π2ν3

27‖∇u0‖4
is independent of Ω, ‖∇u (t)‖2 ≤ ‖∇u0‖2√

1−T /t

and supΩ |u (t)| ≤ t−1/2b (t) , where b (t) is continuous on [0,T ) .

For any open Ω ⊂ R3, and any u0 ∈ J0 (Ω) ∩W2
2 (Ω) ,

Ladyzhenskaya proved the existence and uniqueness of a ‘generalized
solution’. But, it’s full natural regularity has depended on the
regularity of the entire boundary ∂Ω. Given (1), her solution is
identical to that discussed for u0 ∈ J0 (Ω) , and no less regular.
The existence of steady solutions satisfying sup

Ω
|u| < ∞.

Etc., etc.
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Considering the Poisson problem for the Laplacian as a model
problem, Wenzheng Xie (in his 1991 thesis) proved

sup
Ω
|u|2 ≤ 1

2π
‖∇u‖ ‖4u‖ , (3)

for any open Ω ⊂ R3, and any u ∈ Ĥ10 (Ω) with 4u ∈ L2 (Ω) , where
Ĥ10 (Ω) is the completion of C

∞
0 (Ω) in the Dirichlet norm ‖∇u‖ .

The only point in Xie’s proof of (3) that doesn’t carry over to a proof
of (1) is his use of the maximum principle to show that∫

Ω
G 2µ (x , y) dx ≤

∫
Ω
g2µ (x , y) dx , (4)

for all y ∈ Ω, where Gµ is the Green’s function for −4+µ, and

gµ =
e−
√

µ|x−y |

4π |x − y | is the corresponding fundamental singularity.
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We begin Xie’s proof of (3) under three simplifying assumptions,
considering first

Smoothly bounded domains Ω.
Functions um (x) = ∑m

n=1 cnϕn (x) , where {ϕn} are the
L2-orthonormal eigenfunctions, −4 ϕn = λnϕn, ϕn |∂Ω = 0.

An arbitrary fixed choice of y ∈ Ω, henceforth considered fixed.

For this fixed y , and any fixed m, the ratio Rm (y) of the two sides of (3)

Rm (y) ≡
u2m (y)

‖∇um‖ ‖4um‖
=

(
m
∑
n=1

cnϕn (y)
)2

(
m
∑
n=1

λnc2n

)1/2 ( m
∑
n=1

λ2nc2n

)1/2 (5)

is a homogeneous function of (c1, c2, · · ·, cm) ∈ Rm , constant on lines
through the origin and smooth except at the origin. If (c1, c2, · · ·, cm) is a
point at which it attains its maximum Rm (y) , then, at that point,
∂Rm (y) /∂cn = 0, or equivalently ∂ (logRm (y)) /∂cn = 0, for
n = 1, · · ·,m.
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Setting to zero the derivative with respect to cn of

logRm (y) = 2 log
(

m
∑
n=1

cnϕn (y)
)
− 1
2
log
(

m
∑
n=1

λnc2n

)
− 1
2
log
(

m
∑
n=1

λ2nc
2
n

)
we obtain

2ϕn (y)
m
∑
n=1

cnϕn (y)
=

λncn
m
∑
n=1

λnc2n

+
λ2ncn
m
∑
n=1

λ2nc
2
n

or
2ϕn (y)
um (y)

=
λncn
‖∇um‖2

+
λ2ncn
‖4um‖2

. (6)

Introducing

µm ≡
‖4um‖2

‖∇um‖2

one can rewrite (6) as

2ϕn (y)
um (y)

= (µm + λn)
λncn
‖4um‖2

which, on multiplying by um (y) / (µm + λn) becomes
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becomes
2ϕn (y)
µm + λn

=
um (y)

‖4um‖2
λncn .

Squaring and summing gives

4
m

∑
n=1

(
ϕn (y)

µm + λn

)2
=

(
um (y)

‖4um‖2

)2 m

∑
n=1

λ2nc
2
n =

u2m (y)

‖4um‖2
.

Multiplying by
√

µm ≡ ‖4um‖ / ‖∇um‖ and changing sides, one obtains

Rm (y) ≡
√

µm
u2m (y)

‖4um‖2
= 4

√
µm

m

∑
n=1

(
ϕn (y)

µm + λn

)2
. (7)

Miracle of miracles, we recognize this! Since the {ϕn} satisfy
(−4+µ) ϕn = (µ+ λn) ϕn , ϕn |∂Ω = 0 ,

they can be represented in terms of the Green’s function Gµ (x , y) for the
Helmholtz operator −4+µ. That is,

ϕn (y) =
∫

Ω
Gµ (x , y) (µ+ λn) ϕn (x) dx ,
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or dividing by (µ+ λn) ,

ϕn (y)
µ+ λn

=
∫

Ω
Gµ (x , y) ϕn (x) dx ,

which is the nth Fourier coeffi cient of Gµ (·, y) . Thus (7) implies

Rm (y) = 4
√

µm

m

∑
n=1

(
ϕn (y)

µm + λn

)2
≤ 4

√
µm

∫
Ω
G 2µm dx .

The fundamental singularity for the Helmholtz operator −4+µ is

gµ (x , y) ≡
e−
√

µ|x−y |

4π |x − y | ,

and Gµ (x , y) = gµ (x , y)− hµ (x , y) , where hµ is the unique solution of
4hµ = µhµ in Ω satisfying hµ (x , y)

∣∣
∂Ω = gµ (x , y)

∣∣
∂Ω . Clearly, hµ (x , ·)

is positive on ∂Ω and cannot have a negative minmum. Therefore, hµ (x , ·)
is positive throughout Ω, and Gµ (x , y) < gµ (x , y) throughout Ω. Hence∫

Ω
G 2µ dx ≤

∫
Ω
g2µ dx =

∫ ∞

0

(
e−
√

µr

4πr

)
4πr2dr =

1
8π
√

µ
.
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In summary, setting

um = ∑m
n=1 cnϕn and µm ≡

‖4um‖2

‖∇um‖2
(8)

Xie found that

Rm (y) = · · · = 4
√

µm

m

∑
n=1

(
ϕn (y)

µm + λn

)2
= 4

√
µm

m

∑
n=1

(∫
Ω
Gµm

ϕn dx
)2

≤ 4
√

µm

∫
Ω
G 2µm dx ≤ 4

√
µm

∫
R 3
g2µm dx =

1
2π
,

(9)

End of proof. The only point which isn’t known to carry over to Stokes is
the needed analogue of

∫
ΩG

2
µ dx ≤

∫
Ωg

2
µ dx , which is ‘Xie’s conjecture’.

It is noteworthy that we have gained no information about µm .
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Xie proved the constant 1
2π is optimal, first for Ω = R3, by observing that

u (x) ≡ 4π (g0 (|x |)− g1 (|x |)) =
{

1 , x = 0
1−e−|x |
|x | , x 6= 0

is locally H2 and satisfies

‖4u‖2 = 2π, ‖∇u‖2 = 2π.

Further, this constant is attained for the whole family of rescaled functions

vα (x) ≡ u (αx) , for α > 0,

since

‖4vα‖2 = 2πα4α−3 = 2πα, ‖∇vα‖2 = 2πα2α−3 = 2πα−1.

Increasing α rescales vα into increasingly ‘pointy’functions, for which

µα ≡
‖4vα‖2

‖∇vα‖2
= α2 → ∞ , as α→ ∞.
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Graphs of u (x) , u (3x) and u (x/3) , in black, red and blue.
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Consider now an arbitrary open set Ω ⊂ R3, and point y ∈ Ω. The
functions u (α (x − y)) all equal 1 at x = y . As α→ ∞, they become
increasingly singular at y , and smaller and flater away from y , near ∂Ω,
permiting truncation with minimal changes to the ratio u2(y )

‖∇u‖‖4u‖ =
1
2π .

The optimality of the constant 1
3π in (1) is shown similarly. I expect the

maximum ratio can only be approached by functions close to these.
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Proof of (3) for any u ∈ Ĥ10 (Ω) with 4u ∈ L2 (Ω) .
At this point we are still assuming Ω is bounded and that ∂Ω is smooth.
So Ĥ10 (Ω) = H

1
0 (Ω) . By elliptic regularity and a Sobolev embedding

u ∈ H20 (Ω) ⊂ C (Ω) . In terms of its eigenfunction expansion
u = ∑∞

n=1 cnϕn , with cn =
∫

Ωuϕn dx , the norms of u satisfy

‖u‖2 =
∞

∑
n=1

c2n , ‖∇u‖2 =
∞

∑
n=1

λnc2n , ‖4u‖2 =
∞

∑
n=1

λ2nc
2
n .

So each um = ∑m
n=1 cnϕn satisfies ‖∇um‖ ≤ ‖∇u‖ and ‖4um‖ ≤ ‖4u‖ .

Thus if (3) were not true, there would be some x0 ∈ Ω such that

sup
Ω
|um |2 ≤

1
2π
‖∇um‖ ‖4um‖ ≤

1
2π
‖∇u‖ ‖4u‖ < |u (x0)|2 . (10)

Therefore |u (x0)|2 would exceed sup
Ω
|um |2 , for all m, by at least the

difference between 1
2π ‖∇u‖ ‖4u‖ and |u (x0)|

2 . Since u is continuous,
that would make impossible the L2-convergence limm→∞ ‖um − u‖ = 0 of
the eigenfunction expansion. This completes the proof of (3) for bounded
smooth domains.
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Lemma. For any open Ω ⊂ Rn, there exist smoothly bounded open sets
Ω1 ⊂ Ω2 ⊂ · · · such that ∪∞

i=1Ωi = Ω.

Proof: Let f ∈ C∞
0 (Ω) be real valued. According to the Morse-Sard

theorem, the set of values taken at critical points has measure zero.
Therefore, almost every level surface f (x) = const. is everywhere smooth.
Now, for every ε > 0, let

f̂ε (x) =
{
1 if dist (x , ∂Ω) > 2ε and |x | < 1/ε
0 otherwise

and let fε be the mollification of f̂ε with smoothing radius ε. Then
fε (x) = 0 if dist (x , ∂Ω) < ε or |x | > 1/ε+ ε. And fε (x) = 1 if
dist (x , ∂Ω) > 3ε and |x | < 1/ε− ε. So fε is constant except in its region
of variation

{x : ε < dist (x , ∂Ω) < 3ε or 1/ε+ ε < |x | < 1/ε+ ε}
Let ε1 = 1, ε2 = 1/3, ε3 = 1/9, ε4 = 1/27, e.t.c. Then the {fεn} have
disjoint regions of variation And by Sard’s theorem almost every level
curve of fεn is smooth. For each n, choose one and let Ωn be the enclosed
set of points.

(Institute) Japanese-German Workshop, November 2013 November 5-8, 2013 15 / 69



Finally, let Ω ⊂ R3 be an arbitrary open set, and suppose u ∈ Ĥ10 (Ω)
has 4u ∈ L2 (Ω) . Choose smoothly bounded Ω1 ⊂ Ω2 ⊂ · · · such that
∪∞
n=1Ωn = Ω.

Lemma. There exists {un} such that un ∈ Ĥ10 (Ωn) , 4un = 4u in Ωn,
‖∇un‖L2(Ωn)

≤ ‖∇u‖ , and ‖un − u‖L6(Ω) → 0 as n→ ∞.

Proof: For each n there exists a unique un ∈ Ĥ10 (Ωn) such that∫
Ωn

∇un · ∇ϕ dx =
∫

Ωn

∇u · ∇ϕ dx , for every ϕ ∈ Ĥ10 (Ωn) , (11)

by the Riesz representation theorem. Integrating the right side of (11) by
parts, we obtain∫

Ωn

∇un · ∇ϕ dx = −
∫

Ωn

(4u) ϕ dx , for every ϕ ∈ Ĥ10 (Ωn) ,

which implies 4un = 4u in Ωn , and therefore ‖4un‖L2(Ωn)
≤ ‖4u‖ .

We get ‖∇un‖L2(Ωn)
≤ ‖∇u‖ by letting ϕ = un in (11) and using the

Schwarz inequality. Setting un equal to zero in Ω \Ωn we get
un ∈ Ĥ10 (Ω) . Therefore (11) implies
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implies

lim
n→∞

∫
Ω
∇un · ∇ϕ dx =

∫
Ω
∇u · ∇ϕ dx , for every ϕ ∈ C∞

0 (Ω) ,

which is the weak convergence un → u in Ĥ10 (Ω) . That along with the
bound ‖∇un‖ ≤ ‖∇u‖ implies the strong convergence un → u in
Ĥ10 (Ω) . Therefore, ‖un − u‖L6(Ω) → 0, in view of the Sobolev inequality
‖ϕ‖L6(Ω) ≤ c ‖∇ϕ‖ . So the lemma is proven.

Now, if (3) were not true for the domain Ω, there would be some x0 ∈ Ω
such that

sup
Ωn

|un |2 ≤
1
2π
‖∇un‖L2(Ωn)

‖4un‖L2(Ωn)
≤ 1
2π
‖∇u‖ ‖4u‖ < |u (x0)|2 .

Since u ∈ H2loc (Ω) ⊂ C (Ω) by the elliptic regularity theorem, this would
make impossible the convergence ‖un − u‖L6(Ω) → 0 that we just proved.
This completes the proof of the inequality (3) for arbitrary open sets
Ω ⊂ R3 and functions u ∈ Ĥ10 (Ω) with 4u ∈ L2 (Ω) .
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Second Lecture: Attempt to Circumvent Xie’s Conjecture∫
ΩG

2
µ dx ≤

∫
Ωg

2
µ dx

by proving ∫
Ω
G 2µ dx∫

R 3
g2µ dx

→ 1 , as µ→ ∞

and

µm ≡
‖4um‖2

‖∇um‖2
→ ∞, as m→ ∞.
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Let’s first review Xie’s argument in the context of the Stokes problem. As
for the Laplacian, the Stokes eigenvalue problem

−4ϕn = −∇p + λnϕn , ∇ ·ϕn = 0 , ϕn |∂Ω = 0

better written as

−4̃ϕn = λnϕn , ∇ ·ϕn = 0 , ϕn |∂Ω = 0

has a system of eigenfunctions {ϕn} which are complete in both J (Ω)
and J0 (Ω) , and orthonormal in J (Ω) . The eigenvalues {λn} are positive.
Corresponding to the Helmholtz operator −4+µ and its fundamental
singularity gµ and Green’s function Gµ we have the "spectral Stokes
operator" −4̃+ µ and its fundamental singularity gµ,e and Green’s
function Gµ,e. Both gµ,e and Gµ,e depend not only on the point of
singularity y , but also on a directional unit vector e. The singularity is

gµ,e (x , y) =
e−
√

µ|x−y |

4π |x − y |e− (e·∇)∇
e−
√

µ|x−y | − 1
4πµ |x − y |

which is the solution of
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the problem (in which y is the point of singularity, considered fixed)

(−4+µ) gµ,e (x , y) +∇p = δ (x − y) e in Ω,

∇ · gµ,e (x , y) = 0 , lim
|x |→∞

gµ,e (x , y)
∣∣
∂Ω = 0 .

The Green’s function is Gµ,e (x , y) = gµ,e (x , y)− hµ,e (x , y) where
hµ,e (x , y) is the solution of

(−4+µ) hµ,e (x , y) +∇p = 0 in Ω,

∇ · hµ,e (x , y) = 0 , hµ,e (x , y)
∣∣
∂Ω = gµ,e (x , y)

∣∣
∂Ω .

There are probably domains which contain points x and y for which∣∣Gµ,e (x , y)
∣∣ > ∣∣gµ,e (x , y)

∣∣ . Certainly, I can find two domains, one within
the other, containing specific points x and y for which

∣∣Gµ,e (x , y)
∣∣ is

larger for the smaller domain. Because of such diffi culties, the crucial
inequality ∫

ΩG
2
µ,e (x , y) dx ≤

∫
R 3g

2
µ,e (x , y) dx .

remains "Xie’s conjecture". But I would bet anything it’s true!
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To review in the Stokes context, note that sup
Ω
|u| = sup

y∈Ω
sup
|e|=1

e · u (y) .

Fixing y and e, and temporarily m, consider functions um = ∑m
n=1 cnϕn

depending on (c1, c2, · · ·, cm) . Let (c1, c2, · · ·, cm) maximize

Rm (y , e) ≡
(e · um (y))2

‖∇um‖
∥∥∥4̃um∥∥∥ =

(
m

∑
n=1

cne·ϕn(y )
)2

(
m

∑
n=1

λnc2n

)1/2( m

∑
n=1

λ2nc2n

)1/2 . (12)

Setting um = ∑m
n=1 cnϕn and µm ≡

‖4̃um‖2
‖∇um‖2

and using Xie’s conjecture

Rm (y , e) ≡
(e · um (y))2

‖∇um‖
∥∥∥4̃um∥∥∥ = · · · = 4

√
µm

m

∑
n=1

(
e ·ϕn (y)
µm + λn

)2

= 4
√

µm

m

∑
n=1

(∫
Ω
Gµm ,e ·ϕn dx

)2
≤ 4

√
µm

∫
Ω
G2µm ,e dx ≤ 4

√
µm

∫
R 3
g2µm ,e dx =

1
3π
.

(13)
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The optimality of the constant 1
3π in the conjectured inequality

sup
Ω
|u|2 ≤ 1

3π
‖∇u‖

∥∥∥4̃u∥∥∥
is proven analgously to that of the constant in the inequality

sup
Ω
|u|2 ≤ 1

2π
‖∇u‖ ‖4u‖ .

The role in the latter played by the difference of singularities

u (x) ≡ 4π (g0 (x , 0)− g1 (x , 0)) = 1−e |x |
|x |

is replaced by

u (x) ≡ 4π (g0,e (x , 0)− g1,e (x , 0))

= 1−e−|x |
|x | e− (e · ∇)∇

(
|x |
2 +

1−e−|x |
|x |

)
,

where gµ,e (x , y) is the singular solution introduced earlier, satisfying

(−4+µ) g+∇P = δ (x − y) e , ∇ · g = 0 .
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Perhaps, if the maximum principle had not been available in proving (3),
the last line of Xie’s proof of (3), namely

≤ 4
√

µm

∫
Ω
G 2µm dx ≤ 4

√
µm

∫
R 3
g2µm dx =

1
2π
,

could have been replaced by arguing that

4
√

µm

∫
Ω
G 2µm dx =

4
√

µm

∫
Ω
G 2µm dx

8π
√

µm

∫
R 3
g2µm dx

→ 1
2π

, as µm → ∞,

and that

µm ≡
‖4um‖2

‖∇um‖2
→ ∞, as m→ ∞.

If this reasoning were to prove successful in dealing with the Poisson
problem, it might very well carry over to Stokes problem. I will now
describe some of my efforts in this direction.

(Institute) Japanese-German Workshop, November 2013 November 5-8, 2013 24 / 69



For −4+µ, the exponential decay of the fundamental singularity
gµ (r) = e−

√
µr

4πr makes easy the proof that∫
Ω
G 2µ dx∫

R 3
g2µ dx

→ 1 , as µ→ ∞.

For the spectral Stokes operator −4̃+ µ, the fundamental singularity

gµ (r) =
e−
√

µr

4πr
e− (e · ∇)∇e

−√µr − 1
4πµr

presents more of a challenge, but the desired result∫
Ω
G2µ dx∫

R 3
g2µ dx

→ 1 , as µ→ ∞.

was proven in my 2000 "Ferrara" paper. Thus to prove (1), it only remains
to show µm → ∞ as m→ ∞. I am persuaded of this by considering Xie’s
proofs of the optimality of the constants in the inequalities (3) and (1).
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To determine µm for the Poisson problem, reconsider the maximization of

Rm ≡
u2m (y)

‖∇um‖ ‖4um‖
=

(
m
∑
n=1

cnϕn (y)
)2

(
m
∑
n=1

λnc2n

)1/2 ( m
∑
n=1

λ2nc2n

)1/2

by the method of Lagrange multipliers. Since Rm is homogeneous, the
maximizing point (c1, c2, · · ·, cm) can be chosen to satisfy the constraint

g (c1, · · ·, cm) ≡
m
∑
n=1

cnϕn (y) = 1,

while minimizing the denominator of Rm , or its square

f (c1, · · ·, cm) ≡
(

m
∑
n=1

λnc2n

)(
m
∑
n=1

λ2nc
2
n

)
.

Setting ∇f = λ∇g and eliminating the Lagrange multiplier λ, it is shown
in my 2001 "Advances" paper that µm is a root of the equation

fm (µ) ≡
m
∑
n=1

ϕ2n (y)

(µ+ λn)
2

[
µ

λn
− 1
]
= 0.
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Obviously,

fm (µ) ≡
m
∑
n=1

ϕ2n (y)

(µ+ λn)
2

[
µ

λn
− 1
]

is negative for µ ∈ [0,λ1) and positive for µ ∈ (λm ,∞) . Hence
λ1 ≤ µm ≤ λm . Furthermore, the infinite series

f∞ (µ) ≡
∞
∑
n=1

ϕ2n (y)

(µ+ λn)
2

[
µ

λn
− 1
]

(14)

is absolutely and uniformly covergent for µ in any bounded subinterval of
[0,∞) .

Conjecture: For every y ∈ Ω, we suspect that f∞ (µ) < 0, for all µ ≥ 0.

This conjecture implies µm → ∞ as m→ ∞, which implies (3) without
using the maximum principle. All of this reasoning carries over to a similar
conjecture that implies (1) for the Stokes problem.
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One indication that f∞ (µ) < 0, for all µ ≥ 0, follows from the comparison

f∞ (µ) ≡
∞
∑
n=1

ϕ2n (y)

(µ+ λn)
2

[
µ

λn
− 1
]

f̂∞ (µ) ≡
∞
∑
n=1

V−1

(µ+ n2/3)
2

[ µ

n2/3 − 1
]

fint (µ) ≡
∫ ∞

0

V−1

(µ+ x2/3)
2

[ µ

x2/3 − 1
]
dx = 0,

suggested by the asymptotics (after normalizing the volume of Ω to be
V = 6π2)

λn ∼ n2/3

‘Large averages’of
{

ϕ2n (y)
}
→ V−1.

It can be shown that f̂∞ (µ) < fint (µ) = 0, suggesting that f∞ (µ) < 0.

But seeking a proof I’ve pushed further with another approach.
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The function f∞ can be expressed in terms of the Green’s functions

G0 (x , y) =
1
4πr

+ w0 (x , y) , Gµ (x , y) =
e−
√

µr

4πr
+ wµ (x , y)

for −4 and −4+µ by rearranging it as follows:

f∞ (µ, y) ≡
∞
∑
n=1

ϕ2n (y)

(µ+ λn)
2

[
µ

λn
− 1
]

=
∞
∑
n=1

ϕ2n (y)
λn (µ+ λn)

− 2
∞
∑
n=1

ϕ2n (y)

(µ+ λn)
2

=
∫

Ω
Gµ (x , y)G0 (x , y) dx − 2

∥∥Gµ (·, y)
∥∥2 .

In attempting to evaluate the first term, note that

−4
(
G0 (x , y)− Gµ (x , y)

)
= µGµ (x , y) ,

suggesting the representation of G0 (x , y)− Gµ (x , y) in terms of G0 ,

µ
∫

Ω
Gµ (z , y)G0 (z , x) dz = G0 (x , y)− Gµ (x , y) , for all x , y ∈ Ω.
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In fact, the representation

µ
∫

Ω
Gµ (z , y)G0 (z , x) dz = G0 (x , y)− Gµ (x , y) , for all x , y ∈ Ω

is justified, since, for fixed y and x 6= y ,
−4

(
G0 (x , y)− Gµ (x , y)

)
= µGµ (x , y)

and the singularity is not very bad. Indeed,

lim
r→0

(
1
4πr
− e

−√µr

4πr

)
=

√
µ

4π

is finite and G0 (x , y)− Gµ (x , y) ∈ H2loc
(
R3
)
. Thus, on taking the limit

as x → y , one obtains∫
Ω
Gµ (z , y)G0 (z , y) dz =

1
4π
√

µ
+
w0 (y , y)− wµ (y , y)

µ

and therefore

f∞ (µ, y) =
1

4π
√

µ
+
w0 (y , y)− wµ (y , y)

µ
− 2

∥∥Gµ (·, y)
∥∥2 .

I haven’t a general proof that f∞ (µ, y) < 0 for all µ ≥ 0, for all y ∈ Ω.
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But suppose Ω is the sphere |x | < R and y = 0. Then we know

w0 (x , 0) = −
1
4πR

and wµ (x , 0) = −
(

e−
√

µR

e
√

µR − e−
√

µR

)
e
√

µr − e−
√

µr

4πr
.

Setting a = e−
√

µR

e
√

µR−e−
√

µR , we find after a rather lengthy calculation that∫
Ω
Gµ (x , 0)G0 (x , 0) dx =

1
4π
√

µ
− 1
4πµR

+ a
1

2π
√

µ
,

2
∥∥Gµ (·, 0)

∥∥2 = 2∫ R

0

(
e−
√

µr

4πr
− ae

√
µr − e−

√
µr

4πr

)2
4πr2dr ,

and finally, combining these, the following identity. For all µ ≥ 0,

f∞ (µ, 0) =
∞
∑
n=1

ϕ2n (0)

(µ+ λn)
2

[
µ

λn
− 1
]
= − 1

4πµR
+

R

4π sinh2
√

µR
< 0.

This proves, for at least the center of a sphere, that f∞ (µ, 0) < 0 for all
µ ≥ 0, and hence that µm ≡ ‖4um‖

2 / ‖∇um‖2 → ∞, as m→ ∞, in
Xie’s proof of the inequality (3) for the Poisson problem. Using the
maximum principle I’ve gone a bit further.
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Proposition. Let y ∈ Ω ⊂ R3 and suppose that for some R > 0 the balls
of radii R and R/2 centered at y satisfy BR/2 ⊂ Ω ⊂ BR . Then
f∞ (µ, y) < 0 for all µ ≥ 0, and hence µm → ∞ in Xie’s first proof of (3).

Corollary. If Ω is a ball of radius R, then, for all points within a distance
R/3 of its center, there holds f∞ (µ, y) < 0 for all µ ≥ 0, and hence
µm → ∞ in Xie’s first proof of (3).
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Homework. For my next lecture, I would be greatful for help proving
that, for every fixed nonzero point y ∈ (0,π) , the early terms in the
sequence

{
sin2 ny

}
do not dominate the later ones, in the sense that

f∞ (µ, y) ≡
∞

∑
n=1

sin2 ny

(µ+ n2/3)
2

[ µ

n2/3 − 1
]
< 0, for all µ ∈ [0,∞) . (15)

This, of course, is an analogue of the conjecture

f∞ (µ) ≡
∞
∑
n=1

ϕ2n (y)

(µ+ λn)
2

[
µ

λn
− 1
]
< 0, for all µ ∈ [0,∞)

that I failed to completely prove above. It may be insightful and easier to
first consider the corresponding integral, and to try to show that∫ ∞

0

sin2 xy

(µ+ x2/3)
2

[ µ

x2/3 − 1
]
dx < 0, for all µ ∈ [0,∞) . (16)

Remember that if sin2 xy is replaced by 1, this integral is identically zero
for all µ.

(Institute) Japanese-German Workshop, November 2013 November 5-8, 2013 33 / 69



References (for second lecture):

W. Xie, On a three-norm inequality for the Stokes operator in nonsmooth
domains, in the Navier-Stokes Equations II: Theory and Numerical
Methods, Springer-Verlag Lecture Notes in Math., 1530 (1992), pp.
310-315.

J. G. Heywood, An alternative to Xie’s conjecture concerning the Stokes
problem in nonsmooth domains, Annali dell’Universita’di Ferrara set VII,
n. 46, 2000, 267-284.

J. G. Heywood, On a conjecture concerning the Stokes problem in
nonsmooth domains, in Mathematical Fluid Mechanics; Recent Results
and Open Questions, Jiri Neustupa and Patrick Penel editors, Vol. 2 of
Advances in Mathematical Fluid Mechanics, Birkhäuser Verlag, Basel
(2001), 195-206.

J. G. Heywood, Seeking a proof of Xie’s inequality: on the conjecture that
µm → ∞, preprint, submitted for the volume in honour of Y. Shibata
(2013), 16 pages.

(Institute) Japanese-German Workshop, November 2013 November 5-8, 2013 34 / 69



Third Lecture: Other Applications of the Preceding Arguments

For example:

For a Fourier cosine series f (x) = ∑∞
n=1 cn cos nx , we prove

sup
(−π,π)

|f (x)|2 ≤ 3
∥∥∥f (1/3)

∥∥∥
L2(−π,π)

∥∥∥f (2/3)
∥∥∥
L2(−π,π)

and for a Fourier sine series f (x) = ∑∞
n=1 cn sin nx , we conjecture

sup
(−π,π)

|f (x)|2 ≤ 3
2

∥∥∥f (1/3)
∥∥∥
L2(−π,π)

∥∥∥f (2/3)
∥∥∥
L2(−π,π)

.

The proofs and diffi culties are analogous to those we encountered for

sup
Ω
|u|2 ≤ 1

2π ‖∇u‖ ‖4u‖ Poisson problem

sup
Ω
|u|2 ≤ 1

3π ‖∇u‖
∥∥∥4̃u∥∥∥ Stokes problem.
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I’ve found Xie’s first argument can be used to prove other inequalities.
One is a short, simple proof of Hölder’s inequality for series. Another is:

Theorem 1. For any sequence c1, c2, · · · of real numbers,(
∞
∑
n=1

cn

)2
≤ 3π

(
∞
∑
n=1

n2/3c2n

)1/2 ( ∞
∑
n=1

n4/3c2n

)1/2

. (17)

Corollary. If f (x) =
∞
∑
n=1

cn cos nx , then

sup
(−π,π)

|f (x)|2 ≤ 3
∥∥∥f (1/3)

∥∥∥
L2(−π,π)

∥∥∥f (2/3)
∥∥∥
L2(−π,π)

.

Clarifying Definitions: For any α ≥ 0, the L2-norm of the fractional
derivative of f of order α is

∥∥∥f (α)∥∥∥
L2(−π,π)

=
(
π ∑∞

n=1 c
2
nn
2α
)1/2

, in

agreement with the standard definitions when α is a non-negative integer.
Clearly, sup(−π,π) |f | = f (0) = ∑∞

n=1 cn , if cn ≥ 0 for all n. If some of the
cn are negative, the supremum of f will be only smaller.
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Notice that the direct application of Hölder’s inequality (first for cn ≥ 0)
m
∑
n=1

cn =
m
∑
n=1

1√
n

(
n1/6√cn

) (
n2/6√cn

)
≤
(

m
∑
n=1

1
n

)1/2 ( m
∑
n=1

n2/3c2n

)1/4 ( m
∑
n=1

n4/3c2n

)1/4

implies an inequality similar to (17) for finite sums,(
m
∑
n=1

cn

)2
≤
(

m
∑
n=1

1
n

)(
m
∑
n=1

n2/3c2n

)1/2 ( m
∑
n=1

n4/3c2n

)1/2

,

but with the m-dependent constant ∑m
n=1

1
n instead of 3π.
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Proof of Theorem: We follow Xie’s argument line by line. For fixed m,
the ratio of the left to right sides of (17), namely

Rm ≡

(
m
∑
n=1

cn

)2
(

m
∑
n=1

n2/3c2n

)1/2 ( m
∑
n=1

n4/3c2n

)1/2 , (18)

is a smooth function of (c1, c2, · · ·, cm) ∈ Rm\ {0} . Since it is constant
on lines through the origin, it has a maximum value which is attained on
every sphere about the origin. Let (c̄1, c̄2, · · ·, c̄m) 6= 0 be a point where
the maximum is attained. Differentiating

logRm = 2 log
(

m
∑
n=1

cn

)
− 1
2
log
(

m
∑
n=1

n2/3c2n

)
− 1
2
log
(

m
∑
n=1

n4/3c2n

)
with respect to cn at the critical point (c̄1, c̄2, · · ·, c̄m) gives

2(
m
∑
n=1

c̄n

) = n2/3 c̄n(
m
∑
n=1

n2/3 c̄2n

) + n4/3 c̄n(
m
∑
n=1

n4/3 c̄2n

) . (19)
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Setting

µ̄m =

(
m
∑
n=1

n4/3 c̄2n

)
/
(

m
∑
n=1

n2/3 c̄2n

)
, (20)

and proceeding exactly as before, etc., etc., one obtains

R̄m =

(
m
∑
n=1

n4/3 c̄2n

)1/2

(
m
∑
n=1

n2/3 c̄2n

)1/2

(
m
∑
n=1

c̄n

)2
(

m
∑
n=1

n4/3 c̄2n

)

=
√

µ̄m

m

∑
n=1

4

(µ̄m + n
2/3)

2 <
√

µ̄m

∞

∑
n=1

4

(µ̄m + n
2/3)

2

<
√

µ̄m

∫ ∞

0

4 dx

(µ̄m + x
2/3)

2 =
√

µ̄m
3π√
µ̄m

= 3π.

(21)

The comparison of the series with an integral takes the place of the
inequality

∫
ΩG

2dx ≤
∫
R 3g

2dx or of Xie’s conjecture. Nothing is learned
about the c̄n or µ̄m , and the optmality of the constant 3π is not proven.
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Theorem 2. In the preceeding proof, µ̄m → ∞ as m→ ∞.

Proof: Since Rm (c1, · · ·, cm) is constant on lines through the origin, its
maxima (c̄1, c̄2, · · ·, c̄m) can be chosen to satisfy the constraint
∑m
n=1 c̄n = 1. Assuming that is done, the problem of maximizing Rm

subject to this constraint (that its numerator should equal one) is
equivalent to that of minimizing its denominator (or the square of its
denominator) subject to this constraint. Thus the maximizing critical
points in the ‘normalized’proof are points where

f (c1, · · ·, cm) ≡
(

m
∑
n=1

n2/3c2n

)(
m
∑
n=1

n4/3c2n

)
(22)

is minimized subject to the constraint

g (c1, · · ·, cm) ≡ ∑m
n=1 cn = 1. (23)

The maximizing critical points can be found by the method of Lagrange
multipliers. The proof is line for line like that we developed trying to prove
µ̄m → ∞ as m→ ∞ in Xie’s arguments for the Laplacian and Stokes
operator. Since we didn’t give the details in that context we will now.
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Lemma 1. In the ‘normalized’proof of Theorem 1, the maximizing
coeffi cients c̄n satisfy the equations (25) below.

Proof: If (c̄1, c̄2, · · ·, c̄m) minimizes
(

m
∑
n=1

n2/3c2n

)(
m
∑
n=1

n4/3c2n

)
subject

to the constraint
m
∑
n=1

cn = 1, there exists a Lagrange multiplier λ such that

2c̄nn2/3Bm + 2c̄nn4/3Am = λ , for n = 1, · · ·,m, (24)

where
Am =

m
∑
n=1

n2/3 c̄2n , Bm =
m
∑
n=1

n4/3 c̄2n .

Multiplying (24) by c̄n , summing, and using the constraint gives

4AmBm = λ.

Substituting this value for λ into (24) gives

c̄n =
2AmBm

n2/3Bm + n4/3Am
, for n = 1, · · ·,m. (25)
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Lemma 2. µ̄m ≡ Bm/Am is a root of the equation

fm (µ) ≡
m

∑
n=1

1

(µ+ n2/3)
2

[ µ

n2/3 − 1
]
= 0 . (26)

Proof. Square (25), multiply by n2/3, and sum to obtain

Am = 4A2mB
2
m

m

∑
n=1

n2/3

(n2/3Bm + n4/3Am)
2

= 4AmBm
m

∑
n=1

1

(µ̄m + n
2/3)

2

(
µ̄m
n2/3

)
.

(27)

Similarly, square (25), multiply by n4/3, and sum to obtain

Bm = 4A2mB
2
m

m

∑
n=1

n4/3

(n2/3Bm + n4/3Am)
2

= 4B2m
m

∑
n=1

1

(µ̄m + n
2/3)

2 .

(28)

Finally, multiply (28) by Am/Bm and subtract from (27) to obtain (26)
with µ̄m in place of µ.
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So µ = µ̄m is a root of

fm (µ) ≡
m

∑
n=1

1

(µ+ n2/3)
2

[ µ

n2/3 − 1
]
= 0 .

Lemma 3. Since fm (µ) < 0 for µ < 1, and fm (µ) > 0 for µ > m2/3, all
roots of fm (µ) = 0 lie in the interval

[
1,m2/3] . Furthermore, the

convergence

fm (µ)→ f∞ (µ) ≡
∞

∑
n=1

1

(µ+ n2/3)
2

[ µ

n2/3 − 1
]

(29)

is uniform for µ in any bounded subinterval of [0,∞) .

Proof: These claims are obvious.

Lemma 4. f∞ (µ) < 0 for all µ ∈ [0,∞) .
Proof: Obviously, f∞ (µ) < 0 for µ ∈ [0, 1] . For every µ > 0, we can
compare f∞ (µ) with the integral

fint (µ) ≡
∫ ∞

0

1

(µ+ x2/3)
2

[ µ

x2/3 − 1
]
dx . (30)
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Remarkably, for all µ > 0, the integral in x ,

fint (µ) ≡
∫ ∞

0

1

(µ+ x2/3)
2

[ µ

x2/3 − 1
]
dx

=
[
3 x 5/3

µ3+x 2 − 3µ x
µ3+x 2 + 3µ2 x 1/3

µ3+x 2

]∞

0
= 0 .

The series f∞ (µ) < fint (µ) for all µ > 1, but the proof is a bit tedious
because the integrand is not monotonically decreasing in x . It decreases
monotonically from +∞ to a negative value of

(
17
√
17− 71

)
/16µ2 at

x = 1
8µ3/2

(√
17+ 3

)3/2
, and then increases monotonically toward 0 as

x → ∞. Fortunately, the integral over (0, 1] exceeds the first term of the
series by an amount that dominates the comparison.

We can now complete the proof of Theorem 2. Since the sequence of
functions fm (µ) is uniformly convergent to the negative function f∞ (µ) on
every bounded subinterval of [0,∞) , the roots of fm (µ) = 0 are pushed
out further and further to the right as m increases. Thus µ̄m → ∞, as
m→ ∞.
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Next we seek conditions on a given sequence {an} that will ensure(
∞
∑
n=1

ancn

)2
≤ 3π

(
∞
∑
n=1

n2/3c2n

)1/2 ( ∞
∑
n=1

n4/3c2n

)1/2

for every other sequence {cn} . Simply following the proof of Theorem 1,
in which every an = 1, we find at the end that it suffi ces to asume

lim sup
µ→∞

∞

∑
n=1

4a2n
(µ3/4 + µ−1/4n2/3)

2 ≤ 3π , (31)

along with an assumption replacing Lemma 4, to ensure that µ̄m → ∞ as
m→ ∞. We interpret the sum in (31) as a weighted average, noting that∫ ∞

0

4 dx

(µ3/4 + µ−1/4x2/3)
2 = 3π , for all µ > 0, (32)

and that the integrand is a decreasing function of x , which becomes
smaller and more nearly constant over ever longer intervals of x , as
µ→ ∞. The assumption replacing Lemma 4 is that

f∞ (µ) ≡
∞

∑
n=1

a2n
(µ+ n2/3)

2

[ µ

n2/3 − 1
]
< 0, for all µ ∈ [0,∞) .
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Theorem 3. Let a1, a2, · · · be a sequence of real numbers satisfying (34)
and (35) below. Then, for any other sequence c1, c2, · · ·, one has(

∞
∑
n=1

ancn

)2
≤ 3π

(
∞
∑
n=1

n2/3c2n

)1/2 ( ∞
∑
n=1

n4/3c2n

)1/2

. (33)

The first assumption about {an} is that large averages of the numbers{
a2n
}
tend to values less than or equal to 1, in the sense that

lim sup
µ→∞

∞

∑
n=1

4a2n
(µ3/4 + µ−1/4n2/3)

2 ≤ 3π . (34)

The second hypothesis is that the ‘first terms’of the sequence {an} ,
which are weighted positively, i.e., those for n < µ3/2, should not be too
large relative to the ‘later terms’, which are weighted negatively, in the
sense that

f∞ (µ) ≡
∞

∑
n=1

a2n
(µ+ n2/3)

2

[ µ

n2/3 − 1
]
< 0, for all µ ∈ [0,∞) . (35)

Note that (35) is a test to be satisfied for every ‘dividing point’µ3/2 ≥ 0.
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Proof: We begin the proof as we did Theorem 1, following Xie’s argument
for the Laplacian line by line. For fixed m, let (c̄1, c̄2, · · ·, c̄m) maximize

Rm ≡

(
m
∑
n=1

ancn

)2
(

m
∑
n=1

n2/3c2n

)1/2 ( m
∑
n=1

n4/3c2n

)1/2 ,

etc., etc., etc.. In the end, without yet using our hypotheses, we find that

R̄m =
√

µ̄m

m

∑
n=1

4a2n
(µ̄m + n

2/3)
2

≤
∞

∑
n=1

4a2n(
µ̄3/4
m + µ̄−1/4

m n2/3
)2 ≡ Bm .

(36)

Thus, {R̄m} is an increasing sequence of numbers bounded by another
sequence {Bm} . Our hypothesis (34) is that lim supm→∞ Bm ≤ 3π
provided µ̄m → ∞ as m→ ∞. It therefore follows that R̄m ≤ 3π for all m,
if µ̄m → ∞ as m→ ∞. We will show this now using our hypothesis (35).
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Lemma 5. µ̄m → ∞ as m→ ∞ in the proof of Theorem 3.

Proof: (similarly to Theorem 2 and its lemmas 1,2,3,4). Since
Rm (c1, · · ·, cm) is constant on lines through the origin, its maxima
(c̄1, c̄2, · · ·, c̄m) can be ‘normalized’to satisfy the constraint

m
∑
n=1

ancn = 1,

that its numerator should equal 1, while the square of its denominator(
m
∑
n=1

n2/3c2n

)(
m
∑
n=1

n4/3c2n

)
is minimized. The normalized critical points

are shown by the method of Lagrange multipliers to satisfy

c̄n =
2anAmBm

n2/3Bm + n4/3Am
, for n = 1, · · ·,m, (37)

and then, continuing as before, µ̄m is shown to be a root of the equation

fm (µ) ≡
m

∑
n=1

a2n
(µ+ n2/3)

2

[ µ

n2/3 − 1
]
= 0 .

Such roots are ‘pushed’to ∞ using our hypothesis (35) that

f∞ (µ) ≡
∞

∑
n=1

a2n
(µ+ n2/3)

2

[ µ

n2/3 − 1
]
< 0, for all µ ∈ [0,∞) .
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Let us try to prove, as a corollary of Theorem 3, that a Fourier sine
series f (y) = ∑∞

n=1 cn sin ny satisfies the inequality

sup
(−π,π)

|f |2 ≤ 3
2

∥∥∥f (1/3)
∥∥∥
L2(−π,π)

∥∥∥f (2/3)
∥∥∥
L2(−π,π)

. (38)

To that end, consider a fixed value of y ∈ (−π,π) , and let an = sin ny .
We need to verify two hypotheses. Note that the proposed constant is half
of what it was for a cosine series. Consequently the limit in the first
hypothesis, (34), must be reduced by half. For the proof of the following
lemma I am greatful to my colleague, Professor John Fournier.

Lemma 6. For every nonzero y ∈ (−π,π) ,
∞

∑
n=1

4 sin2 ny

(µ3/4 + µ−1/4n2/3)
2 →

3π

2
, as µ→ ∞. (39)

Proof: Using the identity sin2 θ = 1
2 −

1
2 cos 2θ, one has

√
µ

∞

∑
n=1

sin2 ny

(µ+ n2/3)
2 =

√
µ

2

∞

∑
n=1

1

(µ+ n2/3)
2 −
√

µ

2

∞

∑
n=1

cos 2ny

(µ+ n2/3)
2 .

(40)
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The first sum on the right tends to 3π/8 as µ→ ∞, since
√

µ

2

∫ ∞

0

dx

(µ+ x2/3)
2 =

3π

8
, for all µ > 0,

and

0 <
∫ ∞

0

dx

(µ+ x2/3)
2 −

∞

∑
n=1

1

(µ+ n2/3)
2 <

1
2µ2

.

The second term on the right of (40) tends to zero as µ→ ∞, for every
nonzero y ∈ (−π,π) . To show this, let z = e i2y , so that zn = e i2ny and
Re zn = cos 2ny . Then

√
µ

∞

∑
n=1

cos 2ny

(µ+ n2/3)
2 = Re

√
µ

∞

∑
n=1

zn

(µ+ n2/3)
2 ,

and it will suffi ce to show that

√
µ (1− z)

∞

∑
n=1

zn

(µ+ n2/3)
2 → 0 , as µ→ ∞, (41)

for all z ∈ C satisfying |z | = 1 and z 6= 1. To this end,
(Institute) Japanese-German Workshop, November 2013 November 5-8, 2013 50 / 69



let cn (µ) ≡
√

µ

(µ+ n2/3)
2 . Then

√
µ (1− z)

∞

∑
n=1

zn

(µ+ n2/3)
2 =

= (1− z)
(
c1z1 + c2z2 + c3z3 + c4z4 + · · ·

)
= c1z1 +

[
(c2 − c1) z2 + (c3 − c2) z3 + (c4 − c3) z4 + · · ·

]
.

Since cn+1 (µ)− cn (µ) < 0 and |z | = 1,∣∣∣∣∣√µ (1− z)
∞

∑
n=1

zn

(µ+ n2/3)
2

∣∣∣∣∣ ≤
≤ |c1 (µ)|

∣∣z1∣∣+ |c2 (µ)− c1 (µ)| ∣∣z2∣∣+ |c3 (µ)− c2 (µ)| ∣∣z3∣∣+ · · ·
= c1 (µ) + (c1 (µ)− c2 (µ)) + (c2 (µ)− c3 (µ)) + · · ·
= 2c1 (µ)→ 0 , as µ→ ∞.

Thus the second term on the right of (40) tends to zero as µ→ ∞,
completing the proof of Lemma 6.
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The second hypothesis to be checked is that, for every fixed nonzero
point y ∈ (−π,π) , the early terms in the sequence

{
sin2 ny

}
do not

dominate later ones, in the sense that

f∞ (µ, y) ≡
∞

∑
n=1

sin2 ny

(µ+ n2/3)
2

[ µ

n2/3 − 1
]
< 0, for all µ ∈ [0,∞) . (42)

It is the analogue of this hypothesis that remains to be verified in the pde
context, and which is the principal motivation for this study.

It may be insightful and easier to first consider the corresponding integral,
and to try to show that∫ ∞

0

sin2 xy

(µ+ x2/3)
2

[ µ

x2/3 − 1
]
dx < 0, for all µ ∈ [0,∞) . (43)

At this time we haven’t a proof of either (43) or (42), but there is
strong numerical evidence and good intuitive reasoning to support them.
Of course, a proof of (42) will complete the proof of (38) for a sine series.
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How widely can Xie’s method be applied? What happens if one varies
the powers of n, say to n1/2 and n3/2, and tries to prove(

∞
∑
n=1

cn

)2
≤ c

(
∞
∑
n=1

n1/2c2n

)1/2 ( ∞
∑
n=1

n3/2c2n

)1/2

??? (44)

Can Xie’s argument be used to prove Hölder’s inequality for two sequences
{an} and {bn} , and p and q satisfying 1

p +
1
q = 1,

∞
∑
n=1

anbn ≤
(

∞
∑
n=1

apn

)1/p ( ∞
∑
n=1

bqn

)1/q

??? (45)

In fact, one gets a simple proof of (45): Regard the numbers a1, a2, · · ·
as given and fixed, while the numbers b1, b2, · · · are varied. Let

Rm (b1, b2, · · ·, bm) ≡

m
∑
n=1

anbn(
m
∑
n=1

bqn

)1/q . (46)

Since R is constant along rays emanating from the origin, it attains its
maximum at points where it is smooth. At such a point

(
b̃1, b̃2, · · ·, b̃m

)
,
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and for k = 1, · · ·,m one has

0 =
∂

∂bk
logRm =

∂

∂bk
log

m
∑
n=1

anbn −
∂

∂bk

1
q
log

m
∑
n=1

bqn

=
ak

∞
∑
n=1

anbn
− bq−1k

∞
∑
n=1

bqn
for k = 1, 2, · · ·,

(47)

and hence
ak

m
∑
n=1

b̃qn = b̃
q−1
k

m
∑
n=1

an b̃n . (48)

Taking the pth power of this, noting that (q − 1) p = q, and summing
over k gives

m
∑
k=1

apk

(
m
∑
n=1

b̃qn

)p
=

∞
∑
k=1

b̃qk

(
m
∑
n=1

an b̃n

)p
. (49)

Finally, taking the pth root of this, one finds that (45) holds with equality
for any choice of (b1, b2, · · ·, bm) that maximizes Rm . This completes the
proof.
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Reference (for the third lecture)

J. G. Heywood, Seeking a proof of Xie’s inequality: analogues for series
and Fourier series, preprint which will be submitted for publication in the
Ferrara Univ. Math. journal volume in honour of M. Padula (2013), 20
pages.
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Fourth Lecture: Xie’s Potential Theoretic Arguments

Using potential theoretic methods, Xie reproved

sup
Ω
|u|2 ≤ 1

2π ‖∇u‖ ‖4u‖ Poisson problem

for any open Ω ⊂ R3, and finally, at least for Ω = R3, proved

sup
R 3
|u|2 ≤ 1

3π ‖∇u‖
∥∥∥4̃u∥∥∥ Stokes problem.

He also obtained two-dimensional results, proving

sup
Ω
|u|2 ≤ 1

2π

(
‖u‖ ‖4u‖+ ‖∇u‖2

)
Poisson problem

for any open Ω ⊂ R2, and for the special domain Ω = R2

sup
R 3
|u|2 ≤ 1

4π

(
‖u‖

∥∥∥4̃u∥∥∥+ ‖∇u‖2) Stokes problem.
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Theorem (Xie 1995) For any open Ω ⊂ R3 and every u ∈ Ĥ10 (Ω) with
4u ∈ L2 (Ω) ,

sup
Ω
|u|2 ≤ 1

2π
‖∇u‖ ‖4u‖ . (50)

The constant is optimal for any domain and equality holds if and only if

Ω = R3 and u (x) = c
1− e−

√
µ|x−y |

|x − y | , (51)

for some y ∈ R3, µ > 0 and c ∈ R.

Theorem (Xie 1996) For Ω = R3, and u ∈ J0 (Ω) with 4̃u ∈ J (Ω) ,

sup
R 3
|u|2 ≤ 1

3π
‖∇u‖

∥∥∥4̃u∥∥∥ . (52)

Equality holds if and only if

u (x) = (4−∇∇·)
(
e−
√

µ|x−y | − 1
µ |x − y | − |x − y |

2

)
c, (53)

for some y ∈ R3, µ > 0 and vector c ∈ R3.
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Proof for the Laplacian in a smoothly bounded domain Ω ⊂ R3.
As before, y will be an arbitrary fixed point of Ω. And, of course, the
fundamental singularity for the Helmholtz operator −4+µ is

gµ (x ; y) =
e−
√

µ|x−y |

4π |x − y | , (54)

and satisfies∫
R 3
g2µ (x ; y) dx =

∫ ∞

0

(
e−
√

µr

4πr

)2
4πr2 dr =

1
8π
√

µ
.

The corresponding Green’s function Gµ (x , y) for Ω was seen to satisfy

0 < Gµ (x ; y) < gµ (x ; y) (55)

by the maximum principle, and therefore∥∥Gµ (·; y)
∥∥2 < 1

8π
√

µ
, (56)

with
∥∥Gµ (·; y)

∥∥2 → 1
8π
√

µ
, as dist (y , ∂Ω)→ ∞.
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Lemma 1. One has∥∥∇ (G0 − Gµ

)∥∥2 < ∫
Ω

µgµ

(
g0 − gµ

)
dx =

√
µ

8π
, (57)

with the inequality approaching equality as dist (y , ∂Ω)→ ∞.

Proof: We have reasoned that G0 (·; y)− Gµ (·; y) ∈ H2loc (Ω) and thus
−4

(
G0 − Gµ

)
= µGµ , and G0 − Gµ

∣∣
∂Ω = 0 , (58)

justifying the representation

G0 (x ; y)− Gµ (x ; y) = µ
∫

Ω
G0 (z ; x)Gµ (z ; y) dz . (59)

Similarly, if Ω = R3,

g0 (x ; y)− gµ (x ; y) = µ
∫
R 3
g0 (z ; x) gµ (z ; y) dz . (60)

By the maximum principle, the right side of (60) exceeds that of (59), and
therefore the left sides are in the same relation,

0 ≤ G0 (x ; y)− Gµ (x ; y) < g0 (x ; y)− gµ (x ; y) . (61)
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Lemma 1 is completed by integrating by parts and using (58) and (61):∥∥∇ (G0 − Gµ

)∥∥2 = −
∫

Ω
4
(
G0 − Gµ

) (
G0 − Gµ

)
dx

=
∫

Ω
µGµ

(
G0 − Gµ

)
dx using (58)

<
∫
R 3

µgµ

(
g0 − gµ

)
dx using (61)

=
∫ ∞

0
µ
e−
√

µr

4πr
1− e−

√
µr

4πr
4πr2dr =

√
µ

8π
.

Proceeding now, we are assuming Ω is bounded and ∂Ω is smooth. So by
elliptic regularity our given function u ∈ Ĥ10 (Ω) with 4u ∈ L2 (Ω)
belongs to H10 (Ω) ∩H2 (Ω) and by the Poisson formula we have

u (y) = −
∫

Ω
G04 u dx

= −
∫

Ω
Gµ4 u dx −

∫
Ω

(
G0 − Gµ

)
4 u dx

= −
∫

Ω
Gµ4 u dx −

∫
Ω
∇
(
G0 − Gµ

)
· ∇u dx .
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Writing this last line again, we have

u (y) = −
∫

Ω
Gµ4 u dx −

∫
Ω
∇
(
G0 − Gµ

)
· ∇u dx , (62)

and can apply the Schwarz inequality to obtain

|u (y)| ≤
∥∥Gµ

∥∥ ‖4u‖+ ∥∥∇ (G0 − Gµ

)∥∥ ‖∇u‖ . (63)

Then, remembering our estimates (56) and (57) for
∥∥Gµ

∥∥ and∥∥∇ (G0 − Gµ

)∥∥ , we have
|u (y)| ≤

√
1

8π
√

µ
‖4u‖+

√√
µ

8π
‖∇u‖ . (64)

The minimum with respect to µ occurs when µ = ‖4u‖2 / ‖∇u‖2 .
Substituting that value of µ into (64) gives

|u (y)| ≤ 1√
2π
‖∇u‖1/2 ‖4u‖1/2 , (65)

proving, for smoothly bounded domains, the inequality (50) claimed in the
theorem. We pass from such domains to arbitrary open sets as before.
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It remains to prove the uniqueness of the maximizing functions claimed in
line (51) of the theorem. Equality is approached in (65) only by
approaching equality in (64). That requires, first of all, that the Green’s
functions G0 and Gµ must approach g0 and gµ, in order that

∥∥Gµ

∥∥ and∥∥∇ (G0 − Gµ

)∥∥ will approach their limits √ 1
8π
√

µ and
√√

µ

8π . But then,

further, in order for the application of the Schwarz inequality to be sharp,
in its application above to

u (y) = −
∫

Ω
Gµ4 u dx −

∫
Ω
∇
(
G0 − Gµ

)
· ∇u dx ,

it is necessary that

−4 u = c1Gµ = c1gµ and ∇u = c2∇
(
G0 − Gµ

)
= c2∇

(
g0 − gµ

)
.

One need only consider the second of these to conclude that
u = c

(
g0 − gµ

)
, since both u and g0 − gµ belong to Ĥ10 (Ω) . That

completes the proof of the Theorem.
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Proof for the Stokes operator in R3.

We begin by finding the Green’s function for the generalized Stokes
problem. Remember that in R3 the fundamental solution gµ (x , y) for the
Helmholtz equation

(−4+µ) gµ = δ (x , y)

is, setting r = |x − y | ,

gµ =
e−
√

µr

4πr
, µ ≥ 0 , (66)

and for µ > 0, ∥∥gµ

∥∥2 = 1
8π
√

µ
(67)

Now let

Φµ =


gµ − g0

µ
, µ > 0

r
8π

, µ = 0 .
(68)

It satisfies
4Φµ = gµ . (69)
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Let ek be the unit vector in the xk direction, 1 ≤ k ≤ 3. And let
Uµ = (4−∇∇·)Φµek

Pµ = (−4+µ)∇∇ ·Φµek ??
(70)

It is "easy" to verify that they are the fundamental solution of the
generalized Stokes system

(−4+µ)Uµ +∇Pµ = δ (x , y) ek

∇ ·Uµ = 0.

We won’t need them, but the explicit three-dimensional expressions for Uµ

and Pµ are

Uµ =
1
4πr

(
a
(√

µr
)
ek + b

(√
µr
) rk r
r2

)
Pµ = − rk

4πr3
,

where

a (s) =
1+ s + s2 − es

s2es
and b (s) =

3es − 3− 3s − s2
s2es

.
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Lemma. If µ > 0, ∥∥Uµ

∥∥2 = 1
12π
√

µ
(71)

and ∥∥∇ (Uµ −U0
)∥∥2 = √µ

12π
. (72)

Proof: Let (·, ·) denote the L2 inner product. From (70) we have

∥∥Uµ

∥∥2 =

∥∥∥∥4Φµek −∇
∂

∂xk
Φµ

∥∥∥∥2
=
∥∥4Φµ

∥∥2 − 2(4Φµ ,
∂2

∂x2k
Φµ

)
+

∥∥∥∥∇ ∂

∂xk
Φµ

∥∥∥∥2
=
∥∥4Φµ

∥∥2 −(4Φµ ,
∂2

∂x2k
Φµ

)
,

and hence, since
∥∥Uµ

∥∥ is independent of k,
3
∥∥Uµ

∥∥2 = (3− 1) ∥∥4Φµ

∥∥2 .
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Therefore, by (69), ∥∥Uµ

∥∥2 = (3− 1)
3

∥∥gµ

∥∥2 ,
which together with (67) implies (71). By a similar argument,∥∥∇ (Uµ −U0

)∥∥2 = 2
3

∥∥∇ (gµ − g0
)∥∥2 .

Thus we obtain (72) since∥∥∇ (gµ − g0
)∥∥2 = − (gµ − g0 , 4

(
gµ − g0

))
=
(
gµ − g0 , µgµ

)
=

√
µ

8π
.

The last step here is by straightforward integration. This completes the
proof of the lemma.

Proof of the theorem: Similarly to (62) we obtain the representation
formula

uk (y) =
(
U0 , −4̃u

)
=
(
Uµ −U0 , 4̃u

)
−
(
Uµ , 4̃u

)
= −

(
∇
(
Uµ −U0

)
,∇u

)
−
(
Uµ , 4̃u

)
.
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Repeating the last line,

uk (y) = −
(
∇
(
Uµ −U0

)
,∇u

)
−
(
Uµ , 4̃u

)
,

and we can apply the Schwarz inequality to obtain

|uk (y)| ≤
∥∥∇ (Uµ −U0

)∥∥ ‖∇u‖+ ∥∥Uµ

∥∥ ∥∥∥4̃u∥∥∥ .
Then, remembering our estimates (71) and (72) for

∥∥Uµ

∥∥2 and∥∥∇ (Uµ −U0
)∥∥2, we have
|uk (y)| ≤=

√√
µ

12π
‖∇u‖+

√
1

12π
√

µ

∥∥∥4̃u∥∥∥ . (73)

The minimum with respect to µ occurs when

µ =
∥∥∥4̃u∥∥∥2 / ‖∇u‖2 . (74)

Substituting that value of µ into (73) finally proves the inequality (52).

|uk (y)| ≤
1√
3π
‖∇u‖1/2

∥∥∥4̃u∥∥∥1/2
, (75)
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It remains to prove the uniqueness of the optimizing functions (53). The
Schwarz inequality for the first integral achieves equality if and only if

u = c
(
Uµ −U0

)
(76)

for some constant c. Suppose u is given in the form of (76) with an
arbitrary µ > 0. Then we have

4̃u = cµUµ ,

so that the Schwarz inequality for the second integral also becomes an
equality. Furthermore, (74) is satisfied since by (71) and (72)∥∥∥4̃u∥∥∥2

‖∇u‖2
=

∥∥µUµ

∥∥2∥∥∇Uµ −∇U0
∥∥2 = µ2 1

12π
√

µ
√

µ

12π

= µ .

Therefore equality is indeed achieved by functions in the form (76), or
(53), in view of the formulas (70),(68) and (66).
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References (for the fourth lecture):

W. Xie, Integral representations and L∞ bounds for solutions of the
Helmholtz equation on arbitrary open sets in R2 and R3, Diff. and Int.
Eq., 8 (1995), 689-698.

W. Xie, Sharp Sobolev interpolation inequalities for the Stokes operator,
Diff. and Int. Eq., 10 (1997), 393-399.
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