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Fine properties of Sobolev functions

Speaking about functions w from Sobolev spaces we always
assume that we have chosen the precise representative of w. If
v ∈ L1

loc(Ω), then the precise representative w∗ is defined by

w∗(x) = lim
r→0

1
mes(Br(x))

∫
Br(x)

w(z)dz

if the the limit exists, and w∗(x) = 0 otherwise.
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Fine properties of Sobolev functions

Theorem A. Let Ω ⊂ R2 be a bounded domain with a Lipschitz
boundary, w ∈ W1,1(Ω). Then there exists a set Aw ⊂ Ω such
that
H1(Aw) = 0 and
(i)

lim
r→0

∫
−

Br(x)
w(z)dz = w∗(x)

exists for each x ∈ Ω \ Aw.
(ii) for each x ∈ Ω \ Aw

lim
r→0

∫
−

Br(x)
|w(z)− w(x)|2dz = 0;

(iii) for all ε > 0 there exists a set U ⊂ R2 such that H1
∞(U) < ε,

Aw ⊂ U and the function w is continuous in Ω \ U.
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Fine properties of Sobolev functions

Theorem B. ( J. Bourgain, M.V. Korobkov, J. Kristensen, 2013)
Let Ω ⊂ R2 be a bounded domain with a Lipschitz boundary,
w ∈ W2,1(Ω). Then
(i) for every ε > 0 there exists an open set V ⊂ R and a function
g ∈ C1(R2) such that H1(V) < ε, and for w(x) ∈ R \ V the
function w is differentiable in the point x and w(x) = g(x),
∇w(x) = ∇g(x) 6= 0;
(ii) for every ε > 0 there exists δ > 0 such that for any set
U ⊂ Ω with H1

∞(U) < δ holds H1(w(U)) < ε.

H1(F) = lim
t→0+

H1
t (F),

where H1
t (F) = inf{

∞∑
i=1

diamFi : diamFi ≤ t,F ⊂
∞⋃

i=1
Fi}.
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Level sets of functions in R2. Kronrod’s graph

Let Q = (−a, a)× (−a, a) and let f be a continuous function
defined in Q. Denote by Et a level set of the function f , i.e.

Et = {x ∈ Q : f (x) = t}.
A component K of the level set Et containing a point x0 is a
maximal connected subset of Et containing x0. A component K
of the level set Et is called regular, if it divides the quadrate Q
into two parts.
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Level sets of functions in R2. Kronrod’s graph

Theorem C. (Kronrod, 1950) Let f be a continuous function
defined in Q. Then there is at most a countable number of
nonregular components of level sets f−1(f (Q)).

Kronrod’s graph. To any continuous on Q function f
corresponds a family Tf of all connected components of its level
sets Et. Tf is a topological space (equipped with a natural
topology). This definition induces a natural map

τf : Q→ Tf : τf (x) = Kx ∀x ∈ Q,

where Kx is a connected component of the level set Ef (x)

containing the point x (K is considered as a point in Tf ). The
map τf is continuous.
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Level sets of functions in R2. Kronrod’s graph

Theorem D (A. Kronrod) Let f be a continuous function defined
in Q. Then
(1) Tf is one–dimensional tree consisting from the set of
endpoints plus at most a countable number of simple arcs that
mutually intersect at most in one point which is a bifurcation
point.
(2) Non-regular components of level sets can be classified on
the tree Tf as follows:
(a) if K divides Q into n ≥ 3 connected parts, then on Tf to K
corresponds a bifurcation point of the same multiplicity n, and
vice versa;
(b) if K does not divide Q, then the corresponding point on Tf
belongs to the set of endpoints, and vice versa.
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Level sets of functions in R2. Kronrod’s graph
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Level sets of functions in R2. Kronrod’s graph

A set is called an arc if it is homeomorphic to the unit
interval [0, 1].

Lemma1. If f ∈ C(Q), then for any two different points A ∈ Tf
and B ∈ Tf , there exists a unique arc J = J(A,B) ⊂ Tf joining A
to B. Moreover, for every inner point C of this arc the points A,B
lie in different connected components of the set Tf \ {C}.

We can reformulate the above Lemma in the following
equivalent form.
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Level sets of functions in R2. Kronrod’s graph

Lemma 2. If f ∈ C(Q), then for any two different points
A,B ∈ Tf , there exists an injective function ϕ : [0, 1]→ Tf with
the properties
(i) ϕ(0) = A, ϕ(1) = B;
(ii) for any t0 ∈ [0, 1],

lim
[0,1]3t→t0

sup
x∈ϕ(t)

(x, ϕ(t0))→ 0;

(iii) for any t ∈ (0, 1) the sets A,B lie in different connected
components of the set Q \ ϕ(t).
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Level sets of functions in R2. Morse-Sard theorem.

Theorem. Let Ω ⊂ R2 be a bounded domain with Lipschitz
boundary. If ψ ∈ W2,1(Ω), then for H1–almost all y ∈ ψ(Ω) ⊂ R
the preimage ψ−1(y) is a finite disjoint family of C1-curves Sj,
j = 1, 2, . . . ,N(y). Each Sj is either a cycle in Ω (i.e., Sj ⊂ Ω is
homeomorphic to the unit circle S1) or a simple arc with
endpoints on ∂Ω (in this case Sj is transversal to ∂Ω ).

This theorem is proved by J. Bourgain, M.V. Korobkov and J.
Kristensen: On the Morse–Sard property and level sets of
Sobolev and BV functions, Rev. Mat. Iberoam. 29, no. 1 (2013),
1–23.
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Level sets of functions in R2. Morse-Sard theorem.

All results remain valid for level sets of continuous functions
f : Ω→ R, where Ω is a multi–connected bounded domain,
provided f ≡ ξj = on each inner boundary component Sj with
j = 1, . . . ,N.

Indeed, we can extend f to the whole Ω0 by putting f (x) = ξj for
x ∈ Ωj, j = 1, . . . ,N. The extended function f will be continuous
on the set Ω0 which is homeomorphic to the unit square
Q = [0, 1]2.
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Properties of solutions to Euler equations

(
v · ∇

)
v +∇p = 0, (E)

divv = 0.

v ∈ H(Ω), p ∈ W1
s (Ω), s ∈ [1, 2)

We already know that that if v = 0 on ∂Ω (in the sense of
trace), then the pressure p(x) is constant on ∂Ω and p(x) could
take different constant values pj = p(x)

∣∣
Sj

on different connected
components Sj of the boundary ∂Ω.
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Properties of solutions to Euler equations

Some facts from harmonic analysis.

The Hardy space H1(R2) consists of distributions f such that for
some function Φ with

∫
Φ = 1 the maximal function

(MΦf )(x) = sup
t>0
|f ? (Φt)(x)|

is in L1(R2), where Φt(x) = t−2Φ(x/t), ‖f‖H1(R2) = ‖MΦf‖L1(R2).

H1(R2) ⊂ L1(R2).
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Properties of solutions to Euler equations

Lemma H1. Let f ∈ H1(R2) and let

J(x) =

∫
R2

log |x− y| f (y) dy.

Then
(i) J ∈ C(R2);
(ii) ∇J ∈ L2(R2), DαJ ∈ L1(R2), |α| = 2.

Lemma H2. Let w ∈ W1,2(R2) and divw = 0. Then

div
[(

w · ∇
)
w
]

=

2∑
i,j=1

∂wi

∂xj

∂wj

∂xi
∈ H1(R2).

Lemma 2 follows from div-curl lemma with two cancelations.
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Theorem (continuity of the pressure). Let Ω ⊂ R2 be a
bounded domain with a Lipschitz boundary. Let (v, p) satisfy
the Euler equations for almost all x ∈ Ω, v ∈ W̊1,2(Ω),
p ∈ W1,s(Ω), s ∈ [1, 2). Then

p ∈ C(Ω) ∩W1,2(Ω).

Proof. Multiply (E) by ϕ = ∇ξ, where ξ ∈ C∞0 (Ω):∫
Ω
∇p · ∇ξ dx = −

∫
Ω

(
v · ∇

)
v · ∇ξ dx ∀ξ ∈ C∞0 (Ω).

Thus, p ∈ W1,s(Ω) is the unique weak solution of the boundary
value problem for the Poisson problem:

−∆p = div
[(

v · ∇
)
v
]
, p(x)|Si = pi, i = 1, . . . ,N.
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We have div
[(

v · ∇
)
v
]
∈ H1(R2). Define

J1(x) = − 1
2π

∫
R2

log |x− y| divy
[(

u(y) · ∇y
)
u(y)

]
dy.

Then J1 ∈ C(R2), ∇J1 ∈ L2(R2), DαJ1 ∈ L1(R2), |α| = 2.
Let J2(x) = p(x)− J1(x):

−∆J2 = 0, J2
∣∣
∂Ω

= j2 − j1,

where j1(x) = J1(x)
∣∣
∂Ω

, j2(x)|Si ≡ pi.

j1 ∈ W1/2
2 (∂Ω) ∩ C(∂Ω), j2 ∈ C(∂Ω) and j2 could be extended to

Ω as a function from W1
2 (Ω). Thus, there exists solution

J2 ∈ W1
2 (Ω) such that J2 ∈ C(Ω). By uniqueness

p(x) = J1(x) + J2(x). Hence, p ∈ C(Ω) ∩W1
2 (Ω). �
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Properties of solutions to Euler equations

Assume that v ∈ W1,2(Ω) and p ∈ W1,s(Ω), s ∈ [1, 2), satisfy the
Euler equations(

v · ∇
)
v +∇p = 0, divv = 0 for almost all x ∈ Ω (E)

and let
∫

Si
v · n dS = 0, i = 1, 2, . . . ,N, where Si are connected

components of the boundary ∂Ω. Then there exists a
continuous stream function ψ ∈ W2,2(Ω) such that

∇ψ = (−v2, v1). Denote Φ = p +
|v|2

2
the total head pressure.

Then Φ ∈ W1,s(Ω) for all s ∈ [1, 2). By direct calculations we get

∇Φ ≡
(∂v2

∂x1
− ∂v1

∂x2

)(
v2,−v1

)
= (∆ψ)∇ψ.

If all functions are smooth, from this formula the classical
Bernoulli law follows immediately:
The total head pressure Φ(x) is constant along any streamline
of the flow.
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Properties of solutions to Euler equations. Bernoulli
law (M.Korobkov)

Theorem (Bernoulli law). Let Ω ⊂ R2 be a bounded multiply
connected domain with a Lipschitz boundary ∂Ω = ∪N

i=1Si. Let
u ∈ W1,2(Ω) and p ∈ W1,s(Ω) satisfy Euler equations (E) for
almost all x ∈ Ω and let

∫
Si

u · ndS = 0, i = 1, . . . ,N. Then for
any connected set K ⊂ Ω such that

ψ
∣∣
K = const,

the identity
Φ(x) = const

holds H1-almost everywhere on K.

In particular, it follows that if u = 0 on ∂Ω, then the pressure
p(x) is constant on ∂Ω, i.e. p(x)

∣∣
Sj

= pj.
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Proof. Let ψ ∈ W2,2(Ω) be a stream function.

(i) Fix any ε > 0 and consider a function g ∈ C1(R2) and an
open set V ⊂ R with H1(V) < ε such that ψ(x) = g(x) and
∇ψ(x) = ∇g(x) 6= 0 for any x ∈ F = Ω \ ψ−1(V). For almost all
y ∈ ψ(Ω) \ V = g(F), for any connected component K of ψ−1(y)
(i.e. for any streamline) and for any C1–smooth parametrization
γ : [0, 1]→ K the restriction Φ|K is absolutely continuous, and
we have the identity

[Φ(γ(t))]′ = [∆ψ(γ(t))]∇ψ(γ(t))·γ′(t) = [∆ψ(γ(t))]∇g(γ(t))·γ′(t) = 0

(g|K = const and, hence, ∇g(γ(t)) · γ′(t) = 0). So, Φ|K = const.

In view of arbitrariness of ε > 0 for almost all y ∈ ψ(Ω) and for
all connected components K of the set ψ−1(y) the equality
K ∩ Av = ∅ holds and Φ(x) = const on K. The last identity is
valid everywhere on K, instead of almost everywhere.
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(ii) Take an arbitrary value y ∈ ψ(Ω) and a connected
component K of the level set ψ−1(y) and fix them. Take also
any pair of points a, b ∈ K \ Av. We shall prove that

Φ(a) = Φ(b).

Consider a Lipschitz arc γ ⊂ Ω \ Av such that γ(0) = a, γ(1) = b
and Φ is absolutely continuous along γ.
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Assume that for any interval (α, β) adjoining the set Ĩ = γ−1(K)
(i.e. Ĩ is a compact subset of [0, 1], 0, 1 ∈ Ĩ, and (α, β) is a
connected component of the open set (0, 1) \ Ĩ ) there exists a
continuum Kαβ ⊂ K a simply connected domain Ωαβ ⊂ Ω such
that Ωαβ ∩ K = ∅, γ(α), γ(β) ∈ Kαβ and ∂Ωαβ = Kαβ ∪ γ([α, β]).

Since Φ is absolutely continuous along almost all segment, we
always can chose such Lipschits arc γ.
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Take any interval (α, β) adjoining the set Ĩ = γ−1(K), and
consider the corresponding subdomain Ωαβ. Denote by T the
family of all connected components of level sets of the function
ψαβ = ψ|Ωαβ

. According to results of A. Kronrod the space T is
a tree.
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Let t0 ∈ (α, β) and let K0 3 γ(t0) be a connected component of
the level set of ψαβ. Denote by J = J(Kαβ,K0) the arc (of the
graph T) connecting the points Kαβ and K0. Take a sequence of
regular components Ci ∈ J \ {Kαβ,K0}, Ci → Kαβ. For
sufficiently large i the level sets Ci intersect the arc γ in two
points. Therefore, there exist ti ∈ (α, t0) and si ∈ (t0, β) such
that γ(ti), γ(si) ∈ Ci. Since Ci → Kαβ, we obtain ti → α, si → β.

1. Fine properties of Sobolev functions. 2. Properties of solutions to Euler equations



By paragraph (i) we can take Ci such that Φ(x) ≡ const on Ci. In
particular, g(ti) = g(si), where by g we denote the absolutely
continuous function g(t) = Φ(γ(t)). Since g is continuous, it
follows that g(α) = g(β) for any interval (α, β) adjoining the set
Ĩ, and hence, ∫ β

α
g′(t)dt = 0.

(Absolutely continuous function is differentiable almost
everywhere).
Hence, for any interval (µ, ν) ⊂ (0, 1), with µ, ν ∈ Ĩ and
containing only a finite number of points from Ĩ, we have the
equality ∫ ν

µ
g′(t)dt = 0.
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(iii) Consider now the closed set I∞ = {t ∈ [0, 1]: in any
neighborhood of the point t there exist infinitely many points
from Ĩ}. It follows from (ii) that∫

[0, 1]\I∞
g′(t)dt = 0.

The function ψ is differentiable in any point γ(t), t ∈ (0, 1). On
the other hand, the Lipschitz function γ(t) is differentiable for
almost all t ∈ [0, 1]. Since the function ψ(x) is equal to a
constant on ψ(I∞) ⊂ K, we have γ′(t) · ∇ψ(γ(t)) = 0 for any
point t ∈ I∞ where the derivatives γ′(t) and ∇ψ(γ(t)) exist.
Then g′(t) = dΦ(γ(t))

dt = 0 for almost all t ∈ I∞ and∫
I∞

g′(t)dt = 0.

Summing the integrals we get g(1)− g(0) =
∫

[0,1] g′(t)dt = 0. �
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Properties of solutions to Euler equations

Let Ω′ ⊂ Ω and Kx be a connected component of the level set
{z ∈ Ω : ψ(z) = ψ(x)} containing the point x. Denote
X = XΩ′ = {x ∈ Ω′ : Kx ∩ ∂Ω′ = ∅}. Then for almost all y ∈ ψ(X) and
for any x ∈ X ∩ ψ−1(y) the component Kx ⊂ Ω′ \ Av is a C1–smooth
curve homeomorphic to the circle and ∇ψ 6= 0 on Kx.

Lemma. Let Ω ⊂ R2 be a bounded multiply connected domain
with Lipschitz boundary. Let v ∈ W1,2(Ω) and p ∈ W1,s(Ω) satisfy
Euler equations for almost all x ∈ Ω and∫

Γi
v · ndS = 0, i = 1, . . . ,N. Assume that there exists a

sequence of functions {Φµ} such that Φµ ∈ W1,s
loc(Ω) and

Φµ ⇀ Φ in W1,s
loc(Ω) for all s ∈ [1, 2). Then for any subdomain

Ω′ ⊂ Ω with X = XΩ′ 6= ∅ the functions Φµ|K are continuous on
almost all admissible cycles K and the sequence {Φµ|K}
converges to Φ|K uniformly: Φµ|K ⇒ Φ|K .
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Proof.

Fix ε > 0 and take a set V ⊂ R and a function g ∈ C1(R2) such
that for any x ∈ Xg = XΩ′ \ ψ−1(V) we have ψ(x) = g(x),
∇ψ(x) = ∇g(x) 6= 0 and Kx coincides with the connected
component of the level set {z ∈ R2 : g(z) = g(x)} containing the
point x. Obviously, the set Xg admits a representation

Xg =
∞⋃

i=1
Xi such that for any Xi there exists a C1-diffeomorphism

G : [0, 1]× S1 → U such that Xi ⊂ U b Ω′ and for any t ∈ [0, 1]
the image {G(t, θ) : θ ∈ [0, 2π)} coincides with the connected
component of the level set {z ∈ R2 : g(z) = g(G(t, 0))}
containing G(t, 0). In particular, for each x ∈ Xi there exist
unique values t ∈ [0, 1], φ ∈ [0, 2π) such that G(t, φ) = x,
moreover, {G(t, θ) : θ ∈ [0, 2π)} = Kx. Fix i and put
Φ̃(t, θ) = Φ(G(t, θ)), etc.
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Denote

zµ(t) =

∫ 2π

0
|Φ̃µ(t, θ)− Φ̃(t, θ)|

∣∣∣ ∂
∂θ

Φ̃µ(t, θ)− ∂

∂θ
Φ̃(t, θ)

∣∣∣dθ.
Then ∫ 1

0
zµ(t)dt ≤

(∫ 1

0

∫ 2π

0
|Φ̃µ(t, θ)− Φ̃(t, θ)|qdθdt

) 1
q×

×
(∫ 1

0

∫ 2π

0

∣∣∣ ∂
∂θ

Φ̃µ(t, θ)− ∂

∂θ
Φ̃(t, θ)

∣∣∣sdθdt
) 1

s

≤ c‖Φµ − Φ‖Lq(U)‖∇(Φµ − Φ)‖Ls(U) ≤ C‖Φµ − Φ‖Lq(U), (X)

where
1
q

+
1
s

= 1, s ∈ [1, 2), U = U ⊂ Ω. Since Φµ ⇀ Φ in

W1,s
loc(Ω) for all s ∈ [1, 2), by Embedding Theorem Φµ → Φ in

Lq(U) for all q ∈ [1,∞), and it follows from (X) that zµ → 0 in
L1([0, 1]).
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Thus, there exists a subsequence (we denote it again by {zµ})
converging to zero almost everywhere on [0, 1].
Define

Hµ(t) =
1

2π

∫ 2π

0
Φ̃µ(t, θ)dθ, H(t) =

1
2π

∫ 2π

0
Φ̃(t, θ)dθ.

Since Φµ ⇀ Φ in W1,s(U), s ∈ [1, 2), by Embedding Theorem we
conclude that Hµ → H in C([0, 1]) as µ→∞. Moreover,
Φ̃µ, Φ̃ ∈ W1,s([0, 1]× S1) and, hence, Φ̃µ(t, ·), Φ̃(t, ·) are
absolutely continuous functions with respect to θ for almost all
t ∈ [0, 1].
Let us fix arbitrary t∗ ∈ [0, 1] such that zµ(t∗)→ 0 and that the
functions Φ̃µ(t∗, ·), Φ̃(t∗, ·) are continuous. Let θµ ∈ [0, 2π] be
such that

Φ̃µ(t∗, θµ)− Φ̃(t∗, θµ) = Hµ(t∗)− H(t∗).
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Then

max
θ∈[0,2π]

|Φ̃µ(t∗, θ)− Φ̃(t∗, θ)|2 ≤ |Φ̃µ(t∗, θµ)− Φ̃(t∗, θµ)|2

+

∫ 2π

0

∣∣∣ ∂
∂θ

(
Φ̃µ(t∗, θ)− Φ̃(t∗, θ)

)2
∣∣∣dθ

= |Hµ(t∗)− H(t∗)|2 + 2zµ(t∗)→ 0

as µ→∞. Thus, the continuity of Φ̃µ(t, ·) and the uniform
convergence Φ̃µ(t, ·)⇒ Φ̃(t, ·) is proved for almost all t ∈ [0, 1].
So, the claim of the lemma is proved for almost all admissible
cycles K ⊂ Xi, and hence, for almost all admissible cycles
K ⊂ XΩ′ \ ψ−1(V). Because H1(V) < ε and ε > 0 is arbitrary, the
lemma is proved completely. �
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