Fine properties of Sobolev functions. Properties of solutions to Euler equations

November 4, 2013

1. Fine properties of Sobolev functions. 2. Properties of solutions

Speaking about functions *w* from Sobolev spaces we always assume that we have chosen the precise representative of *w*. If $v \in L^1_{loc}(\Omega)$, then the precise representative w^* is defined by

$$w^*(x) = \lim_{r \to 0} \frac{1}{mes(B_r(x))} \int_{B_r(x)} w(z) dz$$

if the the limit exists, and $w^*(x) = 0$ otherwise.

(雪) (ヨ) (ヨ)

Fine properties of Sobolev functions

Theorem A. Let $\Omega \subset \mathbb{R}^2$ be a bounded domain with a Lipschitz boundary, $w \in W^{1,1}(\Omega)$. Then there exists a set $A_w \subset \overline{\Omega}$ such that $\mathfrak{H}^1(A_w) = 0$ and (i) $\lim_{r \to 0} \oint_{B_r(x)} w(z) dz = w^*(x)$ exists for each $x \in \Omega \setminus A_w$. (ii) for each $x \in \Omega \setminus A_w$ $\lim_{r \to 0} \oint_{B_{r}(x)} |w(z) - w(x)|^{2} dz = 0;$

(iii) for all $\varepsilon > 0$ there exists a set $U \subset \mathbb{R}^2$ such that $\mathfrak{H}^1_{\infty}(U) < \varepsilon$, $A_w \subset U$ and the function *w* is continuous in $\overline{\Omega} \setminus U$.

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

э

Fine properties of Sobolev functions

Theorem B. (J. Bourgain, M.V. Korobkov, J. Kristensen, 2013) Let $\Omega \subset \mathbb{R}^2$ be a bounded domain with a Lipschitz boundary, $w \in W^{2,1}(\Omega)$. Then (i) for every $\varepsilon > 0$ there exists an open set $V \subset \mathbb{R}$ and a function $g \in C^1(\mathbb{R}^2)$ such that $\mathfrak{H}^1(V) < \varepsilon$, and for $w(x) \in \mathbb{R} \setminus V$ the function w is differentiable in the point x and w(x) = g(x), $\nabla w(x) = \nabla g(x) \neq 0$; (ii) for every $\varepsilon > 0$ there exists $\delta > 0$ such that for any set $U \subset \overline{\Omega}$ with $\mathfrak{H}^1_\infty(U) < \delta$ holds $\mathfrak{H}^1(w(U)) < \varepsilon$.

$$\mathfrak{H}^1(F) = \lim_{t \to 0+} \mathfrak{H}^1_t(F),$$

where
$$\mathfrak{H}_t^1(F) = \inf\{\sum_{i=1}^{\infty} \operatorname{diam} F_i : \operatorname{diam} F_i \leq t, F \subset \bigcup_{i=1}^{\infty} F_i\}.$$

1. Fine properties of Sobolev functions. 2. Properties of solutions

Level sets of functions in \mathbb{R}^2 . Kronrod's graph

Let $\mathbb{Q} = (-a, a) \times (-a, a)$ and let *f* be a continuous function defined in \mathbb{Q} . Denote by E_t a level set of the function *f*, i.e.

 $E_t = \{x \in \mathbb{Q} : f(x) = t\}.$

A component *K* of the level set E_t containing a point x_0 is a maximal connected subset of E_t containing x_0 . A component *K* of the level set E_t is called *regular*, if it divides the quadrate \mathbb{Q} into two parts.

1. Fine properties of Sobolev functions. 2. Properties of solutions

Theorem C. (Kronrod, 1950) Let *f* be a continuous function defined in \mathbb{Q} . Then there is at most a countable number of nonregular components of level sets $f^{-1}(f(\overline{\mathbb{Q}}))$.

Kronrod's graph. To any continuous on \mathbb{Q} function *f* corresponds a family T_f of all connected components of its level sets E_t . T_f is a topological space (equipped with a natural topology). This definition induces a natural map

$$\tau_f: \mathbb{Q} \to T_f: \ \tau_f(x) = K_x \quad \forall x \in \mathbb{Q},$$

where K_x is a connected component of the level set $E_{f(x)}$ containing the point *x* (*K* is considered as a point in T_f). The map τ_f is continuous.

Theorem D (A. Kronrod) Let f be a continuous function defined in \mathbb{Q} . Then

(1) T_f is one-dimensional tree consisting from the set of endpoints plus at most a countable number of simple arcs that mutually intersect at most in one point which is a bifurcation point.

(2) Non-regular components of level sets can be classified on the tree T_f as follows:

(a) if *K* divides \mathbb{Q} into $n \ge 3$ connected parts, then on T_f to *K* corresponds a bifurcation point of the same multiplicity *n*, and vice versa;

(b) if *K* does not divide \mathbb{Q} , then the corresponding point on T_f belongs to the set of endpoints, and vice versa.

Level sets of functions in \mathbb{R}^2 . Kronrod's graph

1. Fine properties of Sobolev functions. 2. Properties of solutions

э

A set is called *an arc* if it is homeomorphic to the unit interval [0, 1].

Lemma1. If $f \in C(\mathbb{Q})$, then for any two different points $A \in T_f$ and $B \in T_f$, there exists a unique arc $J = J(A, B) \subset T_f$ joining Ato B. Moreover, for every inner point C of this arc the points A, Blie in different connected components of the set $T_f \setminus \{C\}$.

We can reformulate the above Lemma in the following equivalent form.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Lemma 2. If $f \in C(\mathbb{Q})$, then for any two different points $A, B \in T_f$, there exists an injective function $\varphi : [0, 1] \to T_f$ with the properties (i) $\varphi(0) = A, \varphi(1) = B;$ (ii) for any $t_0 \in [0, 1]$, $\lim_{[0,1] \ni t \to t_0} \sup_{x \in \varphi(t)} (x, \varphi(t_0)) \to 0;$

(iii) for any $t \in (0, 1)$ the sets *A*, *B* lie in different connected components of the set $Q \setminus \varphi(t)$.

Theorem. Let $\Omega \subset \mathbb{R}^2$ be a bounded domain with Lipschitz boundary. If $\psi \in W^{2,1}(\Omega)$, then for \mathfrak{H}^1 -almost all $y \in \psi(\overline{\Omega}) \subset \mathbb{R}$ the preimage $\psi^{-1}(y)$ is a finite disjoint family of C^1 -curves S_j , $j = 1, 2, \ldots, N(y)$. Each S_j is either a cycle in Ω (i.e., $S_j \subset \Omega$ is homeomorphic to the unit circle \mathbb{S}^1) or a simple arc with endpoints on $\partial\Omega$ (in this case S_j is transversal to $\partial\Omega$).

This theorem is proved by J. Bourgain, M.V. Korobkov and J. Kristensen: On the Morse–Sard property and level sets of Sobolev and BV functions, *Rev. Mat. Iberoam.* **29**, no. 1 (2013), 1–23.

All results remain valid for level sets of continuous functions $f: \overline{\Omega} \to \mathbb{R}$, where Ω is a multi–connected bounded domain, provided $f \equiv \xi_j =$ on each inner boundary component S_j with $j = 1, \ldots, N$.

Indeed, we can extend *f* to the whole $\overline{\Omega}_0$ by putting $f(x) = \xi_j$ for $x \in \overline{\Omega}_j, j = 1, \dots, N$. The extended function *f* will be continuous on the set $\overline{\Omega}_0$ which is homeomorphic to the unit square $\mathbb{Q} = [0, 1]^2$.

(四) (日) (日)

Properties of solutions to Euler equations

$$(\mathbf{v} \cdot \nabla)\mathbf{v} + \nabla p = 0,$$
 (E)
div $\mathbf{v} = 0.$

$$\mathbf{v} \in H(\Omega), \ p \in W^1_s(\Omega), \ s \in [1,2)$$

We already know that that if $\mathbf{v} = 0$ on $\partial\Omega$ (in the sense of trace), then the pressure p(x) is constant on $\partial\Omega$ and p(x) could take different constant values $p_j = p(x)|_{S_j}$ on different connected components S_j of the boundary $\partial\Omega$.

Some facts from harmonic analysis.

The Hardy space $\mathcal{H}^1(\mathbb{R}^2)$ consists of distributions f such that for some function Φ with $\int \Phi = 1$ the maximal function

$$(M_{\Phi}f)(x) = \sup_{t>0} |f \star (\Phi_t)(x)|$$

is in $L^1(\mathbb{R}^2)$, where $\Phi_t(x) = t^{-2}\Phi(x/t)$, $||f||_{\mathcal{H}^1(\mathbb{R}^2)} = ||M_{\Phi}f||_{L^1(\mathbb{R}^2)}$.

 $\mathcal{H}^1(\mathbb{R}^2) \subset L^1(\mathbb{R}^2).$

▲帰▶ ▲ヨ▶ ▲ヨ▶ - ヨー わえべ

Properties of solutions to Euler equations

Lemma H1. Let
$$f \in \mathcal{H}^1(\mathbb{R}^2)$$
 and let

$$J(x) = \int_{\mathbb{R}^2} \log |x - y| f(y) \, dy.$$

Then (i) $J \in C(\mathbb{R}^2)$; (ii) $\nabla J \in L^2(\mathbb{R}^2)$, $D^{\alpha}J \in L^1(\mathbb{R}^2)$, $|\alpha| = 2$.

Lemma H2. Let $\mathbf{w} \in W^{1,2}(\mathbb{R}^2)$ and $div\mathbf{w} = 0$. Then

$$div\big[\big(\mathbf{w}\cdot\nabla\big)\mathbf{w}\big]=\sum_{i,j=1}^2\frac{\partial w_i}{\partial x_j}\frac{\partial w_j}{\partial x_i}\in\mathcal{H}^1(\mathbb{R}^2).$$

Lemma 2 follows from div-curl lemma with two cancelations.

1. Fine properties of Sobolev functions. 2. Properties of solutions

Theorem (continuity of the pressure). Let $\Omega \subset \mathbb{R}^2$ be a bounded domain with a Lipschitz boundary. Let (\mathbf{v}, p) satisfy the Euler equations for almost all $x \in \Omega$, $\mathbf{v} \in \mathring{W}^{1,2}(\Omega)$, $p \in W^{1,s}(\Omega)$, $s \in [1, 2)$. Then

 $p \in C(\overline{\Omega}) \cap W^{1,2}(\Omega).$

Proof. Multiply (E) by $\varphi = \nabla \xi$, where $\xi \in C_0^{\infty}(\Omega)$:

$$\int_{\Omega} \nabla p \cdot \nabla \xi \, dx = -\int_{\Omega} \big(\mathbf{v} \cdot \nabla \big) \mathbf{v} \cdot \nabla \xi \, dx \quad \forall \xi \in C_0^{\infty}(\Omega).$$

Thus, $p \in W^{1,s}(\Omega)$ is the unique weak solution of the boundary value problem for the Poisson problem:

$$-\Delta p = div[(\mathbf{v} \cdot \nabla)\mathbf{v}], \quad p(x)|_{S_i} = p_i, \quad i = 1, \dots, N.$$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

We have $div[(\mathbf{v} \cdot \nabla)\mathbf{v}] \in \mathcal{H}^1(\mathbb{R}^2)$. Define

$$J_1(x) = -\frac{1}{2\pi} \int_{\mathbb{R}^2} \log |x - y| \, div_y \left[\left(\mathbf{u}(y) \cdot \nabla_y \right) \mathbf{u}(y) \right] dy.$$

Then $J_1 \in C(\mathbb{R}^2)$, $\nabla J_1 \in L^2(\mathbb{R}^2)$, $D^{\alpha}J_1 \in L^1(\mathbb{R}^2)$, $|\alpha| = 2$. Let $J_2(x) = p(x) - J_1(x)$:

$$-\Delta J_2 = 0, \quad J_2\big|_{\partial\Omega} = j_2 - j_1,$$

where $j_1(x) = J_1(x)|_{\partial\Omega}$, $j_2(x)|_{S_i} \equiv p_i$. $j_1 \in W_2^{1/2}(\partial\Omega) \cap C(\partial\Omega)$, $j_2 \in C(\partial\Omega)$ and j_2 could be extended to Ω as a function from $W_2^1(\Omega)$. Thus, there exists solution $J_2 \in W_2^1(\Omega)$ such that $J_2 \in C(\overline{\Omega})$. By uniqueness $p(x) = J_1(x) + J_2(x)$. Hence, $p \in C(\overline{\Omega}) \cap W_2^1(\Omega)$. \Box

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Properties of solutions to Euler equations

Assume that $\mathbf{v} \in W^{1,2}(\Omega)$ and $p \in W^{1,s}(\Omega)$, $s \in [1,2)$, satisfy the Euler equations

$$(\mathbf{v} \cdot \nabla)\mathbf{v} + \nabla p = 0$$
, $div\mathbf{v} = 0$ for almost all $x \in \Omega$ (E)

and let $\int_{S_i} \mathbf{v} \cdot \mathbf{n} \, dS = 0$, i = 1, 2, ..., N, where S_i are connected components of the boundary $\partial \Omega$. Then there exists a continuous stream function $\psi \in W^{2,2}(\Omega)$ such that

 $\nabla \psi = (-v_2, v_1)$. Denote $\Phi = p + \frac{|\mathbf{v}|^2}{2}$ the total head pressure.

Then $\Phi \in W^{1,s}(\Omega)$ for all $s \in [1,2)$. By direct calculations we get

$$\nabla \Phi \equiv \left(\frac{\partial v_2}{\partial x_1} - \frac{\partial v_1}{\partial x_2}\right) (v_2, -v_1) = (\Delta \psi) \nabla \psi.$$

If all functions are smooth, from this formula the classical Bernoulli law follows immediately:

The total head pressure $\Phi(x)$ is constant along any streamline of the flow.

Properties of solutions to Euler equations. Bernoulli law (M.Korobkov)

Theorem (Bernoulli law). Let $\Omega \subset \mathbb{R}^2$ be a bounded multiply connected domain with a Lipschitz boundary $\partial \Omega = \bigcup_{i=1}^N S_i$. Let $\mathbf{u} \in W^{1,2}(\Omega)$ and $p \in W^{1,s}(\Omega)$ satisfy Euler equations (E) for almost all $x \in \Omega$ and let $\int_{S_i} \mathbf{u} \cdot \mathbf{n} dS = 0, i = 1, ..., N$. Then for any connected set $K \subset \overline{\Omega}$ such that

$$\psi\big|_K = const,$$

the identity

$$\Phi(x) = const$$

holds \mathfrak{H}^1 -almost everywhere on K.

In particular, it follows that if $\mathbf{u} = 0$ on $\partial \Omega$, then the pressure p(x) is constant on $\partial \Omega$, i.e. $p(x)|_{S_i} = p_j$.

Proof. Let $\psi \in W^{2,2}(\Omega)$ be a stream function.

(i) Fix any $\varepsilon > 0$ and consider a function $g \in C^1(\mathbb{R}^2)$ and an open set $V \subset \mathbb{R}$ with $\mathfrak{H}^1(V) < \varepsilon$ such that $\psi(x) = g(x)$ and $\nabla \psi(x) = \nabla g(x) \neq 0$ for any $x \in F = \overline{\Omega} \setminus \psi^{-1}(V)$. For almost all $y \in \psi(\overline{\Omega}) \setminus V = g(F)$, for any connected component *K* of $\psi^{-1}(y)$ (i.e. for any streamline) and for any C^1 -smooth parametrization $\gamma : [0, 1] \to K$ the restriction $\Phi|_K$ is absolutely continuous, and we have the identity

 $[\Phi(\gamma(t))]' = [\Delta\psi(\gamma(t))]\nabla\psi(\gamma(t))\cdot\gamma'(t) = [\Delta\psi(\gamma(t))]\nabla g(\gamma(t))\cdot\gamma'(t) = 0$

 $(g|_K = const \text{ and, hence, } \nabla g(\gamma(t)) \cdot \gamma'(t) = 0).$ So, $\Phi|_K = const.$

In view of arbitrariness of $\varepsilon > 0$ for almost all $y \in \psi(\overline{\Omega})$ and for all connected components *K* of the set $\psi^{-1}(y)$ the equality $K \cap A_{\nu} = \emptyset$ holds and $\Phi(x) = const$ on *K*. The last identity is valid everywhere on *K*, instead of almost everywhere. (ii) Take an arbitrary value $y \in \psi(\overline{\Omega})$ and a connected component *K* of the level set $\psi^{-1}(y)$ and fix them. Take also any pair of points $a, b \in K \setminus A_v$. We shall prove that

 $\Phi(a) = \Phi(b).$

Consider a Lipschitz arc $\gamma \subset \overline{\Omega} \setminus A_{\nu}$ such that $\gamma(0) = a, \gamma(1) = b$ and Φ is absolutely continuous along γ .

590

Assume that for any interval (α, β) adjoining the set $\tilde{I} = \gamma^{-1}(K)$ (i.e. \tilde{I} is a compact subset of [0, 1], $0, 1 \in \tilde{I}$, and (α, β) is a connected component of the open set $(0, 1) \setminus \tilde{I}$) there exists a continuum $K_{\alpha\beta} \subset K$ a simply connected domain $\Omega_{\alpha\beta} \subset \Omega$ such that $\Omega_{\alpha\beta} \cap K = \emptyset, \gamma(\alpha), \gamma(\beta) \in K_{\alpha\beta}$ and $\partial\Omega_{\alpha\beta} = K_{\alpha\beta} \cup \gamma([\alpha, \beta])$.

Since Φ is absolutely continuous along almost all segment, we always can chose such Lipschits arc γ .

1. Fine properties of Sobolev functions. 2. Properties of solutions

Take any interval (α, β) adjoining the set $\tilde{I} = \gamma^{-1}(K)$, and consider the corresponding subdomain $\Omega_{\alpha\beta}$. Denote by *T* the family of all connected components of level sets of the function $\psi_{\alpha\beta} = \psi|_{\overline{\Omega}_{\alpha\beta}}$. According to results of A. Kronrod the space *T* is a tree.

Let $t_0 \in (\alpha, \beta)$ and let $K_0 \ni \gamma(t_0)$ be a connected component of the level set of $\psi_{\alpha\beta}$. Denote by $J = J(K_{\alpha\beta}, K_0)$ the arc (of the graph *T*) connecting the points $K_{\alpha\beta}$ and K_0 . Take a sequence of regular components $C_i \in J \setminus \{K_{\alpha\beta}, K_0\}, C_i \to K_{\alpha\beta}$. For sufficiently large *i* the level sets C_i intersect the arc γ in two points. Therefore, there exist $t_i \in (\alpha, t_0)$ and $s_i \in (t_0, \beta)$ such that $\gamma(t_i), \gamma(s_i) \in C_i$. Since $C_i \to K_{\alpha\beta}$, we obtain $t_i \to \alpha, s_i \to \beta$.

By paragraph (i) we can take C_i such that $\Phi(x) \equiv const$ on C_i . In particular, $g(t_i) = g(s_i)$, where by g we denote the absolutely continuous function $g(t) = \Phi(\gamma(t))$. Since g is continuous, it follows that $g(\alpha) = g(\beta)$ for any interval (α, β) adjoining the set \tilde{I} , and hence,

$$\int_{\alpha}^{\beta} g'(t) dt = 0.$$

(Absolutely continuous function is differentiable almost everywhere).

Hence, for any interval $(\mu, \nu) \subset (0, 1)$, with $\mu, \nu \in \tilde{I}$ and containing only a finite number of points from \tilde{I} , we have the equality

$$\int_{\mu}^{\nu} g'(t) dt = 0.$$

<□> < □> < □> < □> = - のへへ

(iii) Consider now the closed set $I_{\infty} = \{t \in [0, 1]: in any neighborhood of the point t there exist infinitely many points from <math>\tilde{I}\}$. It follows from (ii) that

$$\int_{[0,\,1]\setminus I_{\infty}}g'(t)dt=0.$$

The function ψ is differentiable in any point $\gamma(t), t \in (0, 1)$. On the other hand, the Lipschitz function $\gamma(t)$ is differentiable for almost all $t \in [0, 1]$. Since the function $\psi(x)$ is equal to a constant on $\psi(I_{\infty}) \subset K$, we have $\gamma'(t) \cdot \nabla \psi(\gamma(t)) = 0$ for any point $t \in I_{\infty}$ where the derivatives $\gamma'(t)$ and $\nabla \psi(\gamma(t))$ exist. Then $g'(t) = \frac{d\Phi(\gamma(t))}{dt} = 0$ for almost all $t \in I_{\infty}$ and

$$\int_{I_{\infty}} g'(t) dt = 0.$$

Summing the integrals we get $g(1) - g(0) = \int_{[0,1]} g'(t) dt = 0$. \Box

Properties of solutions to Euler equations

Let $\Omega' \subset \Omega$ and K_x be a connected component of the level set $\{z \in \overline{\Omega} : \psi(z) = \psi(x)\}$ containing the point *x*. Denote $X = X_{\Omega'} = \{x \in \Omega' : K_x \cap \partial \Omega' = \emptyset\}$. Then for almost all $y \in \psi(X)$ and for any $x \in X \cap \psi^{-1}(y)$ the component $K_x \subset \Omega' \setminus A_v$ is a C^1 -smooth curve homeomorphic to the circle and $\nabla \psi \neq 0$ on K_x .

Lemma. Let $\Omega \subset \mathbb{R}^2$ be a bounded multiply connected domain with Lipschitz boundary. Let $\mathbf{v} \in W^{1,2}(\Omega)$ and $p \in W^{1,s}(\Omega)$ satisfy Euler equations for almost all $x \in \Omega$ and $\int_{\Gamma_i} \mathbf{v} \cdot \mathbf{n} dS = 0, \ i = 1, ..., N$. Assume that there exists a sequence of functions $\{\Phi_\mu\}$ such that $\Phi_\mu \in W^{1,s}_{loc}(\Omega)$ and $\Phi_\mu \rightarrow \Phi$ in $W^{1,s}_{loc}(\Omega)$ for all $s \in [1,2)$. Then for any subdomain $\Omega' \subset \Omega$ with $X = X_{\Omega'} \neq \emptyset$ the functions $\Phi_\mu|_K$ are continuous on almost all admissible cycles K and the sequence $\{\Phi_\mu|_K\}$ converges to $\Phi|_K$ uniformly: $\Phi_\mu|_K \rightrightarrows \Phi|_K$.

Proof.

Fix $\varepsilon > 0$ and take a set $V \subset \mathbb{R}$ and a function $g \in C^1(\mathbb{R}^2)$ such that for any $x \in X_{\rho} = X_{\Omega'} \setminus \psi^{-1}(V)$ we have $\psi(x) = g(x)$, $\nabla \psi(x) = \nabla g(x) \neq 0$ and K_x coincides with the connected component of the level set $\{z \in \mathbb{R}^2 : g(z) = g(x)\}$ containing the point x. Obviously, the set X_g admits a representation $X_g = \bigcup_{i=1}^{\infty} X_i$ such that for any X_i there exists a C^1 -diffeomorphism $G: [0,1] \times \mathbb{S}^1 \to U$ such that $X_i \subset U \Subset \Omega'$ and for any $t \in [0,1]$ the image $\{G(t, \theta) : \theta \in [0, 2\pi)\}$ coincides with the connected component of the level set $\{z \in \mathbb{R}^2 : g(z) = g(G(t, 0))\}$ containing G(t, 0). In particular, for each $x \in X_i$ there exist unique values $t \in [0, 1]$, $\phi \in [0, 2\pi)$ such that $G(t, \phi) = x$, moreover, $\{G(t, \theta) : \theta \in [0, 2\pi)\} = K_x$. Fix *i* and put $\Phi(t,\theta) = \Phi(G(t,\theta))$, etc.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Denote

$$z_{\mu}(t) = \int_{0}^{2\pi} \left| \widetilde{\Phi}_{\mu}(t,\theta) - \widetilde{\Phi}(t,\theta) \right| \left| \frac{\partial}{\partial \theta} \widetilde{\Phi}_{\mu}(t,\theta) - \frac{\partial}{\partial \theta} \widetilde{\Phi}(t,\theta) \right| d\theta.$$

Then

$$\begin{split} &\int_{0}^{1} z_{\mu}(t)dt \leq \left(\int_{0}^{1} \int_{0}^{2\pi} |\widetilde{\Phi}_{\mu}(t,\theta) - \widetilde{\Phi}(t,\theta)|^{q} d\theta dt\right)^{\frac{1}{q}} \times \\ & \times \left(\int_{0}^{1} \int_{0}^{2\pi} \left|\frac{\partial}{\partial\theta} \widetilde{\Phi}_{\mu}(t,\theta) - \frac{\partial}{\partial\theta} \widetilde{\Phi}(t,\theta)\right|^{s} d\theta dt\right)^{\frac{1}{s}} \\ \leq c \|\Phi_{\mu} - \Phi\|_{L^{q}(U)} \|\nabla(\Phi_{\mu} - \Phi)\|_{L^{s}(U)} \leq C \|\Phi_{\mu} - \Phi\|_{L^{q}(U)}, \quad (X) \\ \text{where } \frac{1}{q} + \frac{1}{s} = 1, s \in [1,2), \ U = \overline{U} \subset \Omega. \text{ Since } \Phi_{\mu} \rightarrow \Phi \text{ in} \\ W^{1,s}_{loc}(\Omega) \text{ for all } s \in [1,2), \text{ by Embedding Theorem } \Phi_{\mu} \rightarrow \Phi \text{ in} \\ L^{q}(U) \text{ for all } q \in [1,\infty), \text{ and it follows from } (X) \text{ that } z_{\mu} \rightarrow 0 \text{ in} \\ L^{1}([0,1]). \end{split}$$

Thus, there exists a subsequence (we denote it again by $\{z_{\mu}\}$) converging to zero almost everywhere on [0, 1]. Define

$$H_{\mu}(t) = rac{1}{2\pi} \int_{0}^{2\pi} \widetilde{\Phi}_{\mu}(t,\theta) d\theta, \quad H(t) = rac{1}{2\pi} \int_{0}^{2\pi} \widetilde{\Phi}(t,\theta) d\theta.$$

Since $\Phi_{\mu} \rightarrow \Phi$ in $W^{1,s}(U)$, $s \in [1,2)$, by Embedding Theorem we conclude that $H_{\mu} \rightarrow H$ in C([0,1]) as $\mu \rightarrow \infty$. Moreover, $\widetilde{\Phi}_{\mu}, \widetilde{\Phi} \in W^{1,s}([0,1] \times \mathbb{S}^1)$ and, hence, $\widetilde{\Phi}_{\mu}(t, \cdot), \widetilde{\Phi}(t, \cdot)$ are absolutely continuous functions with respect to θ for almost all $t \in [0,1]$. Let us fix arbitrary $t_* \in [0,1]$ such that $z_{\mu}(t_*) \rightarrow 0$ and that the functions $\widetilde{\Phi}_{\mu}(t_*, \cdot), \widetilde{\Phi}(t_*, \cdot)$ are continuous. Let $\theta_{\mu} \in [0, 2\pi]$ be

such that

$$\widetilde{\Phi}_{\mu}(t_{*},\theta_{\mu}) - \widetilde{\Phi}(t_{*},\theta_{\mu}) = H_{\mu}(t_{*}) - H(t_{*}).$$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Then

$$\begin{split} \max_{\theta \in [0,2\pi]} |\widetilde{\Phi}_{\mu}(t_{*},\theta) - \widetilde{\Phi}(t_{*},\theta)|^{2} &\leq |\widetilde{\Phi}_{\mu}(t_{*},\theta_{\mu}) - \widetilde{\Phi}(t_{*},\theta_{\mu})|^{2} \\ &+ \int_{0}^{2\pi} \left| \frac{\partial}{\partial \theta} (\widetilde{\Phi}_{\mu}(t_{*},\theta) - \widetilde{\Phi}(t_{*},\theta))^{2} \right| d\theta \\ &= |H_{\mu}(t_{*}) - H(t_{*})|^{2} + 2z_{\mu}(t_{*}) \to 0 \end{split}$$

as $\mu \to \infty$. Thus, the continuity of $\widetilde{\Phi}_{\mu}(t, \cdot)$ and the uniform convergence $\widetilde{\Phi}_{\mu}(t, \cdot) \rightrightarrows \widetilde{\Phi}(t, \cdot)$ is proved for almost all $t \in [0, 1]$. So, the claim of the lemma is proved for almost all admissible cycles $K \subset X_i$, and hence, for almost all admissible cycles $K \subset X_{\Omega'} \setminus \psi^{-1}(V)$. Because $\mathfrak{H}^1(V) < \varepsilon$ and $\varepsilon > 0$ is arbitrary, the lemma is proved completely. \Box

(* E) * E) E