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—vAV+ (v-V)v+Vp=1f inQ,
divv=0 inQ, (NS)
v=h ono{,

v — velocity of the fluid, p -pressure.
Q c R",n = 2,3,—multi-connected domain:
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Incompressibility of the fluid (divv = 0) implies the necessary
compatibility condition for the solvability of problem (NS):

h-ndS = h-ndS=Y F; =0, (F)
[rmis =3 fronas= 3

a0 =r

n is a unit vector of the outward normal to 912.

Proof of the existence (by a contradiction)



General Scheme

Let A € W!2(Q) be a divergence free extension
divA = 0, A|8Q =h.

u = v — A is a weak solution of (NS) if
uecHQ)={we Wi(Q):divw =0} and

I//QVu-Vndx—F/Q((u—FA)-V)u-ndx—i—/g(u'V)A-ndx:

:/f‘ndx—y/ VA-Vndx—/(A-V)A-ndx Vn € H(Q).
Q Q Q
Integral identity (4) is equivalent to an operator equation:

u = Bu

where B : H(Q2) — H(Q) is a compact operator.
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In order to apply the Leray—Schauder theorem we have to
prove that all possible solutions of the equation

u® = 2\Bu™ X e (0, 1]

are bounded by a constant independent of A. Equivalently, we
can consider for A € [0, 1]:

/Vu()‘)-Vnder)\/((u()‘)+A)-V)u(A)-ndx+)\/(u(A)-V)A-ndx
Q via vi/a

= /\/ f-ndx—)\/ VA-Vndx—/\yl/(A-V)A-ndx Vn € H(Q).
Q Q Q
Take n = uV:

/ [Va™ 2dx + A / (™ . VA - uWMdx
Q vJa

= A/ f-u(’\)dx—)\/ VA - VuMNdx — )\/(A-V)A-u(’\)dx.
Q Q Q

v
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Then

/ IVa™ 2dx < C(A) + A / (@™ . V) u™ . Adx.
Q vJa
We have to prove
/Q [VuM 2dx < Cy(A). (%)

() Leray-Hopf construction is impossible.

(i) We have prove to prove (*) by getting a contradiction.
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Theorem [M. Korobkov, K. Pileckas, R. Russo, 2013] Assume
that Q c R? is a bounded domain with C?>-smooth boundary o).
Iff € W'2(Q) andh € W3/22(9Q) satisfies condition (F), then
problem (NS) admits at least one weak solution.

/h nds = Z/h nds = ZF_O (F)

a0 =r
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Leray’s method

Take the extension A € W!2(Q) as a weak solution of the
Stokes problem, i.e., divA = 0, A|sn = h and

V/VA~Vndx:/f-ndx VneH).
Q Q

To prove the solvability it is sufficient to show that all possible
solutions uM ¢ H(Q) of the integral identity

v / VuN .V de+\ / (@M +A)-V)uW.ndx+) / (M. V)A-ndx
Q Q Q

:)\/ (A-V)n-Adx  VneHQ)
Q

are uniformly bounded in H(Q2) (with respect to A € [0, 1]).
Assume this is false. Then there exist sequences {\;} C [0, 1]
and {u™},cny = {w hen € H(Q) such that

Iim Ay = X € (0, 1], lim J; = lim HukHH(Q) = 0.
k—00 k—00 k—00
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Leray’s method

The pair (u; = jw, pr = ﬁpk) satisfies the following system
k

—y Aty + (ﬁk . V)ﬁk +Vpr = £ in €,
divay = 0 in €,
ﬁk = hk on 89,

where v, = ()\kjk) v, f, = )\lk/l/k f, hk = )\ka h.

The norms |[ug||y12(qy @and [[pillwie(q), ¢ c [1,2), are uniformly
bounded, u; — v in W”(Q) pk—\p in Wh4(Q). Moreover,
B € Wi2(), i € WEZ(Q).
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Leray’s method

(i) Take in the integral identity n = J, *u.
Passing to the limit as k; — oo, we get

)\():/Q(V-V)V-Adx. (C1)

(ii) Let o € J3°(92). Take n = J; > and let k; — oo

/Q(V-V)V-Lpdx: 0 Ve e J5°(9).
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Leray’s method

Hence, the pair (v,p) satisfies for almost all x € Q the Euler

equations
(v-V)v+Vp=0, divv=0,
and
V‘aQ =0.
Then
pj=p(X)]|r;.
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Leray’s method

Multiply Euler equations by A and integrate by parts:

/(V-V)V~Adx:—/Vp-Adx:—/ ph-nds
Q Q o0

M M
= —ij/ h-ndS = —ijFj
=1 “L j=1
If either all F; =0orp; =--- = py, we get
/ (v-V)v-Adx=0. (Cy)
Q
This contradicts (Cy):

/Q(V-V)V~Adx=)\0>0. (Cy)
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Obtaining a contradiction

For simplicity consider the case

There could appear two cases

(a) The maximum of ® is attained on the boundary O :

max{po,p1} = esssup (x).
xeQ

(b) The maximum of ® is not attained on the boundary 0 :

max{pg,p1} < esssup P(x).
xeQ
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Consider the case (a). Let py < 0,p; = 0. We have

®(x) <0 in Q.

o

Remark. &, satisfies elliptic equation

~ 1 ~ 1
. ~ ~2 -~ m 7
Ad, — V—dzv(@kuk) = Wi — ;fk ‘W, W = Ohliig — Oy
'k k

If £, = 0 = &, satisfies maximum principle.
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Obtaining a contradiction

Ty - family of all connected components of level sets of f, f is
continuous. Then Ty is a tree. Let K € T, with diamK > 0. Take
any x € K \ A and put ®(K) = ®(x). This definition is correct by
Bernoulli’s Law.

Lemma 1. LetA,B € Ty, A > 0,B > 0. Consider the
corresponding arc [A, B] C Ty, joining A to B. Then the
restriction ®|, g is a continuous function.

Proof. Let C; € (A, B) and C; — Cy in T,. By construction, each
C; is a connected component of the level set of ¢ and the sets
A, B lie in different connected components of R? \ C;. Therefore,

diam(C;) > min(diam(A), diam(B)) > 0.
By the definition of convergence in T, we have

sup dist(x,Cyp) - 0 asi— oo.
xeC;
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Obtaining a contradiction

Let ®(x) = ¢; fora.a. x € C;, P(x) = ¢o for a.a. x € Cy.

Assume ¢; -+ ¢g. Then ¢; — ¢ # ¢o. Moreover, components
C; — C|, C Cy in Hausdorf metric (Blaschke selection theorem).
Let L be a line; I projection of Cj on L.

Obviously, Iy- interval. For every z € Iy denote L, the line s.t.
z€Ll,and L, 1 L.

For almost all z the function ®|;_ is absolutely continuous. Fix
such z. Then C; N L, # () for sufficiently large i. Let y; € C; N L,.
Extract a subsequence y;, — yo € Cj.

Then &(y;,) — ®(yo) = co. = Contradiction. [
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Geometrical construction

Let By, B € Tw, By DTy, B; OT4. Set

a= min &¢(C)<D0.
CE[By,B1]

Let# € (0,—a), t41 = 3t; and such that

®(C)=—-t; = Ce€ (Bo,B1) is regular
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Geometrical construction

AY is an element from the set {C € [By, Bi] : ®(C) = —;} which
is closest to T'y. AY is regular cycle.
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Geometrical construction

V; is the connected component of the set 2 \ A? such that
'y C §V;. Obviously, V; D Vi, dV; = AY UT;. Remind that
liy1 = %ti-

AY are regular cycles. Therefore, <f>k|AQ = ®|,0 = —1;, and for
sufficiently large k holds L L

=~ 7 ~ 5
(I)k|A? < _§ti’ CI)k|A?+1 > _§ti’ Vk > k;.
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Geometrical construction

Take 1 € [31;, 3t)]. Wi(#) is the connected component of the set

{x € Vi\ Vi1 © Bilx) > —1} such that dWy(r) > A%, ,. Put
Si(1) = (OWi (1)) N Vi \ Virr. Then &g, ) = —1,

8Wik(t) = S,‘k(l) UA?_H.
Since ®; € W3 1,.(€), by the Morse-Sard theorem for almost all
t € [3t;, 3t the level set Sy (1) consists of a finite number of

Cl-cycLes; moreover, &, is differentiable at every point x € Sy(7)
and V&, (x) # 0. Such ¢ we call (k, i)-regular.
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Geometrical construction

By construction

/ V- ndS = —/ IV |dS < 0,
Six (1) Sir (1)

where n outward with respect to Wy (r) normal to OWy(t).
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Geometrical construction

Iy ={xeQ:dist(x,Ty) = h}, Q={x€Q:dist(x,T'y) < h}.
I, is C'-smooth and

ﬁ(Fh) < Cy Vh € (0, (50],

Co =39(T"y).
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Obtaining a contradiction

Since ®(x) # const on V;, i.e., V&(x) # 0, from the identity
V& = wVy it follows that

/ w2dx > 0.
Vi

From the weak convergence Wy — w in L,(£2) we get the
following

Lemma 2. For anyi € N there existse; > 0, J; € (0,09) and
k; € N such that

/ Ofdx > e Yk > k.
Vir1\Qs;
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Obtaining a contradiction

The key step is the following estimate

Lemma 3. For any i € N there exists k(i) € N such that there
holds inequality

~ 5 7
/ |V®i(x)|dS < Ft Yk > k(i), for almostallt e [-t;, -
Six ()

t.
8

8 g

The constant F is independents of ¢,k and i.
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Obtaining a contradiction

We receive the required contradiction using the Coarea
formula.
Fori € and k > k(i) put

E,' = U S,’k(l).

te€[3;, 21

By the Coarea formula for any integrable function g : E; — R
holds the equality

/g\V(I)k]dx:/g / g(x)d$H ! (x) dr.
E,' %[,’ SU{(I)

In particular, taking g = |V®,| and using Lemma 3, we obtain

/yvq>k\2dx:/8 / |Vc1>kydsal(x)drg/8 Frdt = F'.
E; 3t JSulr) 3
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Obtaining a contradiction

Now, taking g = 1 in the Coarea formula and using the Holder
inequality we get

1,
/8 ﬁl(S,-k(t))dt:/ V| dx
34 E;

gl

(/ |V<I>k2dx>](meas( ))2<\ﬁtl(meas( )2

By construction, for almost all ¢ € [gti, %ti] the set Sy (7) is a
smooth cycle and S;(r) separates A from A?, ,. Thus, each set
Si(t) separates T'y from T'y. In particular, $!'(Sy (1)) > $H'(T).
Hence,

N\—

7
gl

9 (Su(t))dt > %f;l(rl)z,-.

o

1
So, it holds
1
%ﬁl(l‘l)ti < \/}T’t,'(meas(Ei))f,
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Obtaining a contradiction

or

iﬁ] (T)) < \/ﬁ(meas(E,-)) %

Since meas(E;) < meas(Vi \ V,~+1) — 0asi— oo, we obtain a
contradiction!!!.
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Proof of Lemma 3

Lemma 3. For any i € N there exists k(i) € N such that there
holds inequality

~ 5 7
/ (VO (x)|dS < Ft Yk > k(i) for almost all t € [gti, gti]-
S (1

The constant F is independents of ¢,k and i.
Proof. Fix i € N and assume k > k;:

- 7 5
(I)k|A? < —gl‘i, (I)k|A?+1 > —gtl‘, Vk > k;.

Take a sufficiently small & > 0 and choose the parameter
d» € (0,6;] small enough to satisfy the following conditions:

Q(ga ﬂA? = Q(ga ﬂA?_H = (Z),

/ b2 ds < 102 Vh € (0,5,], (1)
Fh 3
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Proof of Lemma 3

1 ~ ~ 1
— —o? </ q),%ds/ dids < ~o* 2)
3 r, T 3
VH', h" € (0,6,] Vk € N.
This estimate follows from the fact that for any ¢ € (1,2) the

norms ||<f>k||W1,,,(Q) are uniformly bounded. Hence, the norms
Hcf)kV@HLg(Q) are uniformly bounded and

/ ZI\DI% ds — / EISI% ds
Fh/ Fh/l

5
~ o~ 3
< 2</ \(I)kch)kp/s dx) meas(Qhu \ Qh,)é —~0 as h/,h// Y
Qu\Qyy

< 2/ || - [V dx
Qur\Qyy
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Proof of Lemma 3

From the weak convergence d, — @ in the space W'4(1),
€ (1,2), it follows that ®|r, = ®|r, as k — oo for almost all
h € (0,0,). Therefore, from (1)—(2) we see that there exists
k" € N such that
/ dlds < o> Vhe (0,6, Vk>K. 3)
Ty

For a function g € W>2(Q2) and for an arbitrary C'-cycle S ¢ Q
we have by the Stokes theorem

/vig-ndsz/vg-ldszo,
S S

where 1 is the tangent vector to S. Since

V(/I;k = —VkVLLAUk + &\)kﬁ]ﬁ' + fk,

/Vé[;k'nds: /(,Adk/li]g' -nds.
N S

Proof of the existence (by a contradiction)

we have



Proof of Lemma 3

Fix a sufficiently small ¢ > 0. For a given sufficiently large k > &’
we make a special procedure to find a number A € (0,6,) such

that
:‘ / @kﬁlﬂ_ -nds
7

[ ks < cen, (5)
Iy

where the constant C(¢) is independent of k and o.

Define a sequence of numbers 0 = hy < h; < hp < ... by the

recurrent formulas

‘ ; V- nds <e, (4)
Ty

| IV s = o2, ©®)
Uj
where U; = {x € Q : dist(x,I'1) € (hj—1,h))}.
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Proof of Lemma 3

Since f [0y |? ds = A"”" HhHL (o0)» Where X, € (0, 1], from (6)

we get by induction that

|uk|2ds < C]l/k Vh e (hji—1, h)), (7)
Ty
where C is independent of k, j, o. Therefore,
/ [0[* dx < (hj — hj—1)Cjvg (8)
Uj

1

Then

2
vi = / |Vt - [ug] dx < <hj—hj—1>Cfv/?< IVﬁklde> :
Uj Uj

Thus, we have
2

hj—hj !

Proof of the existence (by a contradiction)
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Proof of Lemma 3

Define hjforj =1,. .., jmax, Where jmay is the first index which
satisfies one of the following two conditions:

STOP CASE 1. hj,..—1 < 0y N > 05

STOP CASE 2. Cjmax ij |V |? dx < e.

By construction, fU/ |V dx > Cljs for every j < jmax-

Hence,

15 1
2> Vul>de > = (14=+--- > Celn(jmax—1).
> / |Vuy| x_C( +2+ +jmax_1) eln(jmax—1)
U1U~~UU/-

max — 1

So, for both cases we have the following uniform estimate

Jmax < 1+ exp( ! (10)

o

with C’ independent of k and o.
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Proof of Lemma 3

Assume that Stop case 1 take place. Then

Qs, CULU---UU;

Jmax

and by construction (see (6): ij |Vug ||| dx = v2, and (7):
frh |ﬁk\2ds < CJ”/% Vh € (hj—lahj) ) we have

/ Vi - ] dx < joma- (1)

Q5.

2 ds < Cjmaxv?  Vh € (0,05]. (12)
k

Ly

From (11) it follows that there exists /; € (0, 6,) such that

A 1.
/ |vuk| ’ |uk| ds < ?]maxl/lg-
o

o

Proof of the existence (by a contradiction)



Proof of Lemma 3

Then, taking into account that j,,,.x does not depend on ¢ and k
(see (10) jmax < 1+ exp(g2)), and that v, — 0 as k — oo, we
obtain the required estimates (4)—(5) for sufficiently large k:

:‘/ @kﬁ,f'nds
I

g

‘ g V- nds <&, (4)
i

/ |2 ds < C(e)v2, (5)

Fhk

Proof of the existence (by a contradiction)



Now, let Stop case 2 arises. By definition of this case and
2
by (9) ( hjf,’,‘j_] < ijU,— |Vu|? dx ), we obtain

2
Vi

1 ~
L Vi |t ldxr= ——k
hjmax - hjmax_l A ’ Uk| |uk‘ * h] - h

imax 'max “Jmax — 1

< ij/ |V |2dx < e.
l]jma)(

Therefore, there exists iy € (hj,..—1, hjn) SUCh that (4) holds.

Estimate (5) follows again from (7) and the fact that jiax

depends on ¢ only. So, for any sufficiently large k we have

proved the existence of i € (0,d,) such that (4)—(5) hold.
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Proof of Lemma 3

Now, for (k,i)-regular value ¢ € [3t, {1;] consider the domain
Qi (1) = Wie(t) U Vi1 \ Q.

By construction, 92, (1) = I';, U Si(1).

Proof of the existence (by a contradiction)



Proof of Lemma 3

Integrating the equation
~ 5 b~ 1
Ad; = w + fle(cI)kllk) — —f -y
Vg Vg
over the domain €, (), we have

V&Dk-nds—l— V@k-nds:/ @,%dx

Su (1) Ty, Qi (1)
1 ~ 1 ~ 1
+— du; -nds + — du; -nds — — f, - ugdx
Vi Jsi (1) Vi Jry, Vi Jayg, (1)
_ 1 ~ 1
= / @1% dx—t A F+— / P upnds—— fiuidx, (13)
Qg (1) Ve Jry, Vi Jay (1)

where 7 = 1F,.

Proof of the existence (by a contradiction)



Proof of Lemma 3
Since

/ VO - ndS = —/ IV Dy |dS
S,'k(t) Sik(l)

‘ VEI\)/{ . ndS‘ <e
F,;k

and

(see (4)), we get

/ V&Jk|ds§t}"+€—/ QF dx
S (t) ka(t)

1 1
1 ~ 2 N 2]
+</ @ids> </ \uk|2ds> —/ £, - ugdx
Ve \Jr T, Vi Sy (1)

with F = | F|.

hy



Proof of Lemma 3

By definition ;L ||fi |2 () = 24 Ifl| 20y — 0 @s k — oo,
Therefore,

1
— / f; - ukdx’ < e for sufficiently large k.
Vi S (1)

Using inequalities

/ B 2ds < 0%, he(0,0,], k>K,
Ly

and

/ | %ds < C(e)v?,
h

k

(see (3), (5)), we obtain

Proof of the existence (by a contradiction)



Proof of Lemma 3

/ V:I;k\dsgt}"—&-Z—i-U\/C(s)—/ ©F dx
Sir (1) Q, (1)

Stf+2€+0\/C(€)—/ & dx,
Vip1\Qs;

where C(¢) is independent of k and o.
By Lemma 2,

/ @,%dx >¢ Vk> ki, 0; € (0, (5())
Vig1\ Q2

Choosing ¢ = ¢¢;, 0 = ﬁgi’ and a sufficiently large k, we
obtain 2¢ + o1/C(e) — [y, \q, widx <0.
Therefore, l
/ V| ds < 1F.
Si (1)
L]
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The case (b).

(b) The maximum of ® is not attained on the boundary O :

max{po. p1} < esssup @(x).

We do not exclude the case ess sup ¢(x) = +oo.
xeN
We can assume that

max{po,p1} < 0 < esssup ®(x).
xeQ

Denote o = max{po, p1} < 0.
Lemma 4. There exists F € Ty, such that diamF > 0, FNoQ =0
and ®(F) > o

Proof of the existence (by a contradiction)



Fix F and consider the behavior of ® on the arcs [By, F| and
[Bi, F]. All other considerations are similar to above. The role of
B is played now by F.
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Axially symmetric 3D - case

Proof of the existence (by a contradiction)



