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−ν∆v + (v · ∇)v +∇p = f in Ω,

divv = 0 in Ω,
v = h on ∂Ω,

(NS)

v – velocity of the fluid, p -pressure.
Ω ⊂ Rn, n = 2, 3,–multi-connected domain:

S1

Ω

S2
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Incompressibility of the fluid (divv = 0) implies the necessary
compatibility condition for the solvability of problem (NS):∫

∂Ω

h · n dS =

N∑
j=1

∫
Γj

h · n dS =

N∑
j=1

Fj = 0, (F)

n is a unit vector of the outward normal to ∂Ω.
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General Scheme

Let A ∈ W1,2(Ω) be a divergence free extension

divA = 0, A|∂Ω = h.

u = v− A is a weak solution of (NS) if
u ∈ H(Ω) = {w ∈ W̊1

2 (Ω) : divw = 0} and

ν

∫
Ω
∇u · ∇ηdx +

∫
Ω

((u + A) · ∇)u · ηdx +

∫
Ω

(u · ∇)A · ηdx =

=

∫
Ω

f · ηdx− ν
∫

Ω
∇A · ∇ηdx−

∫
Ω

(A · ∇)A · ηdx ∀η ∈ H(Ω).

Integral identity (4) is equivalent to an operator equation:

u = Bu

where B : H(Ω)→ H(Ω) is a compact operator.
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In order to apply the Leray–Schauder theorem we have to
prove that all possible solutions of the equation

u(λ) = λBu(λ) λ ∈ (0, 1]

are bounded by a constant independent of λ. Equivalently, we
can consider for λ ∈ [0, 1]:∫

Ω
∇u(λ)·∇ηdx+

λ

ν

∫
Ω

((u(λ)+A)·∇)u(λ)·ηdx+
λ

ν

∫
Ω

(u(λ)·∇)A·ηdx

= λ

∫
Ω

f·ηdx−λ
∫

Ω
∇A·∇ηdx−λν−1

∫
Ω

(A·∇)A·ηdx ∀η ∈ H(Ω).

Take η = u(λ):∫
Ω
|∇u(λ)|2dx +

λ

ν

∫
Ω

(u(λ) · ∇)A · u(λ)dx

= λ

∫
Ω

f · u(λ)dx− λ
∫

Ω
∇A · ∇u(λ)dx− λ

ν

∫
Ω

(A · ∇)A · u(λ)dx.
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Then ∫
Ω
|∇u(λ)|2dx ≤ C(A) +

λ

ν

∫
Ω

(u(λ) · ∇)u(λ) · Adx.

We have to prove ∫
Ω
|∇u(λ)|2dx ≤ C1(A). (∗)

(i) Leray-Hopf construction is impossible.

(ii) We have prove to prove (*) by getting a contradiction.
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Main result

Theorem [M. Korobkov, K. Pileckas, R. Russo, 2013] Assume
that Ω ⊂ R2 is a bounded domain with C2-smooth boundary ∂Ω.
If f ∈ W1,2(Ω) and h ∈ W3/2,2(∂Ω) satisfies condition (F), then
problem (NS) admits at least one weak solution.

∫
∂Ω

h · n dS =

N∑
j=1

∫
Γj

h · n dS =

N∑
j=1

Fj = 0, (F)

S1

Ω

S2
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Leray’s method

Take the extension A ∈ W1,2(Ω) as a weak solution of the
Stokes problem, i.e., divA = 0,A|∂Ω = h and

ν

∫
Ω
∇A · ∇η dx =

∫
Ω

f · η dx ∀ η ∈ H(Ω).

To prove the solvability it is sufficient to show that all possible
solutions u(λ) ∈ H(Ω) of the integral identity

ν

∫
Ω
∇u(λ)·∇η dx+λ

∫
Ω

(
(u(λ)+A)·∇

)
u(λ)·η dx+λ

∫
Ω

(
u(λ)·∇

)
A·η dx

= λ

∫
Ω

(
A · ∇

)
η · A dx ∀ η ∈ H(Ω)

are uniformly bounded in H(Ω) (with respect to λ ∈ [0, 1]).
Assume this is false. Then there exist sequences {λk} ⊂ [0, 1]
and {u(λk)}k∈N = {uk}k∈N ∈ H(Ω) such that

lim
k→∞

λk = λ0 ∈ (0, 1], lim
k→∞

Jk = lim
k→∞

‖uk‖H(Ω) =∞.
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Leray’s method

The pair
(
ûk = 1

Jk
uk, p̂k = 1

λkJ2
k
pk
)

satisfies the following system


−νk∆ûk +

(
ûk · ∇

)
ûk +∇p̂k = fk in Ω,

divûk = 0 in Ω,

ûk = hk on ∂Ω,

where νk = (λkJk)
−1ν, fk =

λkν
2
k

ν2 f, hk = λkνk
ν h.

The norms ‖ûk‖W1,2(Ω) and ‖p̂k‖W1,q(Ω), q ∈ [1, 2), are uniformly
bounded, ûk ⇀ v in W1,2(Ω), p̂k ⇀ p in W1,q(Ω). Moreover,
ûk ∈ W3,2

loc (Ω), p̂k ∈ W2,2
loc (Ω).
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Leray’s method

(i) Take in the integral identity η = J−2
k uk.

Passing to the limit as kl →∞, we get

ν

λ0
=

∫
Ω

(
v · ∇

)
v · A dx. (C1)

(ii) Let ϕ ∈ J∞0 (Ω). Take η = J−2
kl
ϕ and let kl →∞ :∫

Ω

(
v · ∇

)
v ·ϕ dx = 0 ∀ϕ ∈ J∞0 (Ω).
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Leray’s method

Hence, the pair
(
v, p
)

satisfies for almost all x ∈ Ω the Euler
equations (

v · ∇
)
v +∇p = 0, div v = 0,

and
v
∣∣
∂Ω

= 0.

Then
pj = p(x)|Γj .
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Leray’s method

Multiply Euler equations by A and integrate by parts:∫
Ω

(
v · ∇

)
v · A dx = −

∫
Ω
∇p · A dx = −

∫
∂Ω

p h · n dS

= −
M∑

j=1

pj

∫
Γj

h · n dS = −
M∑

j=1

pjFj

If either all Fj = 0 or p1 = · · · = pM, we get∫
Ω

(
v · ∇

)
v · A dx = 0. (C2)

This contradicts (C1):∫
Ω

(
v · ∇

)
v · A dx =

ν

λ0
> 0. (C1)
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Obtaining a contradiction

For simplicity consider the case

There could appear two cases

(a) The maximum of Φ is attained on the boundary ∂Ω :

max{p0, p1} = ess sup
x∈Ω

Φ(x).

(b) The maximum of Φ is not attained on the boundary ∂Ω :

max{p0, p1} < ess sup
x∈Ω

Φ(x).
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Consider the case (a). Let p0 < 0, p1 = 0. We have

Φ(x) ≤ 0 in Ω.

Remark. Φ̂k satisfies elliptic equation

∆Φ̂k −
1
νk

div(Φ̂kûk) = ω̂2
k −

1
νk

fk · uk, ω̂k = ∂2û1k − ∂1û2k.

If fk = 0⇒ Φ̂k satisfies maximum principle.
Proof of the existence (by a contradiction)



Obtaining a contradiction

Tf - family of all connected components of level sets of f , f is
continuous. Then Tf is a tree. Let K ∈ Tψ with diamK > 0. Take
any x ∈ K \ A and put Φ(K) = Φ(x). This definition is correct by
Bernoulli’s Law.

Lemma 1. Let A,B ∈ Tψ, A > 0,B > 0. Consider the
corresponding arc [A,B] ⊂ Tψ joining A to B. Then the
restriction Φ|[A,B] is a continuous function.

Proof. Let Ci ∈ (A,B) and Ci → C0 in Tψ. By construction, each
Ci is a connected component of the level set of ψ and the sets
A,B lie in different connected components of R2 \ Ci. Therefore,

diam(Ci) ≥ min(diam(A), diam(B)) > 0.

By the definition of convergence in Tψ, we have

sup
x∈Ci

dist(x,C0)→ 0 as i→∞.
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Obtaining a contradiction

Let Φ(x) = ci for a.a. x ∈ Ci, Φ(x) = c0 for a.a. x ∈ C0.
Assume ci 9 c0. Then ci → c∞ 6= c0. Moreover, components
Ci → C′0 ⊂ C0 in Hausdorf metric (Blaschke selection theorem).
Let L be a line; I0 projection of C′0 on L.
Obviously, I0- interval. For every z ∈ I0 denote Lz the line s.t.
z ∈ Lz and Lz ⊥ L.
For almost all z the function Φ|Lz is absolutely continuous. Fix
such z. Then Ci ∩ Lz 6= ∅ for sufficiently large i. Let yi ∈ Ci ∩ Lz.
Extract a subsequence yil → y0 ∈ C′0.
Then Φ(yil)→ Φ(y0) = c0. V Contradiction. �
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Geometrical construction

Let B0,B1 ∈ Tψ, B0 ⊃ Γ0, B1 ⊃ Γ1. Set

α = min
C∈[B0,B1]

Φ(C) < 0.

Let ti ∈ (0,−α), ti+1 = 1
2 ti and such that

Φ(C) = −ti ⇒ C ∈ (B0,B1) is regular
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Geometrical construction

A0
i is an element from the set {C ∈ [B0,B1] : Φ(C) = −ti} which

is closest to Γ1. A0
i is regular cycle.
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Geometrical construction

Vi is the connected component of the set Ω \ A0
i such that

Γ1 ⊂ ∂Vi. Obviously, Vi ⊃ Vi+1, ∂Vi = A0
i ∪ Γ1. Remind that

ti+1 = 1
2 ti.

A0
i are regular cycles. Therefore, Φ̂k|A0

i
⇒ Φ|A0

i
= −ti, and for

sufficiently large k holds

Φ̂k|A0
i
< −7

8
ti, Φ̂k|A0

i+1
> −5

8
ti, ∀k ≥ ki.

Proof of the existence (by a contradiction)



Geometrical construction

Take t ∈ [5
8 ti, 7

8 ti]. Wik(t) is the connected component of the set
{x ∈ Vi \ V i+1 : Φ̂k(x) > −t} such that ∂Wik(t) ⊃ A0

i+1. Put
Sik(t) = (∂Wik(t)) ∩ Vi \ V i+1. Then Φ̂k|Sik(t) = −t,
∂Wik(t) = Sik(t) ∪ A0

i+1.
Since Φ̂k ∈ W2

2,loc(Ω), by the Morse-Sard theorem for almost all
t ∈ [5

8 ti, 7
8 ti] the level set Sik(t) consists of a finite number of

C1-cycles; moreover, Φ̂k is differentiable at every point x ∈ Sik(t)
and ∇Φ̂k(x) 6= 0. Such t we call (k, i)-regular.
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Geometrical construction

By construction∫
Sik(t)
∇Φ̂k · ndS = −

∫
Sik(t)
|∇Φ̂k|dS < 0,

where n outward with respect to Wik(t) normal to ∂Wik(t).
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Geometrical construction

Γh = {x ∈ Ω : dist(x,Γ1) = h}, Ωh = {x ∈ Ω : dist(x,Γ1) < h}.
Γh is C1-smooth and

H(Γh) ≤ C0 ∀h ∈ (0, δ0],

C0 = 3H(Γ1).
Proof of the existence (by a contradiction)



Obtaining a contradiction

Since Φ(x) 6= const on Vi, i.e., ∇Φ(x) 6= 0, from the identity
∇Φ = ω∇ψ it follows that ∫

Vi

ω2dx > 0.

From the weak convergence ω̂k ⇀ ω in L2(Ω) we get the
following
Lemma 2. For any i ∈ N there exists εi > 0, δi ∈ (0, δ0) and
k′i ∈ N such that ∫

Vi+1\Ωδi

ω̂2
k dx > εi ∀k ≥ k′i.
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Obtaining a contradiction

The key step is the following estimate
Lemma 3. For any i ∈ N there exists k(i) ∈ N such that there
holds inequality∫

Sik(t)
|∇Φ̂k(x)|dS < F t ∀k ≥ k(i), for almost all t ∈ [

5
8

ti,
7
8

ti].

The constant F is independents of t, k and i.
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Obtaining a contradiction

We receive the required contradiction using the Coarea
formula.
For i ∈ and k ≥ k(i) put

Ei =
⋃

t∈[ 5
8 ti, 7

8 ti]

Sik(t).

By the Coarea formula for any integrable function g : Ei → R
holds the equality∫

Ei

g|∇Φk| dx =

∫ 7
8 ti

5
8 ti

∫
Sik(t)

g(x) dH1(x) dt.

In particular, taking g = |∇Φk| and using Lemma 3, we obtain∫
Ei

|∇Φk|2 dx =

∫ 7
8 ti

5
8 ti

∫
Sik(t)
|∇Φk| dH1(x)dt ≤

∫ 7
8 ti

5
8 ti
F t dt = F ′t2

i .

Proof of the existence (by a contradiction)



Obtaining a contradiction

Now, taking g = 1 in the Coarea formula and using the Hölder
inequality we get∫ 7

8 ti

5
8 ti

H1(Sik(t)
)
dt =

∫
Ei

|∇Φk| dx

≤
(∫

Ei

|∇Φk|2 dx
) 1

2 (
meas(Ei)

) 1
2 ≤
√
F ′ti

(
meas(Ei)

) 1
2 .

By construction, for almost all t ∈ [5
8 ti, 7

8 ti] the set Sik(t) is a
smooth cycle and Sik(t) separates A0

i from A0
i+1. Thus, each set

Sik(t) separates Γ0 from Γ1. In particular, H1(Sik(t)) ≥ H1(Γ1).
Hence, ∫ 7

8 ti

5
8 ti

H1(Sik(t)
)
dt ≥ 1

4
H1(Γ1)ti.

So, it holds
1
4
H1(Γ1)ti ≤

√
F ′ti

(
meas(Ei)

) 1
2 ,
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Obtaining a contradiction

or

1
4
H1(Γ1) ≤

√
F ′
(
meas(Ei)

) 1
2 .

Since meas(Ei) ≤ meas
(
Vi \ Vi+1

)
→ 0 as i→∞, we obtain a

contradiction!!!.
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Proof of Lemma 3

Lemma 3. For any i ∈ N there exists k(i) ∈ N such that there
holds inequality∫

Sik(t)
|∇Φ̂k(x)|dS < F t ∀k ≥ k(i) for almost all t ∈ [

5
8

ti,
7
8

ti].

The constant F is independents of t, k and i.
Proof. Fix i ∈ N and assume k ≥ ki:

Φ̂k|A0
i
< −7

8
ti, Φ̂k|A0

i+1
> −5

8
ti, ∀k ≥ ki.

Take a sufficiently small σ > 0 and choose the parameter
δσ ∈ (0, δi] small enough to satisfy the following conditions:

Ωδσ ∩ A0
i = Ωδσ ∩ A0

i+1 = ∅,∫
Γh

Φ2 ds <
1
3
σ2 ∀h ∈ (0, δσ], (1)
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Proof of Lemma 3

− 1
3
σ2 <

∫
Γh′

Φ̂2
k ds−

∫
Γh′′

Φ̂2
k ds <

1
3
σ2 (2)

∀h′, h′′ ∈ (0, δσ] ∀k ∈ N.
This estimate follows from the fact that for any q ∈ (1, 2) the
norms ‖Φ̂k‖W1,q(Ω) are uniformly bounded. Hence, the norms
‖Φ̂k∇Φ̂k‖

L
6
5 (Ω)

are uniformly bounded and

∣∣∣∣∫
Γh′

Φ̂2
k ds−

∫
Γh′′

Φ̂2
k ds
∣∣∣∣ ≤ 2

∫
Ωh′′\Ωh′

|Φ̂k| · |∇Φ̂k| dx

≤ 2
(∫

Ωh′′\Ωh′

|Φ̂k∇Φ̂k|6/5 dx
) 5

6

meas(Ωh′′ \ Ωh′)
1
6 → 0 as h′, h′′ → 0.
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Proof of Lemma 3

From the weak convergence Φ̂k ⇀ Φ in the space W1,q(Ω),
q ∈ (1, 2), it follows that Φ̂k|Γh ⇒ Φ|Γh as k→∞ for almost all
h ∈ (0, δσ). Therefore, from (1)–(2) we see that there exists
k′ ∈ N such that∫

Γh

Φ̂2
k ds < σ2 ∀h ∈ (0, δσ] ∀k ≥ k′. (3)

For a function g ∈ W2,2(Ω) and for an arbitrary C1-cycle S ⊂ Ω
we have by the Stokes theorem∫

S
∇⊥g · n ds =

∫
S
∇g · l ds = 0,

where l is the tangent vector to S. Since

∇Φ̂k = −νk∇⊥ω̂k + ω̂kû⊥k + fk,

we have ∫
S
∇Φ̂k · n ds =

∫
S
ω̂kû⊥k · n ds.
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Proof of Lemma 3

Fix a sufficiently small ε > 0. For a given sufficiently large k ≥ k′

we make a special procedure to find a number h̄k ∈ (0, δσ) such
that ∣∣∣∣ ∫

Γh̄k

∇Φ̂k · n ds
∣∣∣∣ =

∣∣∣∣ ∫
Γh̄k

ω̂kû⊥k · n ds
∣∣∣∣ < ε, (4)

∫
Γh̄k

|ûk|2 ds < C(ε)ν2
k , (5)

where the constant C(ε) is independent of k and σ.
Define a sequence of numbers 0 = h0 < h1 < h2 < . . . by the
recurrent formulas ∫

Uj

|∇ûk||ûk| dx = ν2
k , (6)

where Uj = {x ∈ Ω : dist(x,Γ1) ∈ (hj−1, hj)}.
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Proof of Lemma 3

Since
∫
∂Ω

|ûk|2 ds = (λkνk)
2

ν2 ‖h‖2
L2(∂Ω), where λk ∈ (0, 1], from (6)

we get by induction that∫
Γh

|ûk|2 ds ≤ Cjν2
k ∀h ∈ (hj−1, hj), (7)

where C is independent of k, j, σ. Therefore,∫
Uj

|ûk|2 dx ≤ (hj − hj−1)Cjν2
k . (8)

Then

ν2
k =

∫
Uj

|∇ûk| · |ûk| dx ≤
√

(hj − hj−1)Cjν2
k

(∫
Uj

|∇ûk|2 dx
) 1

2

.

Thus, we have

ν2
k

hj − hj−1
≤ C j

∫
Uj

|∇ûk|2 dx. (9)

Proof of the existence (by a contradiction)



Proof of Lemma 3

Define hj for j = 1, . . . , jmax, where jmax is the first index which
satisfies one of the following two conditions:
STOP CASE 1. hjmax−1 < δσ, hjmax ≥ δσ.
STOP CASE 2. Cjmax

∫
Ujmax
|∇ûk|2 dx < ε.

By construction,
∫

Uj
|∇ûk|2 dx ≥ 1

Cjε for every j < jmax.
Hence,

2 ≥
∫

U1∪···∪Ujmax−1

|∇ûk|2 dx ≥ ε

C

(
1+

1
2

+· · ·+ 1
jmax − 1

)
> C′ε ln(jmax−1).

So, for both cases we have the following uniform estimate

jmax ≤ 1 + exp(
1

C′ε
) (10)

with C′ independent of k and σ.
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Proof of Lemma 3

Assume that Stop case 1 take place. Then

Ωδσ ⊂ U1 ∪ · · · ∪ Ujmax

and by construction (see (6):
∫

Uj
|∇ûk||ûk| dx = ν2

k , and (7):∫
Γh
|ûk|2 ds ≤ Cjν2

k ∀h ∈ (hj−1, hj) ) we have∫
Ωδσ

|∇ûk| · |ûk| dx ≤ jmaxν
2
k , (11)

∫
Γh

|ûk|2 ds ≤ Cjmaxν
2
k ∀h ∈ (0, δσ]. (12)

From (11) it follows that there exists h̄k ∈ (0, δσ) such that∫
Γh̄k

|∇ûk| · |ûk| ds ≤ 1
δσ

jmaxν
2
k .

Proof of the existence (by a contradiction)



Proof of Lemma 3

Then, taking into account that jmax does not depend on σ and k
(see (10) jmax ≤ 1 + exp( 1

C′ε) ), and that νk → 0 as k→∞, we
obtain the required estimates (4)–(5) for sufficiently large k:∣∣∣∣ ∫

Γh̄k

∇Φ̂k · n ds
∣∣∣∣ =

∣∣∣∣ ∫
Γh̄k

ω̂kû⊥k · n ds
∣∣∣∣ < ε, (4)

∫
Γh̄k

|ûk|2 ds < C(ε)ν2
k , (5)

Proof of the existence (by a contradiction)



Now, let Stop case 2 arises. By definition of this case and
by (9) ( ν2

k
hj−hj−1

≤ C j
∫

Uj
|∇ûk|2 dx ), we obtain

1
hjmax − hjmax−1

∫
Ujmax

|∇ûk| · |ûk| dx =
ν2

k
hjmax − hjmax−1

≤ Cjmax

∫
Ujmax

|∇ûk|2dx < ε.

Therefore, there exists h̄k ∈ (hjmax−1, hjmax) such that (4) holds.
Estimate (5) follows again from (7) and the fact that jmax
depends on ε only. So, for any sufficiently large k we have
proved the existence of h̄k ∈ (0, δσ) such that (4)–(5) hold.
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Proof of Lemma 3

Now, for (k, i)-regular value t ∈ [5
8 ti, 7

8 ti] consider the domain

Ωih̄k
(t) = Wik(t) ∪ V i+1 \ Ωh̄k

.

By construction, ∂Ωih̄k
(t) = Γh̄k

∪ Sik(t).

Proof of the existence (by a contradiction)



Proof of Lemma 3

Integrating the equation

∆Φ̂k = ω̂2
k +

1
νk

div(Φ̂kûk)−
1
νk

fk · uk

over the domain Ωih̄k
(t), we have∫

Sik(t)
∇Φ̂k · n ds +

∫
Γh̄k

∇Φ̂k · n ds =

∫
Ωīhk

(t)
ω̂2

k dx

+
1
νk

∫
Sik(t)

Φ̂kûk · n ds +
1
νk

∫
Γh̄k

Φ̂kûk · n ds− 1
νk

∫
Ωīhk

(t)
fk · ukdx

=

∫
Ωīhk

(t)
ω̂2

k dx−tλkF̄+
1
νk

∫
Γh̄k

Φ̂kûk·n ds− 1
νk

∫
Ωīhk

(t)
fk·ukdx, (13)

where F̄ = 1
νF0.

Proof of the existence (by a contradiction)



Proof of Lemma 3

Since ∫
Sik(t)
∇Φ̂k · ndS = −

∫
Sik(t)
|∇Φ̂k|dS

and ∣∣ ∫
Γh̄k

∇Φ̂k · ndS
∣∣ ≤ ε

(see (4)), we get∫
Sik(t)
|∇Φ̂k| ds ≤ tF + ε−

∫
Ωīhk

(t)
ω̂2

k dx

+
1
νk

(∫
Γh̄k

Φ̂2
k ds
) 1

2
(∫

Γh̄k

|ûk|2 ds
) 1

2

− 1
νk

∫
Ωīhk

(t)
fk · ukdx

with F = |F̄ |.

Proof of the existence (by a contradiction)



Proof of Lemma 3

By definition 1
νk
‖fk‖L2(Ω) = λkνk

ν2 ‖f‖L2(Ω) → 0 as k→∞.
Therefore,∣∣∣ 1

νk

∫
Ωīhk

(t)
fk · ukdx

∣∣∣ ≤ ε for sufficiently large k.

Using inequalities∫
Γh

|Φ̂k|2ds ≤ σ2, h ∈ (0, δσ], k ≥ k′,

and ∫
Γh̄k

|ûk|2ds ≤ C(ε)ν2
k ,

(see (3), (5)), we obtain

Proof of the existence (by a contradiction)



Proof of Lemma 3

∫
Sik(t)
|∇Φ̂k| ds ≤ tF + 2 + σ

√
C(ε)−

∫
Ωīhk

(t)
ω̂2

k dx

≤ tF + 2ε+ σ
√

C(ε)−
∫

Vi+1\Ωδi

ω̂2
k dx,

where C(ε) is independent of k and σ.
By Lemma 2,∫

Vi+1\Ωδi

ω̂2
k dx > εi ∀k ≥ k′i, δi ∈ (0, δ0).

Choosing ε = 1
6εi, σ = 1

3
√

C(ε)
εi, and a sufficiently large k, we

obtain 2ε+ σ
√

C(ε)−
∫

Vi+1\Ωδi
ω2

k dx ≤ 0.
Therefore, ∫

Sik(t)
|∇Φ̂k| ds ≤ tF .

Proof of the existence (by a contradiction)



The case (b).

(b) The maximum of Φ is not attained on the boundary ∂Ω :

max{p0, p1} < ess sup
x∈Ω

Φ(x).

We do not exclude the case ess sup
x∈Ω

Φ(x) = +∞.

We can assume that

max{p0, p1} < 0 < ess sup
x∈Ω

Φ(x).

Denote σ = max{p0, p1} < 0.
Lemma 4. There exists F ∈ Tψ such that diamF > 0, F ∩ ∂Ω = ∅
and Φ(F) > σ.

Proof of the existence (by a contradiction)



Fix F and consider the behavior of Φ on the arcs [B0,F] and
[B1,F]. All other considerations are similar to above. The role of
B1 is played now by F.

Proof of the existence (by a contradiction)



Axially symmetric 3D - case

Proof of the existence (by a contradiction)


