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Application

]G’U Meteorology: Cloud Simulation

Gravity induces hydrostatic balance
How do clouds evolve over long periods of time?
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Multiscale phenomena of oceanographical, atmospherical
flows

-wave speeds differ by several orders: ||u|| << ¢ = M,Fr:= <<1

(L]
C

-typically Fr ~ 10?2
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Multiscale phenomena of oceanographical, atmospherical
flows

(L]
C

-wave speeds differ by several orders: ||u|| << ¢ = M,Fr:= <<1

-typically Fr ~ 10?2

max(|u| +¢, [v| +c)At <1
Ax -

max(<1+1) \/u2+vz> % <1

Fr
- number of time steps O(1/Fr)

-low Mach / low Froude number problem
[ Bijl & Wesseling ('98), Klein et al.('95, '01), Meister ('99,01),

Munz &Park ('05), Degond et al. ('11) ... ]
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Cancelation problem

- Sesterhenn et al. ('99)
- h ... water depth in the shallow flow
1
- “pressure term” —Zth =
2Fr

-hp,hg = hy +6h, 6h~ O(Fr?)
- round off errors can yield the cancelation effects

Wy —ht = ((h? +2h0h+0h*)(1+e) — h)(1+€2)

(hy. + 6h)?

2 12

oh (ZhL + (ShL) + €1 + h.o.t.

1 1
- leading order error in the pressure term ~ Felo(ﬁ)w o1 !
r r
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Accuracy problem
- numerical viscosity of upwind methods depends on Fr
- truncation error grows as Fr — 0 [Guillard, Viozat ('99), Rieper ('10)]
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Accuracy problem
- numerical viscosity of upwind methods depends on Fr
- truncation error grows as Fr — 0 [Guillard, Viozat ('99), Rieper ('10)]

- AIM:
® reduce adverse effect of 1+ 1/Fr
® |arge time step scheme: At does not depends on Fr
m efficient scheme for advection effects
® stability and accuracy of the scheme is independent on Fr
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M4ria Luka&ova (Institute of Mathematics, Uni-Mainz



Asymptotic preserving schemes

Goal: Derive a scheme, which gives a consistent approximation of the limiting
equations for e = Fr — 0

[ S.Jin&Pareschi('01), Gosse& Toscani('02), Degond et al.('11), ...]
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Asymptotic preserving schemes

Goal: Derive a scheme, which gives a consistent approximation of the limiting
equations for e = Fr — 0

[ S.Jin&Pareschi('01), Gosse& Toscani('02), Degond et al.('11), ...]
- to illustrate the idea: shallow water egs.

-z="h+Db, h - water depth, z - mean sea level to the top surface, b - mean
sea level to the bottom (b < 0)
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Asymptotic preserving schemes

Goal: Derive a scheme, which gives a consistent approximation of the limiting
equations for e = Fr — 0

[ S.Jin&Pareschi('01), Gosse& Toscani('02), Degond et al.('11), ...]
- to illustrate the idea: shallow water egs.

-z="h+Db, h - water depth, z - mean sea level to the top surface, b - mean
sea level to the bottom (b < 0)

01z + dym +dyn =0

1 1
o + dx(m?/ (z — b)) + dy(mn/ (z — b)) + ﬂa,((zz) = 70z
1 1
o + dx(mn/(z — b)) + 9, (n*/(z— b)) + ﬂay(zz) = ﬁbayz
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Asymptotic expansion

-rigorous analysis [Klainerman & Majda ('81), Feireis| & Novotny (2009,
2013)]
-formally: (e = Fr)

2 (x, t;e) = 20 (x, ) + 2V (x, 1) + 22 (x, )

w8 (x, t€) = ul® (x, £) + eu (x, £) + 2u® (x, 1)
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Asymptotic expansion

-rigorous analysis [Klainerman & Majda ('81), Feireis| & Novotny (2009,
2013)]
-formally: (e = Fr)
2 (x, t;e) = 20 (x, ) + 2V (x, 1) + 22 (x, )
w8 (x, t€) = ul® (x, £) + eu (x, £) + 2u® (x, 1)
plug into the SWE —
20 =z0@); 9@ +b)=0
ahM =0
920 = 9, (W94 = 5.m
om0 + ax(h(o)(u(o))2) + 103,22 =0
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Asymptotic expansion
-rigorous analysis [Klainerman & Majda ('81), Feireis| & Novotny (2009,
2013)]
-formally: (e = Fr)
2 (x, t;e) = 20 (x, ) + 2V (x, 1) + 22 (x, )
w8 (x, t€) = ul® (x, £) + eu (x, £) + 2u® (x, 1)
plug into the SWE —
20 =z0@); 9@ +b)=0
ah =0
9,200 = ax(h(o)u(o)) =9,m0
om0 + ax(h(o)(u(o))Z) + 103,22 =0
limiting system as ¢ — 0 (9:b = 0)
1O (x) = b(x) + const. (1)
9h(® = 9,m©)
i + 19,10 5,220 =0

Does a numerical scheme give a consistent approximation of (1) ?
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Time discretization

Key idea:

- semi-implicit time discretization: splitting into the linear and nonlinear part
- linear operator modells gravitational (acoustic) waves are treated implicitly
- rest nonlinear terms are treated explicitly
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Time discretization

Key idea:

- semi-implicit time discretization: splitting into the linear and nonlinear part
- linear operator modells gravitational (acoustic) waves are treated implicitly
- rest nonlinear terms are treated explicitly

ow

5= —V -F(w) +B(w) = L(w) + N (w)

w:(z,m,n)T, z=h+b, b<0
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Time discretization

Key idea:

- semi-implicit time discretization: splitting into the linear and nonlinear part
- linear operator modells gravitational (acoustic) waves are treated implicitly
- rest nonlinear terms are treated explicitly

ow

5= —V -F(w) +B(w) = L(w) + N (w)

w:(z,m,n)T, z=h+b, b<0

b
L(w) := = 30xZ
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e [: spatially varying linear system

wi + A1 (b)wy + Az (b)wy, =0

0 10 0 0 1
A= eblxy) 0 0 A= 0 0 0 — Ek
0 0 0 w2b(cy) 0 0

Multi-d evolution operator in [Arun, M.L., Kraft, Prasad (2009)]
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e [: spatially varying linear system

0

wi + A1 (b)wy + Ag (b)wy =
0 10 0 0 1

Ay = zblxy) 0 0 Ay = ) 0 0 0 — Ek
0 00 2b(xy) 0 0

Multi-d evolution operator in [Arun, M.L., Kraft, Prasad (2009)]
e REST: nonlinear system N\
Zt = 0

1

mi + (m*/(z —b))x + ﬁ(.ﬁ)x + (mn/(z—1b))), =0

1

n+ (mn/(z—"0))x+ (nz/(z - b))y + ﬁ(zz)y =0 = EIX

EIX is the evolution along the characteristics as by Prof. Tabata, Prof. Notsu
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Characteristic scheme for N\

- characteristic curves: x(t) = (x(t),y(t)) determined by % =u, % =

- time evolution:

Br = (u? — Fr2 )zx + uvzy — u(my +ny) — u(uby + vby)
Dn z
D = (v — ﬁ)zy + uvzy — v(my +ny) — v(uby + vby)

November, 2013
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Characteristic scheme for N\

- characteristic curves: x(t) = (x(t),y(t)) determined by % =u, % =

- time evolution:

Dm

B = (2 — Fr2 )zx + uvzy — u(my + ny) — u(uby + vby)
Dn z
B = (v — ﬁ)zy + uvzy — v(my + ny) — v(ubyx + vby)

- approximation:
m"TY(P) = m + At { {uz - FZZ] zy + uvzy — u(my +ny) — u(uby + Uby)} (x(), "
r
n"TY(P) = n+ At { {vz — Fzrz} zy + uvzy — v(my + ny) — v(uby + vby)} (x(t"), "),

where the characteristic directions are frozen at t"

dx

o = ulx(p), 1), Y _ o(x(P), ")

dt
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P =(2,y.tn + At)

Méria Luka&ova (Institute of Mathematics, Uni-Mainz

Bicharacteristic scheme for linear operator £
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Wave propagation for the hyperbolic balance laws
Information travels along bicharacteristic curves

Integration along each curve + averaging over the cone mantle yields
integral representation for the solution at the pick of the cone

P= (z,y,tn + Al)

8 M. Luks€ovi-Medvid'ova, K.W. Morton, and Gerald Warnecke.

Finite volume evolution Galerkin methods for hyperbolic systems.
J. Sci. Comp. 2004.
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Short derivation of integral representation

Step 1: Formulation as a quasilinear system
W + A (W) 0xW + Ay (W) 0yw = s(w)

with matrices A;(w), A,(w) and source term s(w).
Freeze Jacobians A;, A, if they depend on w
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Short derivation of integral representation

Step 1: Formulation as a quasilinear system
W + A (W) 0xW + Ay (W) 0yw = s(w)

with matrices A;(w), A,(w) and source term s(w).

Freeze Jacobians A;, A, if they depend on w

Step 2: Quasi-diagonalization

Let R denote the right eigenvectors of P = A ny + Ayny,.
Change of variables v = R~ !w yields a quasi-diagonal system

‘ ;v + diag(B;)dyv + diag(B,)oyv =S +r ‘

where By /; := 371A1/23
r:=R's(w), S:=—(B;—diag(B,))d.v — (B, — diag(B,))d,v.
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Short derivation of integral representation (cont’d)

Step 3: Averaging over the cone mantle
For every direction [ny,ny] = [cos(f),sin(6)] with 6 € [0,27]:

The system

;v + diag(B;)dyv + diag(B,)oyv = S +r

can be solved exactly.
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Short derivation of integral representation (cont’d)

Step 3: Averaging over the cone mantle
For every direction [ny,ny] = [cos(f),sin(6)] with 6 € [0,27]:

The system

;v + diag(B;)dyv + diag(B,)oyv = S +r

can be solved exactly.
Temporal integration over [t,, t, + T] and averaging over the wave-front, i.e.
6 € [0,27], yields an integral representation for [x,y, t, + T].
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Short derivation of integral representation (cont’d)

Step 3: Averaging over the cone mantle
For every direction [ny,ny] = [cos(f),sin(6)] with 6 € [0,27]:

The system

;v + diag(B;)dyv + diag(B,)oyv = S +r

can be solved exactly.
Temporal integration over [t,, t, + T] and averaging over the wave-front, i.e.
6 € [0,27], yields an integral representation for [x,y, t, + T].

Step 4: Back transform to primitive variables
Change of variables w = Rv.
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Back to our linear subsystem L

‘atwf[,(w) :O‘
—div(m,n)T
z b
W= ( m ) L(w) = ?faz/ax
n
ﬁaz/ay
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Back to our linear subsystem L

‘atwf[,(w) :O‘
—div(m,n)T
z b
W= ( m ) L(w) = ?faz/ax
n
ﬁaz/ay

Quasilinear form
‘wH—Alwx—i—Azwy :O‘

0 1 0 0 01
-1
A = ﬁb(x,y) 00 A= 4 0 00
eigenstructure: Ay = —a, Ap =0,A3 =4, a:= ”F:b

November, 2013
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Exact integral representation

21
1
(a2)(P) = E/{az—mcos()—nsin@} (XL (F; w), 1) dw
0
27‘[t”+1

~ L[ (a1 + Dy nasin6 — Dy e o} (< 50),
0

where

Df [f] := cos(0)fx +sin(0)f, Dy [f] := sin(8)fx — cos(6)fy
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Exact integral representation

21
(az)(P) = %/{az—mcos()—nsin@} (L (5.0, 1) deo
0

27 1

~ L[ (a1 + Dy nasin6 — Dy e o} (< 50),
0

where

Df [f] := cos(0)fx +sin(0)f, Dy [f] := sin(8)fx — cos(6)fy

and the bicharacteristics are:

X (Gw), 1) = (x'(,0),y'(1,0)), 0(1") =w

dx'(t)
dt

dagl(t)
ar

1
= —a(x!) cos(81), dydt(t) = —a(x!)sin(0),
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Exact integral representation

21
1
(a2)(P) = E/{az—mcos()—nsin@} (XL (F; w), 1) dw
0
27‘[t”+1

o [ D3 15+ Dy e sing — Dy e coso) (< (0,
0
where

Df [f] := cos(0)fx +sin(0)f, Dy [f] := sin(8)fx — cos(6)fy

and the bicharacteristics are:

X (Gw), 1) = (x'(,0),y'(1,0)), 0(1") =w

de'(t)
dt

dx'(t)

T —a(x') cos(81), ay'(t) = —a(x!)sin(0),

dt

= Dy la](x")

Expression intractable for a numerical scheme — Simplify!
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® temporal integrals by the rectangle rule
= to avoid large sonic circles use local evolution for T — 0 [Sun & Ren
('09)]

art
i ti fixed, — =~ 0.01
= in practice T fixed, +—
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® temporal integrals by the rectangle rule
= to avoid large sonic circles use local evolution for T — 0 [Sun & Ren

('09)]

art
i ti fixed, — =~ 0.01
= in practice T fixed, +—

27
(az)(P) = % / {az" —m" cosw — n" sinw — zDf[a]} (Qr) dw,
0

where
_ (xp+Ttacos(w) __
Qrlw) = <yp + msin(cu))' a=a(P)
Dy [a] := cos(8)ayx + sin(6)ay
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® The resulting operator is a predictor for the cell-interface values of fluxes
in the Finite Volume update

= The operator is asymptotic preserving !
® It can be shown to be of order O(72).

Maria Luka&ova (Institute of Mathematics, Uni-Mainz
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Semi-implicit time discretization

witl — w + % [ﬁ(wn) +£(wn+1>} +At/\f(wn+1/2)
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Semi-implicit time discretization

witl — w + % [ﬁ(wn) +£(wn+1)} +At/\f(wn+1/2)

- spatial discretization: Finite Volume update using flux differences
+ EG-evolution operator to evaluate fluxes at interfaces (multi-d Riemann

solver)
L) = L Y s (Fu(Bo(w!)), £=nnt1
= Axk P x \LLE0 ’ —
1 2
N<Wn+1/2) _ mgéxk(FN(EAt/Z(wn)))

Ofi = fiv12 —fic12
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AP property for the semi-implicit time discretization
scheme

semi-discrete scheme:

At
=" > [mZ 1 + mﬂ (2)
At Db b 1
m" = m" + > Lz zﬁ“ + Szzz} — At [2&2 (Z§+1/2)2 + (mu)’; 172 (3)
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AP property for the semi-implicit time discretization
scheme

semi-discrete scheme:

At
=" > [mZ 1 + mﬂ (2)
At Db b 1
m" = m" + > Lz zﬁ“ + Szzz} — At [2&2 (Z§+1/2)2 + (mu)’; 172 (3)

- we assume that 2", z"t1/2 ity t1/2

. approximate the limiting egs. (1)
e Eq.(3) yields for e~

By X X

b/ (nt1 | _(0)n L (oynt1/2 (0 m+1/2 _
2 (z +z ) — EZ Zy =0

— 2O+ () = const.
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At
z" 122"——2 [mg 1+ Z] (2)
At Db b 1
m" = m" + 5 LZZZ 1y 8224 — At [282 (z;‘ 1/2)2 + (mu)gﬂ/2 (3)

e Eq.(2) yields for €” consistent approx. of
920 = —9,m©

- periodic, slip BC = (041 (x) = 207 (x)
- m O+ (x) = const.
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At
= [mﬁ“ + mﬁ] (2)
At b 1
41 +1 +1/2\2 +1/2
et = S [haet s Bl - ar [ L 7] @)

e Eq.(3) yields for ¢ terms :

@m0 _ At [_b(Z(Z),n-H +Z(2),n)

2 X X

+Z(0)’"+1/2Z,((2)'n+1/2 _ (mu),(co)’n+1/2]

~ mOn _ Ay {h(o),n+1/22§2),n+1/2 _ (hMZ)(O),n+1/2}

- which is a consistent approx. of the momentum eq.

ou® = 409,40 43,22
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Examplel: Travelling vortex

- Ricchiuto & Bollermann ('09)

(g)2 (k(wre) — k() if wre < 7

h(x,y,0) =110+ \@ ¢ e < @
0 else

u(x,y,0) =06+ {g(l + cos(wre)) (0.5 —y) if wre < 7 »

T'(1+cos(wr.))(x—0.5) ifwr. <7
o(5,4,0) :{0< (re)=08) e s

re=|x—(05,05), T=15 =41

k(r) = 2cos(r) + 2rsin(r) + % cos(2r) + 2 sin(2r) + Zr2(5)

November, 2013
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Examplel: Travelling vortex

- Ricchiuto & Bollermann ('09)

(g)2 (k(wre) — k() if wre < 7

h(x,y,0) =110+ \@ ¢ e < @
0 else

u(x,y,0) =06+ {g(l + cos(wre)) (0.5 —y) if wre < 7 »

T'(1+cos(wr.))(x—0.5) ifwr. <7
o(5,4,0) :{0< (re)=08) e s

re=|x—(05,05), T=15 =41

k(r) = 2cos(r) + 2rsin(r) + %cos(Zr) + 2 sin(2r) + Zr2(5)

- rotating vortex initially at (0.5,0.5)

- transported with u.es = (0.6,0)

- period T=5/3

- exact solution: w(x,y,t) =w(x—t/T,y,0); w = (z,m,n)T

November, 2013
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Experimental error analysis

e First order method; ¢ = 0.8 and 0.05

e=0.8, CFL, =045, CFL~ 09, T =0.1

N | L'-errorin z EOC Ll-error in m EOC Ll-error in n EOC
20 0.21019 0.50860 0.44681

40 0.14303 0.55539 0.29634 0.77926 0.25680 0.7990C
80 0.08408 0.76648 0.16136 0.87697 0.13759 0.9002
160 0.04578 0.87704 0.08455 0.93239 0.07160 0.9422

¢ =0.05, CFL, =045, CFL ~ 7.25, T =0.1

N ‘ Ll-error in z EOC Ll-error in m EOC Ll-error in n EOC
20 0.00408 1.18800 1.16980

40 0.00320 0.34894 0.87983 0.43328 0.87707 0.41547
80 0.00210 0.60779 0.57048 0.62504 0.57483 0.60955
160 0.00123 0.77580 0.33396 0.77250 0.33783 0.76682

November, 2013
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Experimental error analysis

e Second order method; ¢ = 0.8 and 0.01

¢=0.8,CFL, =09, CFL~1.75,T=0.1
N ‘ Ll-errorinz EOC Ll-errorinm EOC  Ll-errorinn EOC
20 0.06944 0.17415 0.18840
40 0.01584 2.1323 0.03977 2.1306 0.05377 1.8089
80 0.00327 2.2766 0.00906 2.1349 0.01609 1.7407
160 0.00085 1.9419 0.00230 1.9780 0.00445 1.8534

e¢=0.01, CFL, =09, CFL~ 69, T = 0.1

N ‘ Ll-error in z EOC Ll-error in m EOC Ll-error in n EOC
20 5.07e-4 1.14180 1.17160

40 1.23e-4 2.0472 0.35999 1.6653 0.36423 1.6855
80 3.20e-5 1.9363 0.07283 2.3054 0.07454 2.2888
160 8.25e-6 1.9569 0.01347 2.4348 0.01434 2.3781

November, 2013
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Well-balancing

o preserve EXACTLY equilibrium states of the dynamical system for given
discrete data

e interesting equilibrium state ... lake at rest z=const.,, u =0=7v
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Well-balancing

o preserve EXACTLY equilibrium states of the dynamical system for given
discrete data
e interesting equilibrium state ... lake at rest z=const.,, u =0=7v

Theorem

The IMEX type large time step schemes are well-balanced for the lake at rest
uniformly with respect to the Froude number ¢ > 0.
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z=const, m=0=n= V- Fy, (") =0
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z=const, m=0=n= V- Fy(w") =0
O (w1 =V (F — K)(w"™)

Méria Luka&ova (Institute of Mathematics, Uni-Mainz November, 2013



z=const, m=0=n= V- Fy(w") =0
O (w1 =V (F — K)(w"™)
W AV - (FL - K) (@) = ' — AV - Fg (w")
W't AR (") = W (6)
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z=const, m=0=n= V- Fy(w") =0
O (w1 =V (F — K)(w"™)

Wt LAV - (FL = K) (@) = W = AV - F (W)
wn+1 + At(b(w”“) = " (6)
. L 1 V . m?‘l“rl
w'"t +q>(wn+ )= W'l L At |: —gbVZnJrl :|
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z=const, m=0=n= V- Fy(w") =0
O (w1 =V (F — K)(w"™)

WAV - (FL - K@) = w" = MV P (")
wn+1 + At(b(w”“) = " (6)
) L 1 v . m?‘l“rl
w'"t +q>(wn+ )= W'l L At |: —gbVZnJrl :|

— (6), (7) lake at rest is a solution of the IMEX-type semi-discrete equation

Let O C R? be a bounded Lipschitz-continuous domain and the bottom
topography b € WY*(Q)), b < 0. Then the following problem

w+ Atd(w) =0 (7)

has a unique solution w € H'(Q)), provided

/bzavz ds > 0. (8)
Q)
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Proof of lemma

o for the linear part we have: z = —AtV -m and m = AtghVz
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Proof of lemma

o for the linear part we have: z = —AtV -m and m = AtghVz

-plugging m into z-equation: elliptic eigenvalue problem

—V.-(bVz) =Az, A: !

0 < MzllZ2q) = (2~ V(0V2)),2 /va Vz dx — /bzavz ds < 0.
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Proof of lemma

o for the linear part we have: z = —AtV -m and m = AtghVz

-plugging m into z-equation: elliptic eigenvalue problem

—V.-(bVz) =Az, A: !

0 < MzllZ2q) = (2~ V(0V2)),2 /va Vz dx — /bzavz ds < 0.

—z=0andm=0=n vV

Méria Luka&ova (Institute of Mathematics, Uni-Mainz November, 2013



Discretization in space

e Do linear fluxes balance the source term discretization ?
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Discretization in space

e Do linear fluxes balance the source term discretization ?
- discretization of Fy (w"'!)

1

1 +1 1 ontl
/acl_j—gzb(x,y)Z" (x,y)ndeN—?kglvkéx(z ") (10)
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Discretization in space

e Do linear fluxes balance the source term discretization ?

- discretization of Fy (w"'!)
1 b n+1( ds ~ 1 : 5 ( *,n+1b) (10)
i, —= (x,)Z" " (x, y)ny ds ~ —S—zkglyk (2 e
~discretization of K(w"*!)
/ K(w"H)dx ~ 1 le Ye(pxz ™) (65b. . ) (11)
Cj 2 = iy

November, 2013
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Discretization in space

e Do linear fluxes balance the source term discretization ?
- discretization of Fy (w"'!)

1 +1 o1 ; 141
/acl_j—gzb(x,y)Z" (x,y)ndeN—?kglvkéx(z ") (10)

~discretization of K(w"*!)

J

But for z = const. it holds

1 1
. K(wnﬂ)dx ~ 2 kzl ')’k(}‘xzz}i?) (5xbi,j+§) (11)
ij —

(VxZ*’nH) (5xb','

ij+k
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Application to atmospheric flow

Compressible Euler equations

o'+ V-(pu) =0
d(pu) + V- (pu@u+p'ld) = —p'gk
9(p0)" + V- (pbu) =0

with background state p, p, 0 in hydrostatic balance
dyp = —pg

State variables: w = [0, pu, pv, (00)']T

= Potential temperature 6 := T/t w Exner-pressure 1t(y) := 1 — ==
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Exact evolution operator for the linear subsystem

linear part for the Euler system

ow+ L(w) =0
o div(ow)
L pu o ap’ /ox
A LW =1 o fay + g0
(00)’ div(6pu)

- linearized version of p/: p/ = CL,%(PQ)/
Cop
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Exact evolution operator for the linear subsystem

ow + Ajwy + Apwy, = S(w)

0 8 00 0089 0
¥y 0 00 . 0 00O
AM=lo0o000| ™ {5000
0100 0 010
where 0 = 0(y), 7 = CCLP%
%
eigenstructure: Ay = —a, Ap3 =04 =a, a:= 70
YR

Note: in the non-dimensional form 4§ = —
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Test 1: rising warm air bubble

- bubble with a cosine profile in 8 = 6 + 6’

o 0 r>re, r=|x—xc|
0.25[1 + cos(rter/re)] r<rc

xc = (500,350), rc = 250m, 6 = 300K,
x € [0,1000)?, t € [0,700]

e in the momentum and energy eqs. regularized viscous terms with a small
viscosity y are added
U= O.lmz/s
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glraldo sembdf2 Leg3 vs rus adp11 at0.025 cvisc i
time=0s time=300s

o]+

0
0 200 400 400 200 O O 200 400 400 200 O

1000

500

time=600s time=900s
1000

500

0 0
0 200 400 400 200 O O 200 400 400 200 O

ematics, Uni-Mainz November,



Test 2: small cold bubble on the top of large warm bubble

e Robert test (1993)

- both bubbles: a Gaussian profile

- warm air bubble: amplitude of 0.5 K
- cold air bubble: amplitude 0.17 K
- =01m?/s
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