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Introduction
Equations
We study a backward solution to the Navier-Stokes equations in the
half plane

∂tu +∇ · (u ⊗ u)−∆u +∇p = 0, div u = 0 in (−∞, 0)× R2
+

(1)

subject to the no-slip boundary condition

u = 0 on (−∞, 0)× ∂R2
+. (2)

Here R2
+ = {(x1, x2) ∈ R2 | x2 > 0},

u(t, x) = (u1(t, x), u2(t, x)) ∈ R2 and p(t, x) ∈ R.



As is well known, in the study of evolution equations the Liouville
problem for bounded backward solutions plays an important role in
obtaining an a priori bound of forward solutions through a suitable
scaling argument called a blow-up argument.

Our goal: To solve the Liouville problem for (1) - (2), that is, the
nonexistence of nontrivial bounded global solutions to (1) - (2).



Liouville type results
Whole space

Liouville type theorem
If u is a bounded mild solution of NS in R2 × (−∞, 0), it must
be a constant solution.

Koch-Nadrashvilli-Seregin-Sverak, 2007
(based on integral estimates)

Giga-miura, 2011
(based on strong Maximum principle of vorticity equation)



Under boundary conditions

(1)Slip boundary condition
The rescaled two-dimensional vorticity equations still enjoy the
maximum principle since there is no vorticity production from the
boundary.

(2)Dirichlet boundary condition
Vorticity is expected to be created on the boundary. There is even a
counterexample of Poiseuille type flow (Giga, 2011)

u = (u1(t, x3), 0, 0), p(t, x1) = −x1f (t), (3)

solves the initial-boundary value problem provided that u1 solves the
heat equation

∂tu1 − ∂23u1 = f (t) in (0,T )× {x3 > 0},
u1 = 0 on (0,T )× {x3 = 0}.

with some f depending only on time.



Liouville type result under the Dirichlet BC

Theorem 1.1 (Giga-H-Maekawa 2013)

Let (u, p) be the solution to (1)-(2) satisfying the following
conditions.

(C1) sup
−∞<t<0

(
‖u(t)‖C2+µ + ‖∂tu(t)‖Cµ

)
<∞ for some µ ∈ (0, 1).

(C2) p = pF + pH

(C3) sup
−∞<t<0

(−t)1/2‖u(t)‖∞ <∞.

(C4) ω ≥ 0 in (−∞, 0)× R2
+.

Then u is identically zero.



Here pF is the solution of{
−∆pF =

∑3
i ,j=1 ∂i∂j(uiuj),F = −u ⊗ u in ∂R2

∂pF
∂n

= 0 on ∂R2
+.

(4)

such that

‖pF‖BMO ≤ C‖F‖∞, ‖∇pF‖Cµ ≤ C‖F‖C1+µ , 0 < µ < 1.
(5)

pH : harmonic pressure; the solution of{
∆pH = 0 , in ∂R2

∂2pH = ∂1ω on ∂R2
+.

(6)

such that

sup
x∈R2

+

x2|∇pH(x)| ≤ C‖ω‖∞, (7)



Geometric regularity criterion

Theorem 1.2 (Giga-Miura 2011 (simplest form) )

Let u be a spatially bounded mild solution for NS in (−1, 0)× R3 .
Assume that blow-up at zero is type I, i.e.

sup
x ,t
|u(t, x)|(−t)1/2 <∞.

If the vorticity direction ξ = ω/|ω| is uniformly continuous in space in
the sense that
(CA) |ξ(t, x)− ξ(t, y)| ≤ η(|x − y |),
for (t, x), (t, y) ∈ Ωd = {(t, x) | |ω(t, x)| > d} for some d > 0 and η
a modulus of continuity. Then u does not blow-up at t = 0.

Problem: Can we prove similar result in half space?



Geometric regularity criterion in the half space

Theorem 1.3 (Giga-H-Maekawa 2013)

Let u be a spatially bounded mild solution for NSD in (−1, 0)× R3
+ .

If u is type I near t = 0 and u satisfies (CA), then u is bounded up
to t = 0.

Note: (1) - (2) is naturally derived from a blow-up argument for the
three-dimensional Navier-Stokes equations in the half space.



Geometric regularity criterion in the half space

Theorem 1.3 (Giga-H-Maekawa 2013)

Let u be a spatially bounded mild solution for NSD in (−1, 0)× R3
+ .

If u is type I near t = 0 and u satisfies (CA), then u is bounded up
to t = 0.

Note: (1) - (2) is naturally derived from a blow-up argument for the
three-dimensional Navier-Stokes equations in the half space.



Lemma 1.4 (Decay in normal)

Under the conditions (C1), (C2), and (C3) of Theorem 1.1 the
vorticity ω satisfies

sup
(t,x)∈(−∞,0)×R2

+

x1+θ
2 |ω(t, x)| <∞ for all θ ∈ (0, 1). (8)

Lemma 1.5 (Biot-Savart law)

Under the conditions (C1), (C2), and (C3) of Theorem 1.1 the
velocity u is represented as

u(t, x) =
1

2π

∫
R2
+

((x − y)⊥

|x − y |2
− (x − y ∗)⊥

|x − y ∗|2
)
ω(t, y) dy . (9)

Here x⊥ = (−x2, x1)> and y ∗ = (y1,−y2)>.



Proof admitting Lemma 1.4 and Lemma 1.5
Lemma 1.4, Lemma 1.5 and the Lebesgue convergence theorem
implies

u1(t, x1, 0) =
1

π

∫
R2+

y2
(x1 − y1)2 + y 2

2

ω(t, y) dy

The Dirichlet condition implies that u1(t, x1, 0) ≡ 0. Then (C4)
(ω ≥ 0) implies ω ≡ 0. By the classical Liouville theorem for
harmonic functions u must be a constant. By (C3) u ≡ 0.



vorticity representation formula
(C.R. Anderson 1989; Y. Maekawa 2013)

Lemma. Under the Dirichlet condition
ω satisfies

∂tω −∆ω = −∇⊥ · div F in (−L, 0)× R2
+

∂2ω + (−∂21)
1
2ω = −∂1pF on (−L, 0)× ∂R2

+.



Lemma. (Representation)

ω(t) = T (t − s)u(s)

+

∫ t

s

T (t − τ)div F (τ) dτ

+

∫ t

s

e(t−τ)B(∂1pF (τ)δ∂R2
+

) dτ

for −L < s < t < 0.



Definition of some operators

Let G (t, x) = (4πt)−1 exp
(
− |x |2/(4t)

)
be the two-dimensional

Gaussian. Then for each t > 0 we introduce the operator etB defined
by

etB f = G (t) ∗ f + G (t) ? f + Γ(t) ? f , (10)

where

Γ(t) = 2

∫ ∞
0

(
∂21 + (−∂21)

1
2∂2
)
G (t + τ) dτ (11)

with the notations

f ∗ h(x) =

∫
R2
+

f (x−y)h(y) dy , f ? h(x) =

∫
R2
+

f (x−y ∗)h(y) dy , y ∗ = (y1,−y2).

For each t > 0 we also set the operator
T (t) : (L∞(R2

+))2 → L∞(R2
+) as follows:

〈T (t)v , f 〉L2 = 〈v1, ∂2etB f 〉L2 − 〈v2, ∂1etB f 〉L2 for all f ∈ L1(R2
+).

(12)
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