Dissipative structure for the Timoshenko system with Cattaneo's type heat conduction

Naofumi Mori
Graduate School of Mathematics, Kyushu University
Joint work with
Shuichi Kawashima
Faculty of Mathematics, Kyushu University

The 9th Japanese-German International Workshop on Mathematical Fluid Dynamics

Waseda University, Nishi-waseda Campus

Introduction

Timoshenko system with the Cattaneo law:

$$\begin{cases} \varphi_{tt} - (\varphi_x - \psi)_x = 0, \\ \psi_{tt} - a^2 \psi_{xx} - (\varphi_x - \psi) + b\theta_x = 0, \\ \theta_t + q_x + b\psi_{tx} = 0, \\ \tau_0 q_t + q + \kappa \theta_x = 0, \end{cases}$$

where a>0, b>0, $\kappa>0$ and $0<\tau_0\leq 1$ are constants. $t\in [0,\infty)$ is a time variable, and $x\in\mathbb{R}$ is the spacial variable which denotes the point on the center line of the beam.

- $\varphi(x,t)$: the transversal displacement.
- $\psi(x,t)$: the rotation angle of the beam.
- $\theta(x,t)$: the temperature.
- q(x,t): the heat flow.

Previous results

Timoshenko system with the Cattaneo law:

$$\begin{cases} \varphi_{tt} - (\varphi_x - \psi)_x = 0, \\ \psi_{tt} - a^2 \psi_{xx} - (\varphi_x - \psi) + b\theta_x = 0, \\ \theta_t + q_x + b\psi_{tx} = 0, \\ \tau_0 q_t + q + \kappa \theta_x = 0. \end{cases}$$

- Timoshenko system
 - o S.P. Timoshenko (1921)
 - o S.P. Timoshenko (1922)
- Timoshenko system with friction
 - J.E.M. Rivera & R. Racke (2003)
 - o K. Ide, K. Haramoto & S. Kawashima (2008)
 - K. Ide & S. Kawashima (2008)

Previous results

Timoshenko system with the Cattaneo law:

$$\begin{cases} \varphi_{tt} - (\varphi_x - \psi)_x = 0, \\ \psi_{tt} - a^2 \psi_{xx} - (\varphi_x - \psi) + b\theta_x = 0, \\ \theta_t + q_x + b\psi_{tx} = 0, \\ \tau_0 q_t + q + \kappa \theta_x = 0. \end{cases}$$

- Timoshenko system with heat conduction
 - J.E.M. Rivera & R. Racke (2002)
 - H.D.F. Sare & R. Racke (2009)
 - o M.L. Santos, D.S.A. Jùnior & J.E.M. Rivera (2012)

The equivalent system is

$$\begin{cases} v_t - u_x + y = 0, \\ y_t - az_x - v + b\theta_x = 0, \\ u_t - v_x = 0, \\ z_t - ay_x = 0, \\ \theta_t + \sqrt{\kappa}\tilde{q}_x + by_x = 0, \\ \tau_0\tilde{q}_t + \tilde{q} + \sqrt{\kappa}\theta_x = 0, \end{cases}$$

where

$$v = \varphi_x - \psi, \quad u = \varphi_t, \quad z = a\psi_x, \quad y = \psi_t, \quad \tilde{q} = \frac{1}{\sqrt{\kappa}}q.$$

The system is written as

$$A^0U_t + AU_x + LU = 0,$$

Claim:

- (a) A^0 is real symmetric and positive definite.
- (b) A is real symmetric.
- (c) L is nonnegative definite but not real symmetric.

The system is written as

$$A^0U_t + AU_x + LU = 0,$$

Claim:

- (a) A^0 is real symmetric and positive definite.
- (b) A is real symmetric.
- (c) L is nonnegative definite but not real symmetric.
 - → The general theory is not applicable.

where $U = (v, y, u, z, \theta)^T$,

$$A^0 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & \tau_0 \end{pmatrix}, \ A = \begin{pmatrix} 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -a & b & 0 \\ -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -a & 0 & 0 & 0 & 0 \\ 0 & b & 0 & 0 & 0 & \sqrt{\kappa} \\ 0 & 0 & 0 & 0 & \sqrt{\kappa} & 0 \end{pmatrix},$$

Decay estimate

Theorem (Decay estimate)

When $P := \tau_0(1 - a^2 - b^2) + \kappa(a^2 - 1) = 0$, we have

$$\|\partial_x^k U(t)\|_{L^2} \le C(1+t)^{-\frac{1}{4}(\frac{1}{2}-\frac{1}{p})-\frac{k}{4}} \|U_0\|_{L^p} + Ce^{-ct} \|\partial_x^k U_0\|_{L^2}, \quad (1)$$

while in the case of $P \neq 0$, we have

$$\|\partial_x^k U(t)\|_{L^2} \le C(1+t)^{-\frac{1}{4}(\frac{1}{2}-\frac{1}{p})-\frac{k}{4}} \|U_0\|_{L^p} + C(1+t)^{-\frac{1}{2}} \|\partial_x^{k+l} U_0\|_{L^2},$$
 (2)

where $1 \le p \le 2$, and $k, l \ge 0$.

• Decay estimate of the regularity-loss type

Pointwise estimate

Lemma (Pointwise estimate)

When P = 0, we have

$$|\hat{U}(\xi,t)| \le Ce^{-c\rho_1(\xi)t}|\hat{U}_0(\xi)|,$$
 (3)

while in the case of $P \neq 0$, we have

$$|\hat{U}(\xi,t)| \le Ce^{-c\rho_2(\xi)t}|\hat{U}_0(\xi)|,$$
 (4)

where $\rho_1(\xi) = \xi^4/(1+\xi^2)^2$ and $\rho_2(\xi) = \xi^4/(1+\xi^2)^3$.

Dissipative structure

Dissipative structure:

- If P=0, then $\operatorname{Re} \lambda(i\xi) \leq -c\xi^4/(1+\xi^2)^2$. \to Standard type.
- If $P \neq 0$, then $\operatorname{Re} \lambda(i\xi) \leq -c\xi^4/(1+\xi^2)^3$.

ightarrow Regularity-loss type.

When $P \neq 0$, calculating the asymptotic expansion of $\lambda(i\xi)$ for $|\xi| \to \infty$, we have

Re
$$\lambda_j(i\xi) = \begin{cases} -\frac{b^2 \kappa}{2P^2} \xi^{-2} + \mathcal{O}(|\xi|^{-3}) & (j=1,2), \\ -\frac{\delta_j}{2} + \mathcal{O}(|\xi|^{-1}) & (j=3,4,5,6), \end{cases}$$

where $P:= au_0(1-a^2-b^2)+\kappa(a^2-1)$ and $\delta_j>0$ for any j=3,4,5,6.

Proof of pointwise estimate

Proof of pointwise estimate: The system in the Fourier space:

$$\begin{split} \hat{v}_t - i\xi \hat{u} + \hat{y} &= 0, \\ \hat{y}_t - ai\xi \hat{z} - \hat{v} + bi\xi \hat{\theta} &= 0, \\ \hat{u}_t - i\xi \hat{v} &= 0, \\ \hat{z}_t - ai\xi \hat{y} &= 0, \\ \hat{\theta}_t + \sqrt{\kappa} i\xi \hat{q} + bi\xi \hat{y} &= 0, \\ \tau_0 \hat{q}_t + \hat{q} + \sqrt{\kappa} i\xi \hat{\theta} &= 0. \end{split}$$

Using the energy method in the Fourier space, we construct the Lyapunov function for P=0 and $P\neq 0$, respectively.

Proof of pointwise estimate

Lyapunov function: When $P \neq 0$,

$$E = \frac{1}{2} |\hat{U}|^2 + \alpha_3 \frac{\xi}{1 + \xi^2} E_0 + \alpha_3 \alpha_2 \alpha_1 \frac{\xi^3}{(1 + \xi^2)^3} \left\{ E_1 + (1 + \xi^2) E_2 \right\}$$

+ $\alpha_3 \alpha_2 \frac{1}{(1 + \xi^2)^2} \left\{ (\xi^2 \mathbb{E}_3 + \xi \mathbf{E}_4 + E_5) + (1 + \xi^2) (\xi \mathbf{E}_6 + \mathbf{E}_7) \right\},$

where α_1 , $\alpha_2 > 0$ and $\alpha_3 > 0$ are small constants. Also, we put

$$\begin{split} |\hat{U}|^2 &= |\hat{v}|^2 + |\hat{y}|^2 + |\hat{u}|^2 + |\hat{z}|^2 + |\hat{\theta}|^2 + \tau_0 |\hat{q}|^2, \\ E_0 &= \tau_0 \mathrm{Re}\,(i\hat{\theta}\bar{q}), \quad E_1 = \mathrm{Re}\,(i\hat{v}\bar{u}), \quad E_2 = \mathrm{Re}\,(i\hat{z}\bar{y}), \quad E_3 = -\mathrm{Re}\,(\hat{v}\bar{y}), \\ E_4 &= -\mathrm{Re}\,(\hat{u}\bar{z}), \quad E_5 = -\mathrm{Re}\,(\hat{u}\bar{\theta}), \quad E_6 = \mathrm{Re}\,(i\hat{y}\bar{\theta}), \quad E_7 = \tau_0 \mathrm{Re}\,(\hat{v}\bar{q}). \end{split}$$

Moreover,

$$\mathbb{E}_3 = bE_3 + abE_4 + (a^2 - 1)E_5 - \frac{1 - a^2 - b^2}{\sqrt{\kappa}}E_7,$$

$$\mathbf{E}_4 = -bE_1 + E_6, \quad \mathbf{E}_6 = -bE_2 + aE_6, \quad \mathbf{E}_7 = bE_4 + aE_5.$$

Proof of pointwise estimate

We have

$$\frac{\partial}{\partial t}E + cF \le 0,$$

where

$$F = \frac{\xi^4}{(1+\xi^2)^3} |\hat{v}|^2 + \frac{\xi^4}{(1+\xi^2)^2} |\hat{y}|^2 + \frac{\xi^2}{(1+\xi^2)^2} |\hat{u}|^2 + \frac{\xi^2}{1+\xi^2} |\hat{z}|^2 + \frac{\xi^2}{1+\xi^2} |\hat{\theta}|^2 + |\hat{q}|^2.$$

Therefore we obtain

$$\frac{\partial}{\partial t}E + c\rho_2(\xi)E \le 0,$$

where $\rho_2(\xi) = \xi^4/(1+\xi^2)^3$. This yields the desired pointwise estimate (4).

Energy estimate

Energy estimate: When $P \neq 0$, as a simple corollary of

$$\frac{\partial}{\partial t}E + cF \le 0,$$

we have the following energy estimate:

$$\begin{split} &\|\partial_x^k U(t)\|_{H^{s-k}}^2 + \int_0^t (\|\partial_x^{k+2} v(\tau)\|_{H^{s-k-3}}^2 + \|\partial_x^{k+2} y(\tau)\|_{H^{s-k-2}}^2 \\ &+ \|\partial_x^{k+1} u(\tau)\|_{H^{s-k-2}}^2 + \|\partial_x^{k+1} z(\tau)\|_{H^{s-k-1}}^2 \\ &+ \|\partial_x^{k+1} \theta(\tau)\|_{H^{s-k-1}}^2 + \|\partial_x^k q(\tau)\|_{H^{s-k}}^2) d\tau \\ &\leq C \|\partial_x^k U(0)\|_{H^{s-k}}^2 \end{split}$$

where s > 0 and 0 < k < s.

• Energy estimate of the regularity-loss type: In the dissipation part, we have the regularity-loss for the component (v, u).

Proof of decay estimate: When P = 0, we have

$$\|\partial_x^k U(t)\|_{L^2(\mathbb{R})}^2 = C \int_{\mathbb{R}} \xi^{2k} |\hat{U}(\xi, t)|^2 d\xi$$

$$\leq C \int_{\mathbb{R}} \xi^{2k} e^{-\rho_1(\xi)t} |\hat{U}(\xi, 0)|^2 d\xi$$

$$= C \left(\int_{|\xi| \le 1} + \int_{|\xi| \ge 1} \right)$$

$$=: I_1 + I_2.$$

Here we have $\rho_1(\xi)=\xi^4/(1+\xi^2)^2\geq c\xi^4$ for $|\xi|\leq 1$ so that low frequency term I_1 is estimated as

$$I_1 = C \int_{|\xi| \le 1} |\xi|^{2k} e^{-c\rho_1(\xi)t} |\hat{U}(\xi, 0)|^2 d\xi$$

$$\le C \int_{|\xi| \le 1} |\xi|^{2k} e^{-c\xi^4 t} |\hat{U}(\xi, 0)|^2 d\xi.$$

We choose p' such that $\frac{1}{p}+\frac{1}{p'}=1$ for $1\leq p\leq 2$, and take r such that $\frac{1}{r}+\frac{2}{p'}=1$. Then applying the Hölder inequality and the Hausdorff-Young inequality, we have

$$I_{1} \leq C \||\xi|^{2k} e^{-c\xi^{4}t} \|_{L^{r}(|\xi| \leq 1)} \|\hat{U}_{0}\|_{L^{p'}}^{2}$$

$$\leq C(1+t)^{-\frac{1}{4r}-\frac{k}{2}} \|\hat{U}_{0}\|_{L^{p'}}^{2}$$

$$\leq C(1+t)^{-\frac{1}{2}(\frac{1}{p}-\frac{1}{2})-\frac{k}{2}} \|U_{0}\|_{L^{p}}^{2}.$$

On the other hand, in high frequency region $|\xi|\ge 1$, we have $\rho_1(\xi)=\xi^4/(1+\xi^2)^2\ge c$ and hence

$$I_{2} = C \int_{|\xi| \ge 1} |\xi|^{2k} e^{-c\rho_{1}(\xi)t} |\hat{U}(\xi, 0)|^{2} d\xi$$

$$\leq C e^{-ct} \int_{|\xi| \ge 1} |\xi|^{2k} |\hat{U}(\xi, 0)|^{2} d\xi$$

$$\leq C e^{-ct} ||\partial_{x}^{k} U_{0}||_{L^{2}}^{2}.$$

This shows the desired decay estimate (1).

Next we consider the case of $P \neq 0$.

$$\|\partial_x^k U(t)\|_{L^2(\mathbb{R})}^2 = C \int_{\mathbb{R}} \xi^{2k} |\hat{U}(\xi, t)|^2 d\xi$$

$$\leq C \int_{\mathbb{R}} \xi^{2k} e^{-\rho_2(\xi)t} |\hat{U}(\xi, 0)|^2 d\xi$$

$$= C \left(\int_{|\xi| \le 1} + \int_{|\xi| \ge 1} \right)$$

$$=: J_1 + J_2.$$

Since $\rho_2(\xi) = \xi^4/(1+\xi^2)^3 \ge c\xi^4$ for $|\xi| \le 1$, the low frequency part J_1 is estimated just in the same way as in the case of P=0.

On the other hand, in high frequency region $|\xi| \ge 1$, we see that $\rho_2(\xi) = \xi^4/(1+\xi^2)^3 \ge c|\xi|^{-2}$. Thus we have

$$J_{2} = C \int_{|\xi| \ge 1} \xi^{2k} e^{-c\rho_{2}(\xi)t} |\hat{U}(\xi,0)|^{2} d\xi$$

$$\leq C \int_{|\xi| \ge 1} \xi^{2k} e^{-c\xi^{-2}t} |\hat{U}(\xi,0)|^{2} d\xi$$

$$\leq C \sup_{|\xi| \ge 1} (\xi^{-2l} e^{-c\xi^{-2}t}) \int_{|\xi| \ge 1} \xi^{2(k+l)} |\hat{U}(\xi,0)|^{2} d\xi$$

$$\leq C (1+t)^{-l} \|\partial_{x}^{k+l} U_{0}\|_{L^{2}(\mathbb{R})}^{2}.$$

This shows the desired decay estimate (2).

Summary

Summary:

- Timoshenko system with the Cattaneo law
 - o Decay estimate
 - Pointwise estimate
 - Decay structure
 - o Energy estimate

Summary

Summary:

- Timoshenko system with the Cattaneo law
 - Decay estimate
 - Pointwise estimate
 - Decay structure
 - o Energy estimate

Thank You for Your Attention