Navier-Stokes Flow in Spatially Periodic Domains

Jonas Sauer

IRTG Darmstadt Tokyo Department of Mathematics Technische Universität Darmstadt

November 5, 2013

$$(R) \left\{ \begin{array}{rcl} \lambda u - \Delta u + \nabla p & = & f & \text{in } H, \\ \operatorname{div} u & = & g & \text{in } H, \end{array} \right. \quad \text{in } L^q_\omega(H) \text{-setting}$$

with
$$\lambda \in \Sigma_{\theta}$$
, $\theta \in (0, \pi)$.

Stokes resolvent problem

$$(R) \left\{ \begin{array}{rcl} \lambda u - \Delta u + \nabla p & = & f & \text{in } H, \\ \operatorname{div} u & = & g & \text{in } H, \end{array} \right. \quad \text{in } L^q_\omega(H) \text{-setting}$$

with
$$\lambda \in \Sigma_{\theta}$$
, $\theta \in (0, \pi)$.

• $H := \mathbb{R}^{n-1} \times \mathbb{R}/\mathbb{Z}$ locally compact abelian group

$$(R) \left\{ \begin{array}{rcl} \lambda u - \Delta u + \nabla p & = & f & \text{in } H, \\ \text{div } u & = & g & \text{in } H, \end{array} \right. \quad \text{in } L^q_{\omega}(H) \text{-setting}$$

with
$$\lambda \in \Sigma_{\theta}$$
, $\theta \in (0, \pi)$.

- ullet $H:=\mathbb{R}^{n-1} imes\mathbb{R}/\mathbb{Z}$ locally compact abelian group
- $\omega \ge 0$ weight function in Muckenhoupt class $A_q(H)$

$$(R) \left\{ \begin{array}{rcl} \lambda u - \Delta u + \nabla p & = & f & \text{in } H, \\ \operatorname{div} u & = & g & \text{in } H, \end{array} \right. \quad \text{in } L^q_\omega(H) \text{-setting}$$

with
$$\lambda \in \Sigma_{\theta}$$
, $\theta \in (0, \pi)$.

- ullet $H:=\mathbb{R}^{n-1} imes\mathbb{R}/\mathbb{Z}$ locally compact abelian group
- $\omega \geq 0$ weight function in Muckenhoupt class $A_q(H)$
- Use (simultaneous) Fourier transform on group H, not sequentially performing Fourier series expansion on \mathbb{R}/\mathbb{Z} and Fourier transform on \mathbb{R}^{n-1}

$$(R) \left\{ \begin{array}{rcl} \lambda u - \Delta u + \nabla p & = & f & \text{in } \frac{H}{H}, \\ \text{div } u & = & g & \text{in } \frac{H}{H}, \end{array} \right. \quad \text{in } L^q_{\omega}(H) \text{-setting}$$

with
$$\lambda \in \Sigma_{\theta}$$
, $\theta \in (0, \pi)$.

- $H := \mathbb{R}^{n-1} \times \mathbb{R}/\mathbb{Z}$ locally compact abelian group
- $\omega \geq 0$ weight function in Muckenhoupt class $A_q(H)$
- Use (simultaneous) Fourier transform on group H, not sequentially performing Fourier series expansion on \mathbb{R}/\mathbb{Z} and Fourier transform on \mathbb{R}^{n-1}

Definition

 $1 < q < \infty$. $\omega \ge 0$ is in Muckenhoupt class $A_q(\mathbb{R}^n)$, if

$$\mathcal{A}_q(\omega) := \sup_{U \subset \mathbb{R}^n} \left(\ \frac{1}{|U|} \ \int_U \omega \, \mathrm{d}x \right) \left(\ \frac{1}{|U|} \ \int_U \omega^{-\frac{q'}{q}} \, \mathrm{d}x \right)^{\frac{q}{q'}} < \infty,$$

Assume G LCA group furnished with ball-like sets around zero:

Definition

 $1 < q < \infty$. $\omega \ge 0$ is in Muckenhoupt class $A_q(\mathbb{R}^n)$, if

$$\mathcal{A}_q(\omega) := \sup_{U \subset \mathbb{R}^n} \left(\ \frac{1}{|U|} \ \int_U \omega \, \mathrm{d}x \right) \left(\ \frac{1}{|U|} \ \int_U \omega^{-\frac{q'}{q}} \, \mathrm{d}x \right)^{\frac{q}{q'}} < \infty,$$

Assume G LCA group furnished with ball-like sets around zero:

• U_k , $k \in \mathbb{Z}$ nested, relatively compact,

Definition

 $1 < q < \infty$. $\omega \ge 0$ is in Muckenhoupt class $A_q(\mathbb{R}^n)$, if

$$\mathcal{A}_q(\omega) := \sup_{U \subset \mathbb{R}^n} \left(\ \frac{1}{|U|} \ \int_U \omega \, \mathrm{d}x \right) \left(\ \frac{1}{|U|} \ \int_U \omega^{-\frac{q'}{q}} \, \mathrm{d}x \right)^{\frac{q}{q'}} < \infty,$$

Assume G LCA group furnished with ball-like sets around zero:

- U_k , $k \in \mathbb{Z}$ nested, relatively compact,
- form a local base of $0 \in G$,

Definition

 $1 < q < \infty$. $\omega \ge 0$ is in Muckenhoupt class $A_q(\mathbb{R}^n)$, if

$$\mathcal{A}_q(\omega) := \sup_{U \subset \mathbb{R}^n} \left(\ \frac{1}{|U|} \ \int_U \omega \, \mathrm{d}x \right) \left(\ \frac{1}{|U|} \ \int_U \omega^{-\frac{q'}{q}} \, \mathrm{d}x \right)^{\frac{q}{q'}} < \infty,$$

Assume G LCA group furnished with ball-like sets around zero:

- U_k , $k \in \mathbb{Z}$ nested, relatively compact,
- form a local base of $0 \in G$.
- satisfy the doubling property

$$\mu(U_{k+1}) \le A\mu(U_k), \qquad A \ge 1.$$

Definition

 $1 < q < \infty$. $\omega \ge 0$ is in Muckenhoupt class $A_q(\mathbb{R}^n)$, if

$$\mathcal{A}_q(\omega) := \sup_{U \subset \mathbb{R}^n} \left(\ \frac{1}{|U|} \ \int_U \omega \, \mathrm{d}x \right) \left(\ \frac{1}{|U|} \ \int_U \omega^{-\frac{q'}{q}} \, \mathrm{d}x \right)^{\frac{q}{q'}} < \infty,$$

Assume G LCA group furnished with ball-like sets around zero:

- U_k , $k \in \mathbb{Z}$ nested, relatively compact,
- form a local base of $0 \in G$.
- satisfy the doubling property

$$\mu(U_{k+1}) \leq A\mu(U_k), \qquad A \geq 1.$$

Definition

 $1 < q < \infty$. $\omega \ge 0$ is in Muckenhoupt class $A_q(G)$, if

$$\mathcal{A}_q(\omega) := \sup_{U \subset \mathbf{G}} \, \left(\frac{1}{\mu(U)} \int_U \omega \, \mathrm{d} \mu \right) \left(\frac{1}{\mu(U)} \int_U \omega^{-\frac{q'}{q}} \, \mathrm{d} \mu \right)^{\frac{q}{q'}} < \infty,$$

where the supremum runs over all ball-like sets U in G.

Proposition

① Open-ended property: If $\omega \in A_q(\mathbb{R}^n)$, then there is p < q such that $\omega \in A_p(\mathbb{R}^n)$ (note that this is trivial for p > q)

Proposition

- **①** Open-ended property: If $\omega \in A_q(\mathbb{R}^n)$, then there is p < q such that $\omega \in A_p(\mathbb{R}^n)$ (note that this is trivial for p > q)
- **2** Boundedness of maximal operator: $\omega \in A_q(\mathbb{R}^n)$ if and only if the maximal operator

$$\mathcal{M}_{\mathbb{R}^n} f(x) := \sup_{\mathbb{R}^n \supset U \ni x} \frac{1}{|U|} \int_U |f| dx$$

is bounded in $L^q_\omega(\mathbb{R}^n)$

Proposition

- **1** Open-ended property: If $\omega \in A_q(\mathbb{R}^n)$, then there is p < q such that $\omega \in A_p(\mathbb{R}^n)$ (note that this is trivial for p > q)
- **2** Boundedness of maximal operator: $\omega \in A_q(\mathbb{R}^n)$ if and only if the maximal operator

$$\mathcal{M}_{\mathbb{R}^n} f(x) := \sup_{\mathbb{R}^n \supset U \ni x} \frac{1}{|U|} \int_U |f| dx$$

is bounded in $L^q_\omega(\mathbb{R}^n)$

3 Extrapolation property: T_{λ} family of linear operators, uniformly bounded in $L^q_{\omega}(\mathbb{R}^n)$ for one $1 < q < \infty$ and all weights $\omega \in A_q(\mathbb{R}^n) \Rightarrow \mathcal{R}$ -bounded in $L^p_{\nu}(\mathbb{R}^n)$ for all exponents $1 and all weights <math>\nu \in A_p(\mathbb{R}^n)$

Theorem 1 (S. 2013)

- **1** Open-ended property: If $\omega \in A_q(G)$, then there is p < q such that $\omega \in A_p(G)$ (note that this is trivial for p > q)
- **2** Boundedness of maximal operator: $\omega \in A_q(G)$ if and only if the maximal operator

$$\mathcal{M}_{\boldsymbol{G}}f(x) := \sup_{\boldsymbol{G} \supset U \ni x} \frac{1}{\mu(U)} \int_{U} |f| \,\mathrm{d}\mu$$

is bounded in $L^q_\omega(G)$

3 Extrapolation property: T_{λ} family of linear operators, uniformly bounded in $L_{\omega}^{q}(G)$ for one $1 < q < \infty$ and all weights $\omega \in A_{q}(G) \Rightarrow \mathcal{R}$ -bounded in $L_{\nu}^{p}(G)$ for all exponents $1 and all weights <math>\nu \in A_{p}(G)$

Theorem 2, S. 2013

- $n \ge 2, \ 0 < \theta < \pi$
- $1 < q < \infty$, $\omega \in A_q(H)$

Theorem 2, S. 2013

- $n \ge 2, \ 0 < \theta < \pi$
- $1 < q < \infty$, $\omega \in A_q(H)$

$$f \in L^q_\omega(H)$$
, $g \in W^{1,q}_{\omega,\operatorname{div}}(H)$ and $\lambda \in \Sigma_ heta$

Theorem 2, S. 2013

- n > 2, $0 < \theta < \pi$
- $1 < q < \infty$, $\omega \in A_q(H)$

$$f \in L^q_\omega(H)$$
, $g \in W^{1,q}_{\omega, \operatorname{div}}(H)$ and $\lambda \in \Sigma_\theta$

 \Rightarrow unique solution $(u,p) \in W^{2,q}_{\omega}(H) \times \hat{W}^{1,q}_{\omega}(H)$ to (R) satisfying

$$\|\lambda u, \nabla^2 u, \nabla p\|_{L^q_{\omega}(H)}$$

$$\leq c \Big(\|f\|_{L^q_{\omega}(H)} + (1+|\lambda|) \|g\|_{W^{1,q}_{\omega,\operatorname{div}}(H)} \Big)$$

Theorem 2, S. 2013

- n > 2, $0 < \theta < \pi$
- $1 < q < \infty, \ \omega \in A_q(H)$

$$f \in L^q_\omega(H), \ 0 \in W^{1,q}_{\omega, \operatorname{div}}(H) \ \text{and} \ \lambda \in \Sigma_\theta$$

 \Rightarrow unique solution $(u,p) \in W^{2,q}_{\omega}(H) \times \hat{W}^{1,q}_{\omega}(H)$ to (R) satisfying

$$\|\lambda u, \nabla^2 u, \nabla p\|_{L^q_{\omega}(H)}$$

$$\leq c \left(\|f\|_{L^q_{\omega}(H)} + (1+|\lambda|) \|g\|_{W^{1,q}_{\omega,\operatorname{div}}(H)} \right)$$

Theorem 2, S. 2013

- n > 2, $0 < \theta < \pi$
- $1 < q < \infty$, $\omega \in A_q(H)$

$$f \in L^q_\omega(H), \ 0 \in W^{1,q}_{\omega, \operatorname{div}}(H) \ \text{and} \ \lambda \in \Sigma_\theta$$

 \Rightarrow unique solution $(u,p) \in W^{2,q}_{\omega}(H) \times \hat{W}^{1,q}_{\omega}(H)$ to (R) satisfying

$$\|\lambda u, \nabla^2 u, \nabla p\|_{L^q_{\omega}(H)}$$

$$\leq c \left(\|f\|_{L^q_{\omega}(H)} + (1+|\lambda|) \|g\|_{W^{1,q}_{\omega,\operatorname{div}}(H)} \right)$$

Theorem 3, S. 2013

The Stokes operator $A_{q,\omega}:W^{2,q}_{\omega}(H)\cap L^q_{\omega,\sigma}(H)\to L^q_{\omega,\sigma}(H)$ has maximal L^p -regularity.

Proof of Theorem 2 ($\omega=1$)

Ingredients

• Solution formula (choose $\eta = (\xi', 2\pi k)$ as phase variable)

$$u = \mathcal{F}^{-1}\left(rac{1}{\lambda + |\eta|^2}\left(id - rac{\eta \otimes \eta}{|\eta|^2}
ight)\hat{f} + rac{i\eta}{|\eta|^2}\hat{g}
ight)$$

Proof of Theorem 2 ($\omega=1$)

Ingredients

• Solution formula (choose $\eta = (\xi', 2\pi k)$ as phase variable)

$$u = \mathcal{F}^{-1}\left(rac{1}{\lambda + |\eta|^2}\left(id - rac{\eta \otimes \eta}{|\eta|^2}
ight)\hat{f} + rac{i\eta}{|\eta|^2}\hat{g}
ight)$$

• g = 0: Transference principle and Mikhlin's multiplier theorem.

Proof of Theorem 2 ($\omega=1$)

Ingredients

• Solution formula (choose $\eta = (\xi', 2\pi k)$ as phase variable)

$$\mathbf{u} = \mathcal{F}^{-1} \left(\frac{1}{\lambda + |\eta|^2} \left(id - \frac{\eta \otimes \eta}{|\eta|^2} \right) \hat{\mathbf{f}} + \frac{i\eta}{|\eta|^2} \hat{\mathbf{g}} \right)$$

- g = 0: Transference principle and Mikhlin's multiplier theorem.
- f = 0: Split function spaces with projection

$$\mathcal{P}g(x) := \frac{1}{L} \int_0^L g(x', x_n) dx_n = (\mathcal{F}^{-1}\chi_{\{k=0\}}\hat{g})(x)$$

Proof of Theorem 2 ($\omega = 1$)

Ingredients

• Solution formula (choose $\eta = (\xi', 2\pi k)$ as phase variable)

$$\mathbf{u} = \mathcal{F}^{-1} \left(\frac{1}{\lambda + |\eta|^2} \left(id - \frac{\eta \otimes \eta}{|\eta|^2} \right) \hat{\mathbf{f}} + \frac{i\eta}{|\eta|^2} \hat{\mathbf{g}} \right)$$

- g = 0: Transference principle and Mikhlin's multiplier theorem.
- f = 0: Split function spaces with projection

$$\mathcal{P}g(x) := \frac{1}{L} \int_0^L g(x', x_n) dx_n = (\mathcal{F}^{-1}\chi_{\{k=0\}}\hat{g})(x)$$

• $L^q(H) = L^q(\mathbb{R}^{n-1}) \oplus (id - \mathcal{P})L^q(H)$ and similar for Sobolev spaces

Thank you very much for your attention!

Questions?