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Logical Extraction of Bounds



Proof Theory and Consistency Proofs

Proof Theory started with D. Hilbert’s program to prove the

consistency of mathematics by finitistic means.

Not possible in the strict sense due to Gödel’s 2nd incompleteness

theorem.

Program is still alive: partial realizations possible, relative

consistency proofs.

Important tools (so-called proof interpretation) where developed in

this program which are now used in mathematical practice.

G. Kreisel (since 50’s): use proof interpretations to extract new

information from (prima facie noneffective) proofs.
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Extractive Proof Theory: Proof Interpretations

Let T1 and T2 be theories with languages L(T1) and L(T2).

Interpret propositions A from L(T1) (inductively over the logical

structure of A) by propositions AI from L(T2).

Transform a proof p of A into a proof pI of AI (induction on p).

AI contains the additional computational quantitative

information on A we are looking for such as effective bounds.

Central Method: Modern extensions of Gödel’s 1958 (developed as part

of modified Hilbert program) Functional (‘Dialectica’) Interpretation!
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‘Proof Mining’ in core mathematics

During the last 20 years this proof-theoretic approach has resulted in

numerous new quantitative results as well as qualitative

uniformity results e.g. in: nonlinear analysis, fixed point theory,

ergodic theory, topological dynamics, approximation theory etc.

General logical metatheorems explain this as instances of logical

phenomena (K. 2005, Gerhardy/K. 2008, TAMS).

Some of the logical tools used have recently been rediscovered in

special cases by Terence Tao prompted by concrete mathematical

needs “finitary analysis”!
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Setting: Let P,K be concrete Polish resp. compact Polish spaces and

X an abstract metric/normed space.

Goal: Effective bounds for

∀x ∈ P∀y ∈ K ∀z1 ∈ X∀z2 ∈ XX ∀z3 ∈ XIN ∃n ∈ IN A(x, y, z, n)-theorems.

Restriction: Because of classical logic: in general A must be existential.

If only restricted use of ϕ ∨ ¬ϕ : arbitrary A.

Then general logical metatheorems (K. Trans.AMS 2005) guarantee

the extractability of effective bounds ‘∃n ∈ Φ(x, b1, b2, b3)’ which are

independent from parameters y ∈ K (compactness necessary for

separable spaces);

independent from parameters z1, z2, z3 provided that appropriate

norm-bounds b1, b2, b3 on z1, z2, z3 are available.
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Abstract (nonseparable) structures

Examples of such spaces X : metric, hyperbolic, CAT(0), normed, their

completions, Hilbert, uniformly convex, uniformly smooth, uniformly

nonsquare, abstract Lp and C (K ) spaces (Günzel/K.)... (not: separable,

strictly convex or smooth spaces).

Also several metric structures X1, . . . ,Xn simultaneously (Günzel/K.).

For separable (Polish) structures (represented as continuous

image of ININ), the compactness is necessary for the independence

from y ∈ K.

Theorems for abstract spaces X (not assumed to be separable!):

uniform bounds depending only on norm bounds on the X -data.

Crucially used for this that the proof treats X as abstract structure

that is not represented as separable space (via ININ).
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Formal systems for analysis with abstract spaces X

Types: (i) IN,X are types, (ii) with ρ, τ also ρ→ τ is a type.

PAω,X is the extension of Peano Arithmetic to all types.

Aω,X :=PAω,X+DC, where

DC: axiom of dependent choice for all types

Implies full comprehension for numbers (higher order arithmetic).

Equality defined notion: xX =X yX :≡ dX(x, y) =IR 0IR.. In general

only rule

If s =X t has been proved, then f(s) =X f(t).

Aω[X , ‖ · ‖ . . .] results by adding constants with axioms expressing e.g.

that (X , ‖ · ‖, . . .) is a normmed, uniformly convex, Hilbert . . . space.
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Keeping track of uniform bounds: majorization

y , x functionals of types ρ, ρ̂ := ρ[IN/X ] :

xIN &IN yIN :≡ x ≥ y

xIN &X yX :≡ x ≥ ‖y‖.

For complex types ρ→ τ this is extended in a hereditary fashion.

Example:

f∗ &X→X f ≡ ∀n ∈ IN, x ∈ X[n ≥ ‖x‖ → f∗(n) ≥ ‖f(x)‖].

If f : X→ X is nonexpansive (n.e.), i.e. d(f(x), f(y)) ≤ d(x, y).

Then for ‖a‖, ‖a− f(a)‖ ≤ b and f∗(n) := n + 3b: f∗ &X→X f.
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Theorem (K., Trans.AMS 2005, Gerhardy/K.,Trans.AMS 2008)

Let P,K be Polish resp. compact metric spaces, A∃ ∃-formula,

z := z1, . . . zk variables ranging over X , IN→ X or X → X .

If Aω[X , ‖ · ‖] proves

∀x ∈ P∀y ∈ K∀zτ∃vINA∃(x, y, z, v),

then one can extract a computable Φ : ININ × IN(IN) → IN s.t. the

following holds in every nontrivial normed space: for all representatives

rx ∈ ININ of x ∈ P and all zτ and z∗ ∈ IN(IN) s.t. z∗ &τ z :

∀y ∈ K∃v ≤ Φ(rx, z∗) A∃(x, y, z, v).

Interesting connections to uniformity in ultraproducts (continuous

model theory; Keisler, Henson,. . .).
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The running theme: convergence statements in analysis

Let (xn) be a Cauchy sequence in a metric space (X , ρ), i.e.

∀k ∈ IN ∃n ∈ IN∀i, j ≥ n (ρ(xi, xj) ≤ 2−k) ∈ ∀∃∀

is noneffectively equivalent to its Gödel functional interpretation

∀k ∈ IN∀g ∈ ININ∃n ∈ IN∀i, j ∈ [n; n+g(n)] (ρ(xi, xj) < 2−k) ∈ ∀∃

Herbrand normal form or metastability (Tao).

A bound Φ(k, g) on ‘∃n’ in the latter formula is a rate of metastability

(introduced by Kreisel in 1951 as no-counterexample interpretation).
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Effective full rates of convergence?

In general impossible: There exists a computable decreasing

sequence (an) of rationals in [0, 1] (an) with no computable rate

of convergence (Specker 1949).

Usually possible for asymptotic regularity results

ρ(xn, f(xn))→ 0,

even when (xn) may not converge to a fixed point of f .

Possible for (xn) if sequence converges to unique fixed

point/solution.

Possible if proof is ‘semi-constructive’.

Effective and uniform rates metastability: always possible.
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Ineffective convergence proofs in fluid dynamics

Specialized weak and strong compactness arguments are ubiquitous

in fluid dynamics to establish weak or strong solutions of NSE;

E.g. Temam 1995 shows that a sequence (uk) based on a suitable

space/time discretization schema for NSE is bounded and so has a

weak in L2 (as well as weak-star in L∞) convergent subsequence;

Using a specialized Ascoli-type compactness argument, the

subsequence even converges strongly in L2 (and even in Lq for

1 ≤ q <∞), needed for the passage to the limit in the nonlinear

term, and so converges towards a solution u of NSE;

By the uniqueness of u (in the situation at hand) already the entire

sequence (uk) converges to u.

Many noneffective convergence proofs exist in the context of the

abstract nonlinear semigroup approach to abstract Cauchy problems

(see below).
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Rates of Asymptotic
Regularity

Logical Extraction of Bounds



Accretive operators (F.E. Browder, T. Kato)

X Banach space, C ⊂ X convex, f : C → C pseudocontraction if

∀u, v ∈ C∀λ > 1
(
(λ− 1)‖u− v‖ ≤ ‖(λI− f)(u)− (λI− f)(v)‖

)
.

f is a pseudocontraction iff A := Id − f is accretive (monotone), i.e

∀u, v ∈ C∀s > 0
(
‖u− v‖ ≤ ‖u− v + s(Au− Av)‖, i.e.

∀u, v ∈ C (〈Au− Av, u− v〉 ≥ 0) in Hilbert space.

Accretive (pseudocontractive, dissipative) operators are used (often

set-valued) in the nonlinear semigroup approach to PDE’s (Brezis,

Crandall, Liggett, Lions..., Barbu, Bothe).

See application further below!
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Connection to Fluid Dynamics

That y : [0,T ]→ V ′ with V :=:= {y ∈ (H1
0 (Ω))N : ∇y = 0} is a weak

solution to the classical Navier-Stokes equations can be written as

dy

dt
(t) + v0Ay(t) + By(t) = f(t), a.e. t ∈ (0,T),

where dy/dt is the strong derivative of y : [0,T]→ V′, A := −P∆,

B := P(y · ∇)y with the Helmholtz-Leray operator P.

Define for each M > 0

BMy :=

{
By, if ‖y‖ ≤ M,

M2

‖y‖2 By, if ‖y‖ > M.

Then for a suitable αM > 0 the operator v0A + BM + αM · I is

(m)-accretive (e.g. V. Barbu: Nonlinear Differential Equations of

Monotone Types in Banach spaces. Springer 2010).
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Asymptotic regularity for pseudocontractions

Let X be a Banach space, C ⊂ X a bounded convex subset and

f : C → C a (Lipschitzian) pseudocontraction.

In 1974 Bruck considered the following iteration schema

xn + 1 := (1− λn)xn + λnf(xn)− λnθn(xn − x1),

for suitable (λn), (θn) in (0, 1] and showed asymptotic regularity and

strong convergence (towards a fixed point) results in Hilbert space.
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Asymptotic regularity for Lipschitzian pseudocontractions

in arbitrary Banach spaces

Theorem (Chidume,Zegeye 2004): lim
n→∞

‖xn − f(xn)‖ = 0, where

(i) lim θn = 0, (ii)
∞∑

n=1

λnθn =∞, (iii) lim λn

θn
= 0,

(iv) lim
θn−1
θn
−1

λnθn
= 0, (v) λn(1 + θn) ≤ 1.

Let D ≥ diam(C ), L-Lipschitz constant and (λn), (θn) ⊂ (0, 1] with rates

of conv./div. Ri : (0,∞)→ N
1 ∀ε > 0∀n ≥ R1 (ε) (θn ≤ ε),

2 ∀x ∈ (0,∞)

(
R2(x)∑
n=1

λnθn ≥ x

)
,

3 ∀ε > 0∀n ≥ R3 (ε) (λn ≤ θnε),

4 ∀ε > 0∀n ≥ R4(ε)

( ∣∣∣ θn−1
θn
−1

∣∣∣
λnθn

≤ ε

)
.
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Theorem (D. Körnlein/K. Nonlinear Analysis 2011)

∀ε > 0∀n ≥ Ψ (D, L,R1,R2,R3,R4, ε) (‖xn − fxn‖ < ε)

where

Ψ (D, L,R1,R2,R3,R4, ε) = max
{

N2 (C) + 1,R1

(
ε

2D

)
+ 1

}
and

N1 (ε) := max

{
R3

(
ε

4D2 (2 + L)

)
,R4

(√
ε

D2
+ 1− 1

)}
,

N2 (x) := R2

(
x

2

)
+ 1,

C :=
8 (1 + L)2 D2

ε2
+ 2

(
N1

(
ε2

8 (1 + L)2

)
− 1

)
.

Exponential bound for unbounded C if Fix(f ) 6= ∅.
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Bounds on Metastability

Tao used a rate of metastability for the von Neumann Mean Ergodic

Theorem as base step for a generalization to commuting families of

operators.

‘We shall establish Theorem 1.6 by “finitary ergodic theory” techniques,

reminiscent of those used in [Green-Tao]...’ ‘The main advantage of

working in the finitary setting ... is that the underlying dynamical system

becomes extremely explicit’...‘In proof theory, this finitisation is known as

Gödel functional interpretation...which is also closely related to the

Kreisel no-counterexample interpretation’

(T. Tao: Norm convergence of multiple ergodic averages for commuting

transformations, Ergodic Theor. and Dynam. Syst. 28, 2008)
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Let (xn) be the Bruck iteration of an L-Lipschitzian pseudo-contraction

f : C→ C, where C is a D-bounded closed and convex subset of a real

Hilbert space X.

Then (xn) converges to a fixed point of f (Bruck, Chidume, Zegeye).

Theorem (Körnlein/K., Num. Funct. Anal. Opt. 2013)

{
∀ε > 0∀g : IN→ IN∃n ≤ χM

(
g

(d64D2/ε2e)
h,χ (1)

)
+ Ψ(ε) + 1

∀i, j ∈ [n; n + g (n)]∀k ≥ n (‖xi − xj‖ ≤ ε ∧ ‖Txk − xk‖ ≤ ε) ,

where h : IN→ IN such that h(n) ≥ 1/θn for all n ∈ IN

and χ(n) := R1(1/n), g′(n) := g (n + 1 + Ψ (ε)) + Ψ (ε) + 1,

gh,χ(n) := max {h (i) : i ≤ χ(n) + g′ (χ(n))}

Here R1 and Ψ are as in the previous theorem.
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Cauchy problems and set-valued accretive operators

A set-valued operator A : D(A)→ 2X is accretive if

∀(x, u), (y, v) ∈ A
(
〈u− v, x− y〉+ ≥ 0

)
,

where 〈y , x〉+ := max{〈y , j〉 : j ∈ J(x)} for the normalized duality map

J of the Banach space X .

A with 0 ∈ Az is uniformly accretive at zero with modulus

Θ : IN2 → IN if, moreover,

∀k,K ∈ IN ∀(x, u) ∈ A
(
‖x−z‖ ∈ [2−k,K]→ 〈u, x−z〉+ ≥ 2−ΘK(k)

)
(Koutsoukou-Argyraki/K. 2014). E.g. this holds for m-ψ-strongly

accretive operators or even for φ-accretive operators in the sense of

Garćıa-Falset if φ has some normal form (which is the case in many

applications).

Logical Extraction of Bounds



Cauchy problems and set-valued accretive operators

A set-valued operator A : D(A)→ 2X is accretive if

∀(x, u), (y, v) ∈ A
(
〈u− v, x− y〉+ ≥ 0

)
,

where 〈y , x〉+ := max{〈y , j〉 : j ∈ J(x)} for the normalized duality map

J of the Banach space X .

A with 0 ∈ Az is uniformly accretive at zero with modulus

Θ : IN2 → IN if, moreover,

∀k,K ∈ IN ∀(x, u) ∈ A
(
‖x−z‖ ∈ [2−k,K]→ 〈u, x−z〉+ ≥ 2−ΘK(k)

)
(Koutsoukou-Argyraki/K. 2014).

E.g. this holds for m-ψ-strongly

accretive operators or even for φ-accretive operators in the sense of

Garćıa-Falset if φ has some normal form (which is the case in many

applications).

Logical Extraction of Bounds



Cauchy problems and set-valued accretive operators

A set-valued operator A : D(A)→ 2X is accretive if

∀(x, u), (y, v) ∈ A
(
〈u− v, x− y〉+ ≥ 0

)
,

where 〈y , x〉+ := max{〈y , j〉 : j ∈ J(x)} for the normalized duality map

J of the Banach space X .

A with 0 ∈ Az is uniformly accretive at zero with modulus

Θ : IN2 → IN if, moreover,

∀k,K ∈ IN ∀(x, u) ∈ A
(
‖x−z‖ ∈ [2−k,K]→ 〈u, x−z〉+ ≥ 2−ΘK(k)

)
(Koutsoukou-Argyraki/K. 2014). E.g. this holds for m-ψ-strongly

accretive operators or even for φ-accretive operators in the sense of
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Consider the following homogeneous Cauchy problem for an accretive A

(with range condition):

(1)

{
u′(t) + A(u(t)) 3 0, t ∈ [0,∞)

u(0) = x0,

which has a unique integral solution for x0 ∈ D(A) given by the

Crandall-Liggett formula

u(t) := S(t)(x0) := lim
n→∞

(I +
t

n
A)−n(x0).

A continuous v : [0,∞)→ D(A) is an almost-orbit of the

nonexpansive semigroup S if

lim
s→∞

( sup
t∈[0,∞)

‖v(t + s)− S(t)v(s)‖) = 0.
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Theorem (Garćıa-Falset 2005)

Let A be a φ-accretive (at zero) operator with range condition s.t. (1)

has a strong solution for each xo ∈ D(A). Then every almost-orbit (for

the semigroup generated by −A) strongly converges to the zero z of A.

Theorem (Koutsoukou-Argyraki/K. 2014)

Same as above but A uniformly accretive at zero with modulus Θ. Then

∀k ∈ IN∀g : IN→ IN∃n ≤ Ψ∀x ∈ [n, n+g(n)]
(
‖v(x)−z‖ < 2−k

)
,

where

Ψ(k, g,B,Φ,Θ) := Φ(k + 1, g) + h(Φ(k + 1, g)), with

h(n) := (B(n) + 2) · 2ΘK(n)(k+2)+1, g(n) := g(n + h(n)) + h(n),

K(n) :=
⌈√

2(B(n) + 1)
⌉
, B(n) ≥ 1

2
‖v(n)− z‖2,

and Φ is rate of metastability for v, i.e.

∀k, g ∃n ≤ Φ(k, g)∀t ∈ [0, g(n)](‖v(t + n)− S(t)v(n)‖ ≤ 2−k).
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Application (compare Garćıa-Falset, 2005)

Consider now the inhomogeneous Cauchy problem (A as before):

(2)

{
u′(t) + A(u(t)) 3 f(t), t ∈ [0,∞)

u(0) = x,

where f ∈ L1(0,∞,X).

Then for each x ∈ D(A) the integral solution u(·) of (2) is an

almost-orbit (Miyadera-Kobayasi 1982) and

Proposition (Koutsoukou-Argyraki/K., 2014)

ΦM(k, g) := g̃M·2k+1

(0) with g̃(n) := n + g(n), M ≥
∫∞

0 ‖f(ξ)‖dξ is

a rate of metastability of u (and so can be used as Φ in the previous

theorem).
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A concrete Cauchy problem

Consider the following Cauchy problem (compare Andreu,Mazón, Moll

2005):

ut − div(|Du|p−2Du) + ϕ(x , u) = f , on (0,∞)× Ω,

−∂u
∂η
∈ β(u) on [0,∞)× ∂Ω,

u(0, x) = u0 ∈ Lq(Ω),

where Ω is a bounded open domain in Rn with smooth boundary ∂Ω,

f ∈ L1((0,∞), Lq(Ω)), 1 ≤ p, q <∞, ∂u
∂η = 〈|Du|p−2Du, η〉, η the unit

outward normal on ∂Ω, Du the gradient of u, β a maximal monotone

graph in R×R with 0 ∈ β(0) and ϕ : Ω×R→ R satisfying the following

conditions:

Logical Extraction of Bounds



1 for almost all x ∈ Ω, r → ϕ(x , r) is continuous and nondecreasing,

2 for every r ∈ R, x → ϕ(x , r) is in L1(Ω),

3 ϕ(x , 0) = 0, ϕ(x , r) 6= 0 whenever r 6= 0 and there exist λ > 0,

α ≥ 2 such that ϕ(x , r)r ≥ λ|r |α.

Then the problem can be written in the form (2) s.t. (1) has a strong

solution (Garćıa-Falset 2005) and A is even uniformly accretive at zero

with modulus being any

Θ(k) ≥ k · α− log2 Cα,Ω,λ

for some constant Cα,Ω,λ depending only on the data indicated

(Koutsoukou-Argyraki/K., 2014).
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Other Recent Applications to Nonlinear Analysis

Rates of asymptotic regularity and fluctuation bounds for the von

Neumann Mean Ergodic Theorem in uniformly convex Banach

spaces (K.,Leu̧stean ETDS 2009, Avigad, Rute ETDS 2013).

Metastability for Baillon’s nonlinear ergodic theorem

(K., Comm.Contemp.Math. 2012).

Metastability for Wittmann’s strong nonlinear ergodic theorem

on Halpern iterations (K., Adv.Math. 2011).

Generalization of the above to CAT(0)-spaces (Saejung 2010)

and other iterations and uniformly smooth Banach spaces(Shioji,

Takahashi 1997) (K., Leu̧stean: Adv.Math. 2012, Schade, K.:

Fixed point theory 2012, K., Leu̧stean: Phil.Trans.Royal

Soc.2012, Körnlein (submitted)).

Generalization to CAT(κ) spaces κ > 0

(Leu̧stean, Nicolae (submitted)).
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Metastable version of strong nonlinear ergodic theorem for

maps

∀u, v ∈ C (‖f(u) + f(v)‖ ≤ ‖u + v‖).

(covers Baillon’s result for n.e. odd operators):

Safarik, JMAA 2012.

Rates of convergence for Kirk’s 2003 fixed point theorem on

asymptotic contractions (proved originally using ultraproducts)

(Gerhardy: JMAA 2006, Briseid: JMAA 2007).

Rates of asymptotic regularity and metastability for

Krasnoselski-Mann iterations in normed and W -hyperbolic spaces

(K., Num.Funct.Anal.Opt.2001, K., Nonlinear Anal.2005

K., Leu̧stean, Abstr.Appl.Anal.2003, JEMS 2010, ).

Rates for algorithms computing common fixed points of families

of nonexpansive maps. (M.A.A. Khan/K., JMAA 2013).

Rates of convergence for image recovery algorithms in uniformly

convex spaces. (M.A.A. Khan/K., Nonlinear Analysis 2014).
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