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1. Introduction 
Stokes system: 
𝑣𝑡 − Δ𝑣 + 𝛻𝑞 = 0, div 𝑣 = 0  in  Ω × (0,𝑇) 

B.C. 𝑣 = 0  on  𝜕Ω 
I.C. 𝑣|𝑡=0 = 𝑣0  in  Ω 

Here Ω is a uniformly 𝐶3-domain in 𝐑𝑛(𝑛 ≥ 2)    
   𝑣 : unknown velocity field 
   𝑞 : unknown pressure field 
   𝑣0 : a given initial velocity 
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Problem 1. Is the solution operator (called 
the Stokes semigroup) 𝑆 𝑡 :𝑣0 ↦ 𝑣(⋅, 𝑡) an 
analytic semigroup in 𝐿∞-type spaces? 
 
In other words, is there 𝐶 > 0 s.t. 

𝑑
𝑑𝑑
𝑆 𝑡 𝑓

𝑋
≤
𝐶
𝑡
𝑓 𝑋, 𝑡 ∈ 0,1 , 𝑓 ∈ 𝑋  

where 𝑋 is an 𝐿∞-type Banach space? 
Analyticity is a notion of regularizing effect 
appeared in parabolic problems in an abstract 
level. 
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Definition of analyticity 
Definition 1 (semigroup).  Let 𝑆 = 𝑆 𝑡 𝑡>0 be a 
family of bounded linear operators in a Banach 
space 𝑋. In other words, 𝑆 𝑡 𝑡>0 ∈ 𝐿(𝑋). We 
say that 𝑆 is a semigroup in 𝑋 if  
(i) (semigroup property)  𝑆 𝑡 𝑆(𝜏) = 𝑆(𝑡 + 𝜏)  

for 𝑡, 𝜏 > 0 
(ii) (strong continuity)  𝑆 𝑡 𝑓 → 𝑆 𝑡0 𝑓  in  𝑋 
 as  𝑡 → 𝑡0  for all  𝑡0 > 0, 𝑓 ∈ 𝑋 
(iii) (non degeneracy)  𝑆 𝑡 𝑓 = 0  for all  𝑡 > 0  

implies  𝑓 = 0. 
(iv) (boundedness)  𝑆 𝑡 𝑜𝑜 ≤ 𝐶∃   for  𝑡 ∈ (0,1) 
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Definition 2 (non 𝐶0 analytic semigroup).  Let 𝑆 be 
a semigroup in 𝑋. We say that 𝑆 is analytic if 
𝐶 > 0∃  such that 

𝑑
𝑑𝑑
𝑆 𝑡

𝑜𝑜
≤
𝐶
𝑡

, 𝑡 ∈ 0,1 .  

 

See a book [ABHN] W. Arendt, Ch. Batty, M. Hieber, 
F. Neubrander, Vector-valued Laplace transforms 
and Cauchy problems, Birkhäuser (2011). 
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Definition 3 (𝐶0-semigroup).  A semigroup 𝑆 is 
called 𝑪𝟎-semigroup if  𝑆 𝑡 𝑓 → 𝑓  as  𝑡 ↓ 0  for 
all  𝑓 ∈ 𝑋. 

Remark.  The name of analyticity stems from the 
fact that 𝑆 = 𝑆 𝑡 𝑡≥0 can be extended as a 
holomorphic function to a sectorial region of  𝑡 
i.e.  arg 𝑡 < 𝜃  with some  𝜃 ∈ (0,𝜋/2). 
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Problem 2.  Is the solution operator 𝑆 𝑡  an 
analytic semigroup in 𝐿𝑟-type spaces? 
 
    This problem has a long history. 
V. A. Solonnilov ’77, Y. G. ’81, …… 

A classical problem 
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Heat semigroup (Gauss – Weierstrass semigroup) 

𝐻 𝑡 𝑓 𝑥 = 𝑒𝑡Δ𝑓 = 𝐺𝑡 ∗ 𝑓 

    = � 𝐺𝑡 𝑥 − 𝑦 𝑓 𝑦 𝑑𝑑
𝐑𝑛

 

𝐺𝑡 𝑥 =
1

4𝜋𝜋 𝑛/2 exp(− 𝑥 2/4𝑡) 

A simple example 
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Proposition 1.  (i) The family 𝐻 = 𝐻 𝑡 𝑡>0 is a 
non 𝐶0-analytic semigroup in 𝐿∞(𝐑𝑛) 

(and also in 𝐵𝐵(𝐑𝑛)) 
 but a 𝐶0-analytic semigroup in 𝐵𝐵𝐵(𝐑𝑛) 

(and also in 𝐶0(𝐑𝑛)) 
(ii) The family 𝐻 is a 𝐶0-analytic semigroup in 

𝐿𝑟(𝐑𝑛) for all 1 ≤ 𝑟 < ∞. 
 

𝐵𝐶 𝐑𝑛 = 𝐶 𝐑𝑛 ∩ 𝐿∞ 𝐑𝑛  
𝐵𝑈𝐶 𝐑𝑛  

=  𝑓 ∈ 𝐵𝐵 𝐑𝑛 𝑓: uniformly continuous  
𝐶0 𝐑𝑛 = 𝐿∞-closure of 𝐶𝑐∞ 𝐑𝑛  

= 𝑓 ∈ 𝐶 𝐑𝑛 lim
𝑥 →∞

𝑓 𝑥 = 0  
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𝐶𝑐,𝜎
∞ (Ω) =  𝑓 ∈ 𝐶𝑐∞ Ω  div 𝑓 = 0  

 =  the space of all smooth solenoidal vector 
fields with compact support 

𝐶0,𝜎(Ω) = 𝐿∞-closure of 𝐶𝑐,𝜎
∞ (Ω) 

=  𝑓 ∈ 𝐶(Ω�)  div 𝑓 = 0 in Ω, 𝑓 = 0 on 𝜕Ω  
if  Ω  is bounded.              (Maremonti ’09) 

𝐿𝜎𝑟 (Ω) = 𝐿𝑟-closure of  𝐶𝑐,𝜎
∞ (Ω), 1 ≤ 𝑟 < ∞ 

Spaces for divergence free 
vector fields 
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Helmholtz decomposition ( Ω bounded 𝐶1-domain, … ) 

𝑳𝒓 𝛀 = 𝑳𝝈𝒓 𝛀 ⨁𝑮𝒓 𝛀   1 < 𝑟 < ∞ , where 
𝐺𝑟 Ω =  𝛻𝜋 ∈ 𝐿𝑟 Ω   𝜋 ∈ 𝐿𝑙𝑙𝑙1 (Ω) . 
𝐿𝜎𝑟 Ω = 𝐺𝑟𝑟 Ω ⊥ 

=  𝑓 ∈ 𝐿𝑟 Ω  � 𝑓 ⋅ 𝛻𝜑𝑑𝑑 = 0
Ω

for all 𝜑 ∈ 𝐺𝑟′(Ω)  

e.g. Fujiwara – Morimoto ’79, Galdi’s book ’11 

Here 1 𝑟⁄ + 1 𝑟′⁄ = 1 
𝐿𝜎∞ Ω : = 𝑓 ∈ 𝐿∞(Ω) ∫ 𝑓 ⋅ 𝛻𝜑𝑑𝑑 = 0Ω for all 𝜑 ∈ 𝑊� 1,1(Ω) . 

𝐶0,𝜎 Ω ⊂ 𝐵𝐵𝐶𝜎 Ω ⊂ 𝐿𝜎∞ Ω  

More spaces 
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Analyticity results for the Stokes semigroup 
𝑺 𝒕 = 𝒆−𝒕𝒕  in  𝑳𝝈𝒓  (= 𝑳𝒓-closure of 𝑪𝒄,𝝈

∞ ) 
(i) 𝐿𝜎2 : easy since the Stokes operator is nonnegative 

self-adljoint. 
(ii) 𝐿𝜎𝑟 : V. A. Solonnikov '77, Y. G. ’81 (bdd domain) 
  (max regularity / resolvent estimate) 
 … H. Abels – Y. Terasawa ’09 (variable coefficient) 
   bdd, exterior, bent half space. 

(iii) 𝐿�𝜎𝑟  space = �𝐿
𝑟 ∩ 𝐿𝜎2      𝑟 ≥ 2
𝐿𝑟 + 𝐿𝜎2      𝑟 < 2

 

 W. Farwig, H. Kozono and H. Sohr ’05, ’07, ’09 
 General uniformity 𝐶2-domain / All except 

Solonnikov appeals to the resolvent estimate 13 



Theorem 1 (M. Geißert, H. Heck, M. Hieber 
and O. Sawada, J. Reine Angew. Math., 2012).  
If a uniformly 𝐶2 domain Ω admits the 
Helmholtz decomposition in 𝐿𝑟, then 𝑆(𝑡) is a 
𝐶0-analytic semigroup in  𝐿𝜎𝑟 . 
(Moreover, the maximum 𝐿𝑟regularity holds.) 

General results in  𝑳𝒓 setting 
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Applications to the Navier-Stokes equations  
― strong solvability 

𝑣𝑡 − Δ𝑣 + 𝑣 ⋅ 𝛻𝑣 + 𝛻𝑞 = 0, div 𝑣 = 0  in  Ω × (0,𝑇) 
B.C.  𝑣 = 0   on   𝜕Ω 
I.C.   𝑣|𝑡=0= 𝑣0   in   Ω 

 

T. Kato – H. Fujita ’62: 𝐿2 theory, Ω: bdd, 
 𝐻1/2 initial data ⇒ local existence (3-D) 
Y. G. – T. Miyakawa ’85: 𝐿𝑝 theory, Ω: bdd, 
 𝐿𝑛 initial data ⇒ local existence (𝑛-D) 
…… H. Amann ’00  Besov theory, …… R. Farwig, H. Sohr, 
W. Varnhorn ’09 …… 
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Results in  𝑳∞ setting 
Theorem 2 (K. Abe – Y. G., Acta Math., 2013).  Let 
Ω be a bounded 𝐶3-domain in 𝐑𝑛(𝑛 ≥ 2).  Then 
the Stokes semigroup 𝑆(𝑡)  is a 𝐶0 -analytic 
semigroup in 𝐶0,𝜎 Ω  (= 𝐵𝐵𝐶𝜎 Ω ). It can be 
regarded as a non 𝐶0-analytic semigroup in 𝐿𝜎∞(Ω). 
 
Remark.  Whole space case is reduced to the heat 
semigroup. This type of analyticity result had 
been only known for half space where the 
solution is written explicitly (Desch – Hieber – 
Prüss ’01, Solonnikov ’03) 
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Theorem 3 (K. Abe – Y. G., J. Evol. Eq., 2012).  
Let Ω be an 𝐶3-exterior domain in 𝐑𝑛. Then the 
Stokes semigroup 𝑆 𝑡 𝑡>0  is a 𝐶0 -analytic 
semigroup in 𝐶0,𝜎 Ω  and extends to a non 𝐶0- 
analytic semigroup in 𝐿𝜎∞(Ω). It can be extended 
as a  𝐶0-analytic semigroup in  𝐵𝐵𝐶𝜎 Ω . 
 
Note that for an unbounded domain 𝐶0,𝜎 Ω  is 
strictly smaller than 𝐵𝐵𝐶𝜎 Ω  because 𝑓 ∈ 
𝐶0,𝜎 Ω   implies  𝑓(𝑥) → 0  as  𝑥 → ∞. 
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Applications to the Navier-Stokes equations 
― 𝑳∞ theory 

Whole space, J. Leray ’34 …… Y. G. – K. Inui – S. Matsui ’99 
Half space, V. A. Solonnikov ’03, H.-O. Bae – B. J. Jin ’12 

𝑆 𝑡 𝑃𝛻𝑓 ∞ ≤ 𝐶𝑡−1 2⁄ 𝑓 ∞ 

Bounded and exterior domains by Ken Abe ’14: 

         𝑆 𝑡 𝑃𝛻𝑓 ∞ ≤ 𝐶𝑡−
𝛼
2  𝑓 ∞

𝛼  𝛻𝑓 ∞
1−𝛼 , 0 < 𝛼 < 1 

For strong solutions of  N-S, 

     𝑇 : existence time        𝑇 ≥ 𝐶
𝑣0 ∞

2  

     𝑇∗: possible blow-up time 𝑣(𝑡) ∞ ≥ 𝐶/ 𝑇∗ − 𝑡 1 2⁄   
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(i) 2nd order operator on 𝐑 (one dim): K. Yosida ’66 
(ii) 2nd order elliptic operator K. Masuda ’71, ’72 book in ’75 
  𝐿𝑟  theory, cutoff procedure for resolvent and interpolation 
(iii) higher order, H. B. Stewart ’74, ’80 
  Masuda – Stewart method 
(iv) degenerate + mixed B. C. K. Taira, ’04 
  See also: P. Acquistapace, B. Terrani (1987) 
     A. Lunardi (1995) Book. 
More recent. nonsmooth coefficient / nonsmooth domain 
   Heck – Hieber – Stavarakidis (2010)  VMO coeff., higher order 
   Arendt – Schaetzle (2010)  2nd order, Lipschitz domain 
   Takuya Suzuki (2014)  𝐶1-domain, any order. 

𝑳∞-theory for 𝒆−𝒕𝒕 
where  𝑳  is an elliptic operator 
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Extensions of 𝑳∞-theory 
(i) Theorems 2 and 3 are obtained by a direct 

analysis of semigroup. It applies to a perturbed 
half space (K. Abe). 

(ii) Resolvent estimate is obtained by extending a 
method of Masuda – Stewart (Maximum 
analyticity angle is obtained, K. Abe, Y. G. and M. 
Hieber, to appear.) 

(iii) Cylindrical domains are OK. work in progress (K. 
Abe, Y. G., K. Schade, T. Suzuki) 

(iv) Counterexample for a layer domain 0 < 𝑥𝑛 < 1  
for  𝑛 ≥ 3. (L. von Below) 20 



       We know if 𝐿𝑟 admits the Helmholtz 
decomposition, 𝑆 𝑡  is analytic in 𝐿𝜎𝑟 . Is the 
Helmholtz decomposition really necessary to 
conclude that 𝑆 𝑡  is analytic in 𝐿𝜎𝑟 ?  (If  𝑟 = 2, 
the Helmholtz decomposition always exists 
and the Stokes operator is self-adjoint so that 
𝑆 𝑡  is always analytic no matter what  Ω  is.) 

Problem 
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       The Helmholtz decomposition in 𝐿𝑟 
is not a necessary condition so that 𝑆 𝑡  
is a 𝐶0 analytic semigroup in 𝐿𝜎𝑟 Ω . 

Our answer 
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2. Bogovski’s example and  
main results 

0 
𝜃 𝑆𝜃 

𝑥1 

𝑆𝜃 = 𝑥 = (𝑥1, 𝑥2) arg 𝑥 < 𝜃 2⁄  
We say that a planar domain Ω is a sector-
like domain with opening angle 0 < 𝜃 < 2𝜋 
if 

Ω ∖ 𝐷𝑅 = 𝑆𝜃 ∖ 𝐷𝑅 

for some 𝑅 > 0, where 𝐷𝑅 is an open disk of 
radius 𝑅 centered at the origin. 
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Bogovski’s example 

𝜃 
Ω 

𝑥1 

Proposition 2.  The 𝐿𝑟  Helmholtz decomposition 
(𝑟 > 2) fails for a smooth sector-like domain 
when 𝜃 > 𝜋 ∕ (1 − 2/𝑟). 

24 

Note that for 4 3⁄ < r < 4, 𝐿𝑟  Helmholtz 
decomposition holds for all 𝜋 ≤ 𝜃 < 2𝜋. 



Main results 
Theorem 4 [AGSS].  Let Ω (⊂ 𝐑2) be a 𝐶3 sector-like 
domain. Then the Stokes semigroup 𝑆(𝑡) is a 𝐶0-
analytic semigroup in 𝐿𝜎𝑟 Ω  for any 2 ≤ 𝑟 < ∞. 
 
This follows from interpolation with 𝐿2 result and 
the following 𝐿∞-result. 
 
Theorem 5 [AGSS].  Let Ω be a 𝐶3 sector-like domain. 
Then 𝑆(𝑡) is a 𝐶0-analytic semigroup in 𝐶0,𝜎 Ω . 
(Moreover, 𝑡 𝛻2𝑆 𝑡 𝑣0 ∞ ≤ 𝐶𝑇 𝑣0 ∞ for 𝑡 ∈ (0,𝑇).) 
 
AGSS = K. Abe, Y. G., K. Schade, T. Suzuki 25 



Idea of the proof – a blow-up argument 
a key observation 

(Harmonic) pressure gradient estimate by 
velocity gradient: 
 
sup
𝑥∈Ω

𝑑Ω(𝑥) 𝛻𝑞(𝑥, 𝑡) ≤ 𝐶 𝛻𝑣 𝐿∞ 𝜕Ω 𝑡  

𝑑Ω 𝑥 = dist (𝑥,𝜕Ω) . 
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       Bounds of 𝛻𝑞 is not enough to guarantee the 
uniqueness.  
Parasitic solution: 𝑣 = 𝑔 𝑡 , 𝑞 𝑥, 𝑡 = −𝑔′ 𝑡 ⋅ 𝑥 
in 𝐑𝑛. 
Poiseuille flow type: half space 

𝑣 = 𝑣1 𝑥𝑛 , 0, … , 0 ,　𝑞 = 𝑓 𝑡 𝑥1 

� 𝜕𝑡 − Δ 𝑣1 = −𝑓 𝑡   
𝑣1 = 0  on  𝑥𝑛 = 0

    (div 𝑣 = 0 is automatic) 

Pressure should be related to velocity 
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Consider 

𝑣𝑡 − Δ𝑣 + 𝛻𝑞 = 0   in  Ω. 
Take divergence to get 

Δ𝑞 = 0   in   Ω 
since div 𝑣 = 0. Take inner product with  𝑛Ω 
(unit exterior normal) and use  𝑣𝑡 ⋅ 𝑛Ω = 0  
to get 

𝜕𝜕 𝜕𝑛Ω⁄ = 𝑛Ω ⋅ Δ𝑣   on   𝜕Ω. 

Equations for the pressure 

3. Neumann problems with 
singular data 
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Lemma 1.  If div 𝑣 = 0, then 
𝑛Ω ⋅ Δ𝑣 = div𝜕Ω𝑊(𝑣) 

with 
𝑊 𝑣 = − 𝛻𝑣 − 𝛻𝑣𝑡 ⋅ 𝑛Ω. 

 
In three dimensional case,  

𝑛Ω ⋅ Δ𝑣 = −div𝜕Ω 𝜔 × 𝑛Ω  
where  𝜔 = curl 𝑣 (vorticity).  In any 
case 𝑊 is a tangent vector field. 
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The pressure solves 

(NP) Δ𝑞 = 0  in  Ω 

𝜕𝜕 𝜕𝑛Ω⁄ = div𝜕Ω𝑊  on  𝜕Ω. 

Enough to prove that 
𝑑Ω𝛻𝑞 ∞ ≤ 𝐶 𝑊 ∞ 

for all tangential vector field 𝑊. 

Neumann problem 
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Definition 4 (Weak solution of (NP)). (Ken Abe 
– Y. G., ’12)  Let Ω be a domain in 𝐑𝑛 (𝑛 ≥ 2) 
with 𝐶1  boundary. We call 𝑞 ∈ 𝐿𝑙𝑙𝑙1 (Ω�)  a 
weak solution of (NP) for 𝑊 ∈ 𝐿∞(𝜕Ω) with 
𝑊 ⋅ 𝑛Ω = 0 if 𝑞 with 𝑑Ω𝛻𝑞 ∈ 𝐿∞(Ω) fulfills 

� 𝑞Δ𝜑𝑑𝑑
Ω

= � 𝑊 ⋅ 𝛻𝜑𝑑ℋ𝑛−1

𝜕Ω
 

for all 𝜑 ∈ 𝐶𝑐2(Ω�) satisfying 𝜕𝜑 𝜕𝑛Ω⁄ = 0 on 
𝜕Ω. 

Strictly admissible domain 
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Definition 5 (Strictly admissible domain).  Let Ω be 
a uniformly 𝐶1 domain. We say that Ω is strictly 
admissible if there is a constant 𝐶 such that 

𝑑Ω𝛻𝑞 ∞ ≤ 𝐶 𝑊 𝐿∞(𝜕Ω) 

holds for all weak solution of (NP) for tangential 
vector fields 𝑊. Note that strictly admissibility 
implies admissibility defined below. 
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Let 𝑃:  𝐿�𝑟 Ω → 𝐿�𝜎𝑟 Ω  be the Helmholtz 
projection and 𝑄 = 𝐼 − 𝑃. Applying 𝑄 to 
the Stokes equation to get 

𝛻𝑞 = 𝑄 Δ𝑣 . 

Here 𝐿�𝑟 = 𝐿𝑟 ∩ 𝐿2, 
 𝐿�𝜎𝑟 = 𝐿𝜎𝑟 ∩ 𝐿2   for   𝑟 > 2.  

Admissible domain 
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Definition 6 (Ken Abe – Y. G., Acta Math., 
2013).  Let Ω be a uniformly 𝐶1-domain. We 
say that Ω is admissible if there exists 𝑟 ≥ 𝑛 
and a constant 𝐶 = 𝐶Ω such that   

sup𝑑Ω(𝑥) 𝑄 𝛻 ⋅ 𝑓 (𝑥) ≤ 𝐶 𝑓 𝐿∞ 𝜕Ω  

hold for all matrix value 𝑓 = 𝑓𝑖𝑖 ∈ 𝐶1(Ω�) 
satisfy 𝛻 ⋅ 𝑓 = ∑ 𝜕𝑗𝑓𝑖𝑖𝑗 ∈ 𝐿�𝑟 Ω , 

tr 𝑓 = 0  and  𝜕ℓ𝑓𝑖𝑖 = 𝜕𝑗𝑓𝑖ℓ 
for all 𝑖, 𝑗, ℓ = 1, … ,𝑛 . 

Admissible domain (continued) 

34 



Remark.  (i) This is a property of the solution of 
the Neumann problem for the Laplace operator. 
In fact, 𝛻𝑞 = 𝑄 𝛻 ⋅ 𝑓  is formally equivalent to 

−Δ𝑞 = div(𝛻 ⋅ 𝑓)    in   Ω 
𝜕𝜕 𝜕𝑛Ω⁄ = 𝑛Ω ⋅ (𝛻 ⋅ 𝑓)   on   𝜕Ω. 

 
Under the above condition for 𝑓 we see that 𝑞 
is harmonic in Ω since 

div(𝛻 ⋅ 𝑓) = �𝜕𝑖𝜕𝑗𝑓𝑖𝑖
𝑖,𝑗

= �𝜕𝑗𝜕𝑗𝑓𝑖𝑖 = 0. 
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(ii) The constant  𝐶Ω depends on Ω but 
independent of dilation, translation and 
rotation. 

(iii) If Ω is admissible, we easily obtain the 
pressure gradient estimate by taking  
𝑓𝑖𝑗 = 𝜕𝑗𝑣𝑖. 

(iv) It turns out that 
𝜕𝜕 𝜕𝑛Ω⁄ = div𝜕Ω(𝑛Ω ⋅ 𝑓 − 𝑓𝑡 ).  
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Remark.  Strictly admissibility implies admissibility.  
Example of strictly admissible domains 

(a)  half space 
(b)  𝐶3 bounded domain 
(c)  𝐶3 exterior domain 

Note that layer domain 𝑎 < 𝑥𝑛 < 𝑏  is not strictly 
admissible. 
Consider  𝑞 𝑥1, … , 𝑥𝑛 = 𝑥1. 
 
Theorem 6 (Ken Abe – Y. G., Acta Math., 2013).  If Ω is 
𝐶3 and admissible, then 𝑆(𝑡) is a 𝐶0-analytic semigroup 
in 𝐶0,𝜎(Ω). (The conclusion of Theorem 5 holds.) 
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Estimates for harmonic pressure gradient 

Theorem 7 (A key step).  If Ω is a 𝐶2 sector-like 
domain, then it is admissible (not strictly 
admissible). 
 
A strictly admissibility is proved for a bounded 
domain (K. Abe – Y. G.), exterior domain (K. 
Abe – Y. G.), a perturbed half space (K. Abe). 
For a bounded domain there is another proof 
by C. Kenig, F. Lin, Z. Shen (2013). 
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Sector-like domain 
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Lemma 2.  Let Ω be a 𝐶2 sector-like domain in 
𝐑2. Then there is a constant  𝐶 such that  

𝑑Ω 𝑥 𝛻𝑢 ∞ ≤ 𝐶 𝑔 ∞ 
for all weak solution  𝑢 ∈ 𝐿𝑙𝑙𝑙1 Ω�𝑅   of 
(NP) Δ𝑢 = 0   in   Ω𝑅 

    𝜕𝜕
𝜕𝑛Ω

= div𝜕Ω 𝑔   on   𝜕Ω𝑅 

satisfying 𝑔 ⋅ 𝑛Ω = 0 on 𝜕Ω ∩ 𝐷2𝑅 and 𝑔 = 0 
on  𝜕𝐷2𝑅 ∩ Ω  provided that  𝑑Ω𝛻𝑢 ∞ < ∞. 

Here  Ω𝑅 ≔ Ω ∩ 𝐷2𝑅 . 

2𝑅 
Ω𝑅 

𝑥1 



    Note that 𝐶 is independent of 𝑅. This estimate 
yields 
 

Lemma 3.  There exists a constant 𝐶 such that all 
weak solutions 𝑢 ∈ 𝐿𝑙𝑙𝑙1 Ω�  of (NP) with 𝛁𝒖 ∈
𝑳𝟐 𝛀  and 𝑔 ∈ 𝐿∞ 𝜕Ω  with 𝑔 ⋅ 𝑛Ω = 0  fulfills 
𝑑Ω𝛻𝑢 ∞ ≤ 𝐶 𝑔 ∞. 

 

This yields Theorem 7. 

Sector-like domain (continued) 
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2𝑅 

Ω𝑅 

𝑥1 



    We argue by contradiction 𝑢𝑚,𝑔𝑚,𝑅𝑚 𝑚=1
∞∃ ,  such 

that 
1 = 𝑑Ω𝛻𝑢𝑚 𝐿∞(Ω𝑅𝑚) > 𝑚 𝑔𝑚 𝐿∞ (𝜕Ω∩𝐷2𝑅𝑚)  

Case A 𝑅𝑚 → ∞  as  𝑚 → ∞ 

Case B lim𝑚→∞ 𝑅𝑚 < ∞ 

    We only discuss case A. We take 𝑥𝑚 ∈ Ω𝑅𝑚 such that 

𝑑Ω 𝑥𝑚 𝛻𝑢𝑚(𝑥𝑚) > 1 2⁄ . 
We may assume 𝑢𝑚 𝑥𝑚 = 0 by subtracting a constant. 

Idea of the proof of Lemma 2 
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Case 1 subsequence 𝑥𝑚𝑘
∃ → 𝑥� 

Case 2 𝑥𝑚 → ∞ 
Case 1 (a)  𝑥� ∈ Ω, (Case 1 (b)  𝑥� ∈ 𝜕Ω) 

    𝑢𝑚 converges to 𝑢 locally uniformly with its 
derivatives in Ω and 𝑢 𝑥� = 0. We now apply 
the uniqueness to conclude 𝑢 ≡ 0  which 
contradicts  𝑑 𝑥� 𝛻𝑢(𝑥�) ≥ 1 2⁄ . 

Compactness 
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Lemma 4.  Let Ω be a 𝐶2 sector-like domain. 
Let  𝑢 ∈ 𝐶2 Ω ∩ 𝐶1(Ω�)  be a solution of (NP) 
in Ω with 𝑔 = 0. Assume that 𝑑Ω𝛻𝑢 ∞ < ∞. 
Then  𝑢  is a constant function. 

Uniqueness 
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Case 1 (b) can be handled by uniqueness in a 
half space with blow-up argument 
𝑣𝑚 𝑥 = 𝑢𝑚 𝑥𝑚 + 𝑑𝑚𝑥 ,   𝑑𝑚= 𝑑Ω 𝑥𝑚 . 

Case 2 can be treated by scaling-down 
argument 

𝑤𝑚 𝑥 = 𝑢𝑚 𝑥 𝑥𝑚⁄  
and uniqueness (with zero flux condition) in  
𝑆𝜃 ∩ 𝐷𝑆  with some  𝑆 > 0  or  𝑆𝜃. 

Other cases 
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Γ𝑅 

𝑅 

(1) Assumption implies zero flux condition 

�
𝜕𝜕
𝜕𝜕

Γ𝑅∩Ω

𝑑ℋ1 = 0, 𝑅 ≫ 1, 

 where Γ𝑅 = 𝜕𝐷𝑅. This implies that 𝑢 is 
bounded in Ω.  

A key observation for uniqueness 
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(2) We may assume ∫ 𝑢Γ𝑅∩Ω
𝑑ℋ1 = 0 for 

𝑅 ≫ 1. If 𝑢 attains its maximum, the 
strong maximum principle implies 
𝑢 = const. 

(3) In the case max is not attained, we 
consider sequence 𝑥𝑚  such that 
𝑢 𝑥𝑚 → sup𝑢 , 𝑥𝑚 → ∞ . We scale 
down and obtain a contradiction to the 
uniqueness result in a sector under zero 
flux condition. 
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Summary 
• We prove that a 𝐶2 sector-like domain is admissible. 

• A similar idea works for a domain with finitely many 
cylindrical outlets.  

 

Theorem 4.  Let Ω (⊂ 𝐑2) be a 𝐶3 sector-like domain. 
Then the Stokes semigroup 𝑆(𝑡)  is a 𝐶0 -analytic 
semigroup in 𝐿𝜎𝑟 Ω  for any 2 ≤ 𝑟 < ∞. 

 
Theorem 5.  Let Ω be a 𝐶3 sector-like domain. Then 
𝑆(𝑡) is a 𝐶0-analytic semigroup in 𝐶0,𝜎 Ω . 
(Moreover, 𝑡 𝛻2𝑆 𝑡 𝑣0 ∞ ≤ 𝐶𝑇 𝑣0 ∞ for 𝑡 ∈ (0,𝑇).) 
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