On the Stokes semigroup in some non-Helmholtz domains

Yoshikazu Giga University of Tokyo

June 2014

Joint work with Ken Abe (Nagoya U.), Katharina Schade (TU Darmstadt) and Takuya Suzuki (U. Tokyo)

Contents

- 1. Introduction
- 2. Bogovski's example and main results
- 3. Neumann problems with singular data

1. Introduction

Stokes system:

 $v_t - \Delta v + \nabla q = 0, \text{ div } v = 0 \text{ in } \Omega \times (0, T)$ B.C. $v = 0 \text{ on } \partial \Omega$ I.C. $v|_{t=0} = v_0 \text{ in } \Omega$

Here Ω is a uniformly C^3 -domain in $\mathbb{R}^n (n \ge 2)$ v: unknown velocity field q: unknown pressure field v_0 : a given initial velocity **Problem 1.** Is the solution operator (called the Stokes semigroup) $S(t): v_0 \mapsto v(\cdot, t)$ an analytic semigroup in L^{∞} -type spaces?

In other words, is there C > 0 s.t.

$$\left\| \frac{d}{dt} S(t) f \right\|_{X} \le \frac{C}{t} \| f \|_{X}, t \in (0,1), f \in X$$

where X is an L^{∞} -type Banach space?

Analyticity is a notion of regularizing effect appeared in parabolic problems in an abstract level.

Definition of analyticity

Definition 1 (semigroup). Let $S = \{S(t)\}_{t>0}$ be a family of bounded linear operators in a Banach space X. In other words, $\{S(t)\}_{t>0} \in L(X)$. We say that S is a **semigroup** in X if

- (i) (semigroup property) $S(t)S(\tau) = S(t + \tau)$ for $t, \tau > 0$
- (ii) (strong continuity) $S(t)f \rightarrow S(t_0)f$ in Xas $t \rightarrow t_0$ for all $t_0 > 0$, $f \in X$
- (iii) (non degeneracy) S(t)f = 0 for all t > 0implies f = 0.
- (iv) (boundedness) $||S(t)||_{op} \leq {}^{\exists}C$ for $t \in (0,1)$

Definition 2 (non C_0 analytic semigroup). Let S be a semigroup in X. We say that S is **analytic** if ${}^{\exists}C > 0$ such that

$$\left\|\frac{d}{dt}S(t)\right\|_{op} \leq \frac{C}{t}, t \in (0,1).$$

See a book [ABHN] W. Arendt, Ch. Batty, M. Hieber, F. Neubrander, Vector-valued Laplace transforms and Cauchy problems, Birkhäuser (2011). **Definition 3** (C_0 -semigroup). A semigroup S is called C_0 -semigroup if $S(t)f \rightarrow f$ as $t \downarrow 0$ for all $f \in X$.

Remark. The name of analyticity stems from the fact that $S = \{S(t)\}_{t \ge 0}$ can be extended as a holomorphic function to a sectorial region of t i.e. $|\arg t| < \theta$ with some $\theta \in (0, \pi/2)$.

A classical problem

Problem 2. Is the solution operator S(t) an analytic semigroup in L^r -type spaces?

This problem has a long history. V. A. Solonnilov '77, Y. G. '81,

A simple example

Heat semigroup (Gauss – Weierstrass semigroup)

$$(H(t)f)(x) = e^{t\Delta}f = G_t * f$$
$$= \int_{\mathbb{R}^n} G_t(x-y)f(y)dy$$
$$G_t(x) = \frac{1}{(4\pi t)^{n/2}}\exp(-|x|^2/4t)$$

Proposition 1. (i) The family $H = \{H(t)\}_{t>0}$ is a non C_0 -analytic semigroup in $L^{\infty}(\mathbb{R}^n)$ (and also in $BC(\mathbb{R}^n)$) but a C_0 -analytic semigroup in $BUC(\mathbb{R}^n)$ (and also in $C_0(\mathbb{R}^n)$) (ii) The family H is a C_0 -analytic semigroup in $L^r(\mathbb{R}^n)$ for all $1 \le r < \infty$.

$$BC(\mathbf{R}^{n}) = C(\mathbf{R}^{n}) \cap L^{\infty}(\mathbf{R}^{n})$$

$$BUC(\mathbf{R}^{n})$$

$$= \{ f \in BC(\mathbf{R}^{n}) | f: \text{ uniformly continuous} \}$$

$$C_{0}(\mathbf{R}^{n}) = L^{\infty} \text{-closure of } C_{c}^{\infty}(\mathbf{R}^{n})$$

$$= \{ f \in C(\mathbf{R}^{n}) | \lim_{|x| \to \infty} f(x) = 0 \}$$

10

Spaces for divergence free vector fields

 $C^{\infty}_{c,\sigma}(\Omega) = \{ f \in C^{\infty}_{c}(\Omega) | \operatorname{div} f = 0 \}$

= the space of all smooth solenoidal vector fields with compact support

 $C_{0,\sigma}(\Omega) = L^{\infty}$ -closure of $C_{c,\sigma}^{\infty}(\Omega)$

 $= \{ f \in C(\overline{\Omega}) \mid \operatorname{div} f = 0 \text{ in } \Omega, f = 0 \text{ on } \partial \Omega \}$ if Ω is bounded. (Maremonti '09)

 $L^{r}_{\sigma}(\Omega) = L^{r}$ -closure of $C^{\infty}_{c,\sigma}(\Omega)$, $1 \leq r < \infty$

More spaces

Helmholtz decomposition (Ω bounded C^1 -domain, ...)

$$\begin{aligned} \boldsymbol{L}^{r}(\boldsymbol{\Omega}) &= \boldsymbol{L}^{r}_{\sigma}(\boldsymbol{\Omega}) \bigoplus \boldsymbol{G}^{r}(\boldsymbol{\Omega}) \quad (1 < r < \infty), \text{ where} \\ \boldsymbol{G}^{r}(\boldsymbol{\Omega}) &= \left\{ \nabla \pi \in L^{r}(\boldsymbol{\Omega}) \mid \pi \in L^{1}_{loc}(\boldsymbol{\Omega}) \right\}. \\ \boldsymbol{L}^{r}_{\sigma}(\boldsymbol{\Omega}) &= \boldsymbol{G}^{r'}(\boldsymbol{\Omega})^{\perp} \\ &= \left\{ f \in L^{r}(\boldsymbol{\Omega}) \mid \int_{\boldsymbol{\Omega}} f \cdot \nabla \varphi dx = 0 \text{ for all } \varphi \in \boldsymbol{G}^{r'}(\boldsymbol{\Omega}) \right\} \\ \text{e.g. Fujiwara - Morimoto '79, Galdi's book '11} \end{aligned}$$

Here
$$1/r + 1/r' = 1$$

 $L^{\infty}_{\sigma}(\Omega) := \left\{ f \in L^{\infty}(\Omega) \middle| \int_{\Omega} f \cdot \nabla \varphi dx = 0 \text{ for all } \varphi \in \widehat{W}^{1,1}(\Omega) \right\}.$
 $C_{0,\sigma}(\Omega) \subset BUC_{\sigma}(\Omega) \subset L^{\infty}_{\sigma}(\Omega)$

Analyticity results for the Stokes semigroup $S(t) = e^{-tA}$ in L_{σ}^{r} (= L^{r} -closure of $C_{c,\sigma}^{\infty}$)

- (i) L^2_{σ} : easy since the Stokes operator is nonnegative self-adljoint.
- (ii) L_{σ}^{r} : V. A. Solonnikov '77, Y. G. '81 (bdd domain) (max regularity / resolvent estimate)
 - ... H. Abels Y. Terasawa '09 (variable coefficient) bdd, exterior, bent half space.

(iii)
$$\tilde{L}_{\sigma}^{r}$$
 space =
$$\begin{cases} L^{r} \cap L_{\sigma}^{2} & r \geq 2\\ L^{r} + L_{\sigma}^{2} & r < 2 \end{cases}$$

W. Farwig, H. Kozono and H. Sohr '05, '07, '09 General uniformity C²-domain / All except Solonnikov appeals to the resolvent estimate

General results in L^r setting

Theorem 1 (M. Geißert, H. Heck, M. Hieber and O. Sawada, J. Reine Angew. Math., 2012). If a uniformly C^2 domain Ω admits the Helmholtz decomposition in L^r , then S(t) is a C_0 -analytic semigroup in L^r_{σ} . (Moreover, the maximum L^r regularity holds.)

Applications to the Navier-Stokes equations — strong solvability

$$\begin{split} v_t - \Delta v + v \cdot \nabla v + \nabla q &= 0, \text{ div } v = 0 \text{ in } \Omega \times (0, T) \\ & \text{B.C.} & v = 0 \text{ on } \partial \Omega \\ & \text{I.C.} & v|_{t=0} = v_0 \text{ in } \Omega \end{split}$$

T. Kato – H. Fujita '62: L^2 theory, Ω : bdd, $H^{1/2}$ initial data \Rightarrow local existence (3-D) Y. G. – T. Miyakawa '85: L^p theory, Ω : bdd, L^n initial data \Rightarrow local existence (*n*-D) H. Amann '00 Besov theory, R. Farwig, H. Sohr, W. Varnhorn '09

Results in L^{∞} setting

Theorem 2 (K. Abe – Y. G., Acta Math., 2013). Let Ω be a bounded C^3 -domain in $\mathbf{R}^n (n \ge 2)$. Then the Stokes semigroup S(t) is a C_0 -analytic semigroup in $C_{0,\sigma}(\Omega) (= BUC_{\sigma}(\Omega))$. It can be regarded as a non C_0 -analytic semigroup in $L^{\infty}_{\sigma}(\Omega)$.

Remark. Whole space case is reduced to the heat semigroup. This type of analyticity result had been only known for half space where the solution is written explicitly (Desch – Hieber – Prüss '01, Solonnikov '03)

Theorem 3 (K. Abe – Y. G., J. Evol. Eq., 2012). Let Ω be an C^3 -exterior domain in \mathbb{R}^n . Then the Stokes semigroup $\{S(t)\}_{t>0}$ is a C_0 -analytic semigroup in $C_{0,\sigma}(\Omega)$ and extends to a non C_0 analytic semigroup in $L^{\infty}_{\sigma}(\Omega)$. It can be extended as a C_0 -analytic semigroup in $BUC_{\sigma}(\Omega)$.

Note that for an unbounded domain $C_{0,\sigma}(\Omega)$ is strictly smaller than $BUC_{\sigma}(\Omega)$ because $f \in C_{0,\sigma}(\Omega)$ implies $|f(x)| \to 0$ as $|x| \to \infty$.

Applications to the Navier-Stokes equations $-L^{\infty}$ theory

Whole space, J. Leray '34 Y. G. – K. Inui – S. Matsui '99

Half space, V. A. Solonnikov '03, H.-O. Bae – B. J. Jin '12 $\|S(t)P\nabla f\|_{\infty} \le Ct^{-1/2}\|f\|_{\infty}$

Bounded and exterior domains by Ken Abe '14:

 $\|S(t)P\nabla f\|_{\infty} \leq Ct^{-\frac{\alpha}{2}} \|f\|_{\infty}^{\alpha} \|\nabla f\|_{\infty}^{1-\alpha}, \ 0 < \alpha < 1$

For strong solutions of N-S,

 $T \ge \frac{c}{\|v_0\|_{\infty}^2}$ T : existence time $\|v(t)\|_{\infty} \ge C/(T_* - t)^{1/2}$

 T_* : possible blow-up time

L^{∞} -theory for e^{-tL} where *L* is an elliptic operator

- (i) 2nd order operator on **R** (one dim): K. Yosida '66
- (ii) 2^{nd} order elliptic operator K. Masuda '71, '72 book in '75 L^r theory, cutoff procedure for resolvent and interpolation
- (iii) higher order, H. B. Stewart '74, '80 Masuda — Stewart method
- (iv) degenerate + mixed B. C. K. Taira, '04
 See also: P. Acquistapace, B. Terrani (1987)
 A. Lunardi (1995) Book.

More recent. nonsmooth coefficient / nonsmooth domain
 Heck – Hieber – Stavarakidis (2010) VMO coeff., higher order
 Arendt – Schaetzle (2010) 2nd order, Lipschitz domain
 Takuya Suzuki (2014) C¹-domain, any order.

Extensions of L^{∞} -theory

- (i) Theorems 2 and 3 are obtained by a direct analysis of semigroup. It applies to a perturbed half space (K. Abe).
- Resolvent estimate is obtained by extending a (ii) method of Masuda – Stewart (Maximum analyticity angle is obtained, K. Abe, Y. G. and M. Hieber, to appear.)
- (iii) Cylindrical domains are OK. work in progress (K. Abe, Y. G., K. Schade, T. Suzuki)
- (iv) Counterexample for a layer domain $\{0 < x_n < 1\}$ for $n \geq 3$. (L. von Below) 20

Problem

We know if L^r admits the Helmholtz decomposition, S(t) is analytic in L_{σ}^{r} . Is the Helmholtz decomposition really necessary to conclude that S(t) is analytic in L_{σ}^{r} ? (If r = 2, the Helmholtz decomposition always exists and the Stokes operator is self-adjoint so that S(t) is always analytic no matter what Ω is.)

Our answer

The Helmholtz decomposition in L^r is not a necessary condition so that S(t)is a C_0 analytic semigroup in $L^r_{\sigma}(\Omega)$.

2. Bogovski's example and main results

$$S_{\theta} = \{x = (x_1, x_2) || \arg x| < \theta/2\}$$

We say that a planar domain Ω is a **sector-like domain** with opening angle $0 < \theta < 2\pi$ if

$$\Omega \setminus D_R = S_\theta \setminus D_R \qquad \xrightarrow{\theta \qquad S_\theta} x_1$$

for some R > 0, where D_R is an open disk of radius R centered at the origin.

Bogovski's example

Proposition 2. The L^r Helmholtz decomposition (r > 2) fails for a smooth sector-like domain when $\theta > \pi / (1 - 2/r)$.

Note that for 4/3 < r < 4, L^r Helmholtz decomposition holds for all $\pi \le \theta < 2\pi$.

Main results

Theorem 4 [AGSS]. Let $\Omega (\subset \mathbb{R}^2)$ be a C^3 sector-like domain. Then the Stokes semigroup S(t) is a C_0 -analytic semigroup in $L^r_{\sigma}(\Omega)$ for any $2 \leq r < \infty$.

This follows from interpolation with L^2 result and the following L^{∞} -result.

Theorem 5 [AGSS]. Let Ω be a C^3 sector-like domain. Then S(t) is a C_0 -analytic semigroup in $C_{0,\sigma}(\Omega)$. (Moreover, $t \| \nabla^2 S(t) v_0 \|_{\infty} \leq C_T \| v_0 \|_{\infty}$ for $t \in (0,T)$.)

AGSS = K. Abe, Y. G., K. Schade, T. Suzuki

Idea of the proof – a blow-up argument a key observation

(Harmonic) pressure gradient estimate by velocity gradient:

$$\sup_{x \in \Omega} d_{\Omega}(x) |\nabla q(x,t)| \le C ||\nabla v||_{L^{\infty}(\partial \Omega)}(t)$$
$$d_{\Omega}(x) = \operatorname{dist}(x,\partial \Omega).$$

Pressure should be related to velocity

Bounds of ∇q is not enough to guarantee the uniqueness.

<u>Parasitic solution</u>: v = g(t), $q(x,t) = -g'(t) \cdot x$ in \mathbb{R}^n .

<u>Poiseuille flow type</u>: half space

$$v = (v^1(x_n), 0, \dots, 0), \quad q = f(t)x_1$$

$$\begin{cases} (\partial_t - \Delta)v^1 = -f(t) \\ v^1 = 0 \text{ on } \{x_n = 0\} \end{cases} \quad (\text{div } v = 0 \text{ is automatic})$$

3. Neumann problems with singular data Equations for the pressure

Consider

$$v_t - \Delta v + \nabla q = 0$$
 in Ω .

Take divergence to get

$$\Delta q = 0$$
 in Ω

since div v = 0. Take inner product with n_{Ω} (unit exterior normal) and use $v_t \cdot n_{\Omega} = 0$ to get

$$\partial q / \partial n_{\Omega} = n_{\Omega} \cdot \Delta v$$
 on $\partial \Omega$.

Lemma 1. If div
$$v = 0$$
, then
 $n_{\Omega} \cdot \Delta v = \operatorname{div}_{\partial \Omega} W(v)$
with
 $W(v) = -(\nabla v - {}^{t}(\nabla v)) \cdot n_{\Omega}.$

In three dimensional case, $n_{\Omega} \cdot \Delta v = -\operatorname{div}_{\partial \Omega}(\omega \times n_{\Omega})$ where $\omega = \operatorname{curl} v$ (vorticity). In any case W is a tangent vector field.

Neumann problem

The pressure solves (NP) $\Delta q = 0$ in Ω $\partial q/\partial n_{\Omega} = \operatorname{div}_{\partial \Omega} W$ on $\partial \Omega$. Enough to prove that $\|d_0 \nabla q\|_{\infty} \leq C \|W\|_{\infty}$ for all **tangential** vector field W.

Strictly admissible domain

Definition 4 (Weak solution of (NP)). (Ken Abe – Y. G., '12) Let Ω be a domain in \mathbb{R}^n $(n \ge 2)$ with C^1 boundary. We call $q \in L^1_{loc}(\overline{\Omega})$ a **weak** solution of (NP) for $W \in L^{\infty}(\partial\Omega)$ with $W \cdot n_{\Omega} = 0$ if q with $d_{\Omega} \nabla q \in L^{\infty}(\Omega)$ fulfills

$$\int_{\Omega} q \Delta \varphi dx = \int_{\partial \Omega} W \cdot \nabla \varphi d\mathcal{H}^{n-1}$$

for all $\varphi \in C_c^2(\overline{\Omega})$ satisfying $\partial \varphi / \partial n_{\Omega} = 0$ on $\partial \Omega$.

Definition 5 (Strictly admissible domain). Let Ω be a uniformly C^1 domain. We say that Ω is **strictly admissible** if there is a constant C such that

$$\|d_{\Omega}\nabla q\|_{\infty} \leq C\|W\|_{L^{\infty}(\partial\Omega)}$$

holds for all weak solution of (NP) for tangential vector fields W. Note that strictly admissibility implies admissibility defined below.

Admissible domain

Let $P: \tilde{L}^{r}(\Omega) \rightarrow \tilde{L}^{r}_{\sigma}(\Omega)$ be the Helmholtz projection and Q = I - P. Applying Q to the Stokes equation to get

$$Vq = Q[\Delta v].$$

Here $\tilde{L}^r = L^r \cap L^2$,
 $\tilde{L}^r_{\sigma} = L^r_{\sigma} \cap L^2$ for $r > 2$.

Admissible domain (continued)

Definition 6 (Ken Abe – Y. G., Acta Math., 2013). Let Ω be a uniformly C^1 -domain. We say that Ω is **admissible** if there exists $r \ge n$ and a constant $C = C_{\Omega}$ such that

 $\sup d_{\Omega}(x) |Q[\nabla \cdot f](x)| \le C ||f||_{L^{\infty}(\partial \Omega)}$

hold for all matrix value $f = (f_{ij}) \in C^1(\overline{\Omega})$ satisfy $\nabla \cdot f(=\sum_j \partial_j f_{ij}) \in \tilde{L}^r(\Omega)$,

tr f = 0 and $\partial_{\ell} f_{ij} = \partial_j f_{i\ell}$ for all $i, j, \ell = \{1, ..., n\}$. **Remark.** (i) This is a property of the solution of the Neumann problem for the Laplace operator. In fact, $\nabla q = Q[\nabla \cdot f]$ is formally equivalent to

$$-\Delta q = \operatorname{div}(\nabla \cdot f)$$
 in Ω
 $\partial q / \partial n_{\Omega} = n_{\Omega} \cdot (\nabla \cdot f)$ on $\partial \Omega$.

Under the above condition for f we see that q is harmonic in Ω since

$$\operatorname{div}(\nabla \cdot f) = \sum_{i,j} \partial_i \partial_j f_{ij} = \sum \partial_j \partial_j \partial_j f_{ii} = 0.$$

- (ii) The constant C_{Ω} depends on Ω but independent of dilation, translation and rotation.
- (iii) If Ω is admissible, we easily obtain the pressure gradient estimate by taking $f_{ij} = \partial_j v^i$.

(iv) It turns out that $\partial q / \partial n_{\Omega} = \operatorname{div}_{\partial \Omega}(n_{\Omega} \cdot (f - {}^{t}f)).$

Remark. Strictly admissibility implies admissibility. Example of strictly admissible domains

- (a) half space
- (b) C^3 bounded domain
- (c) C^3 exterior domain

Note that layer domain $\{a < x_n < b\}$ is not strictly admissible.

Consider
$$q(x_1, \dots, x_n) = x_1$$
.

Theorem 6 (Ken Abe – Y. G., Acta Math., 2013). If Ω is C^3 and admissible, then S(t) is a C_0 -analytic semigroup in $C_{0,\sigma}(\Omega)$. (The conclusion of Theorem 5 holds.)

Estimates for harmonic pressure gradient

Theorem 7 (A key step). If Ω is a C^2 sector-like domain, then it is admissible (not strictly admissible).

A strictly admissibility is proved for a bounded domain (K. Abe – Y. G.), exterior domain (K. Abe – Y. G.), a perturbed half space (K. Abe). For a bounded domain there is another proof by C. Kenig, F. Lin, Z. Shen (2013).

Sector-like domain

Lemma 2. Let Ω be a C^2 sector-like domain in \mathbb{R}^2 . Then there is a constant C such that $\|d_{\Omega}(x)\nabla u\|_{\infty} \leq C\|g\|_{\infty}$ for all weak solution $u \in L^1_{loc}(\overline{\Omega}_R)$ of Ω_R (NP) $\Delta u = 0$ in Ω_R $\frac{\partial u}{\partial n_{\Omega}} = \operatorname{div}_{\partial \Omega} g \quad \text{on} \quad \partial \Omega_R$ χ_1 satisfying $g \cdot n_{\Omega} = 0$ on $\partial \Omega \cap D_{2R}$ and g = 0on $\partial D_{2R} \cap \Omega$ provided that $\|d_{\Omega} \nabla u\|_{\infty} < \infty$. Here $\Omega_R \coloneqq \Omega \cap D_{2R}$.

Sector-like domain (continued)

Note that C is independent of R. This estimate yields

Lemma 3. There exists a constant C such that all weak solutions $u \in L^1_{loc}(\overline{\Omega})$ of (NP) with $\nabla u \in L^2(\Omega)$ and $g \in L^{\infty}(\partial \Omega)$ with $g \cdot n_{\Omega} = 0$ fulfills $\|d_{\Omega}\nabla u\|_{\infty} \leq C \|g\|_{\infty}$.

Idea of the proof of Lemma 2

We argue by contradiction $\exists \{u_m, g_m, R_m\}_{m=1}^{\infty}$, such that

$$\begin{split} 1 &= \|d_{\Omega}\nabla u_m\|_{L^{\infty}(\Omega_{R_m})} > m\|g_m\|_{L^{\infty}(\partial\Omega\cap D_{2R_m})}\\ \text{Case A} & R_m \to \infty \text{ as } m \to \infty\\ \text{Case B} & \overline{\lim}_{m \to \infty} R_m < \infty\\ \text{We only discuss case A. We take } x_m \in \Omega_{R_m} \text{ such that }\\ |d_{\Omega}(x_m)\nabla u_m(x_m)| > 1/2\,.\\ \text{We may assume } u_m(x_m) &= 0 \text{ by subtracting a constant.} \end{split}$$

Compactness

- **Case 1** \exists subsequence $\{x_{m_k}\} \rightarrow \hat{x}$
- **Case 2** $|x_m| \to \infty$
- Case 1 (a) $\hat{x} \in \Omega$, (Case 1 (b) $\hat{x} \in \partial \Omega$)

 u_m converges to u locally uniformly with its derivatives in Ω and $u(\hat{x}) = 0$. We now apply the uniqueness to conclude $u \equiv 0$ which contradicts $|d(\hat{x})\nabla u(\hat{x})| \ge 1/2$.

Uniqueness

Lemma 4. Let Ω be a C^2 sector-like domain. Let $u \in C^2(\Omega) \cap C^1(\overline{\Omega})$ be a solution of (NP) in Ω with g = 0. Assume that $||d_{\Omega}\nabla u||_{\infty} < \infty$. Then u is a constant function.

Other cases

Case 1 (b) can be handled by uniqueness in a half space with blow-up argument

$$v_m(x) = u_m(x_m + d_m x), \ d_m = d_\Omega(x_m).$$

Case 2 can be treated by scaling-down argument

$$w_m(x) = u_m(x/|x_m|)$$

and uniqueness (with zero flux condition) in $S_{\theta} \cap D_S$ with some S > 0 or S_{θ} .

A key observation for uniqueness (1) Assumption implies zero flux condition

$$\int_{T_R\cap\Omega}\frac{\partial u}{\partial r}d\mathcal{H}^1=0,\qquad R\gg 1,$$

where $\Gamma_R = \partial D_R$. This implies that u is bounded in Ω .

(2) We may assume $\int_{\Gamma_R \cap \Omega} u \, d\mathcal{H}^1 = 0$ for $R \gg 1$. If u attains its maximum, the strong maximum principle implies u = const.

(3) In the case max is not attained, we consider sequence x_m such that $u(x_m) \rightarrow \sup u$, $|x_m| \rightarrow \infty$. We scale down and obtain a contradiction to the uniqueness result in a sector under zero flux condition.

Summary

- We prove that a C^2 sector-like domain is admissible.
- A similar idea works for a domain with finitely many cylindrical outlets.

Theorem 4. Let $\Omega (\subset \mathbb{R}^2)$ be a C^3 sector-like domain. Then the Stokes semigroup S(t) is a C_0 -analytic semigroup in $L^r_{\sigma}(\Omega)$ for any $2 \leq r < \infty$.

Theorem 5. Let Ω be a C^3 sector-like domain. Then S(t) is a C_0 -analytic semigroup in $C_{0,\sigma}(\Omega)$. (Moreover, $t \| \nabla^2 S(t) v_0 \|_{\infty} \leq C_T \| v_0 \|_{\infty}$ for $t \in (0,T)$.)