On a systematic understanding of smoothing estimates for water wave equations

JSPS-DFG Japanese-German Graduate Externship Kickoff Meeting

Waseda University, June 18, 2014

Mitsuru Sugimoto (Nagoya Univ.)
Based on the joint work with

Michael Ruzhansky (Imperial College)
arXiv:math.AP/0612274
Equations of water waves

- Korteweg-de Vries (shallow water wave)
 \[\partial_t u + \partial_x^3 u + u \partial_x u = 0 \]

- Benjamin-Ono (deep water wave)
 \[\partial_t u - \partial_x |D_x| u + u \partial_x u = 0 \]
• Davey-Stewartson (shallow water wave of 2D)

\[i \partial_t u - \partial_x^2 u \pm \partial_y^2 u = c_1 |u|^2 u + c_2 u \partial_x^2 \Delta^{-1} |u|^2 \]

\[i \partial_t u - \partial_x^2 u \pm \partial_y^2 u = c_1 |u|^2 u + c_2 u \partial_x^2 \Box^{-1} |u|^2 \]

By further perturbation analysis....
Dysthe (deep water wave of 2D)

\[2i \left(\frac{\partial u}{\partial t} + \frac{1}{2} \frac{\partial u}{\partial x} \right) + \frac{1}{2} \frac{\partial^2 u}{\partial y^2} - \frac{1}{4} \frac{\partial^2 u}{\partial x^2} - u|u|^2 \]

\[= \frac{i}{8} \left(\frac{\partial^3 u}{\partial x^3} - 6 \frac{\partial^3 u}{\partial x \partial y^2} \right) + \frac{i}{2} u \left(\frac{\partial u}{\partial x} - \overline{u} \frac{\partial \overline{u}}{\partial x} \right) \]

\[- \frac{5i}{2} |u|^2 \frac{\partial u}{\partial x} - u|D|^{-1} \frac{\partial^2 |u|^2}{\partial x^2} \]
Hogan (deep water wave of 2D)

\[2i \left(\frac{\partial u}{\partial t} + c_g \frac{\partial u}{\partial x} \right) + p \frac{\partial^2 u}{\partial y^2} + q \frac{\partial^2 u}{\partial x^2} - \gamma u |u|^2 \]

\[= -ir \frac{\partial^3 u}{\partial x^3} - is \frac{\partial^3 u}{\partial x \partial y^2} - i\mu |u|^2 \frac{\partial \bar{u}}{\partial x} \]

\[+ iv |u|^2 \frac{\partial u}{\partial x} - u |D|^{-1} \frac{\partial^2 |u|^2}{\partial x^2} \]

\[(c, p, q, \gamma, r, s, \mu, \nu : \text{real parameters})\]
• Shrira (3D packet of internal gravity wave)

\[i \frac{\partial u}{\partial t} + \frac{\omega_{kk}}{2} \frac{\partial^2 u}{\partial x^2} + \frac{\omega_{ll}}{2} \frac{\partial^2 u}{\partial y^2} + \omega_{kl} \frac{\partial^2 u}{\partial x \partial y} \]

\[-i \left[\frac{\omega_{kkk}}{6} \frac{\partial^3 u}{\partial x^3} + \frac{\omega_{kkl}}{2} \frac{\partial^3 u}{\partial x^2 \partial y} + \frac{\omega_{kll}}{2} \frac{\partial^3 u}{\partial x \partial y^2} + \frac{\omega_{lll}}{6} \frac{\partial^3 u}{\partial y^3} \right] \]

\[+ i \gamma u \left(u \frac{\partial u}{\partial s} - \bar{u} \frac{\partial \bar{u}}{\partial s} \right) = 0 \]

\(\frac{\partial}{\partial s} \): derivative along a line, \(\gamma, \omega \ldots \): real parameters}
The equation we will consider

\[
\begin{cases}
 i\partial_t u + a(D_1, D_2)u = F(b(D_1, D_2)u), \\
 u(0, x) = \phi(x),
\end{cases}
\]

where

- \(a(\xi_1, \xi_2)\) is a polynomial of order 3,
- \(b(\xi_1, \xi_2)\) is a function of growth order 1.

Dysthe, Hogan, Shrira equations are of this form.
Two important tools to show the well-posedness

- Strichartz estimate

\[\| e^{ita(D_1,D_2)} \varphi(x) \|_{L_t^q L_x^r} \lesssim \| \varphi \|_{L^2} \]

- Smoothing estimate*

\[\| \langle x \rangle^{-s} |D| e^{ita(D_1,D_2)} \varphi(x) \|_{L_{t,x}^2} \lesssim \| \varphi \|_{L^2} \]
Historically, smoothing estimate was first shown to the equation

\[
\begin{cases}
\partial_t u + \partial_x^3 u + u \partial_x u = 0, \\
u(0, x) = \varphi(x) \in L^2(\mathbb{R}).
\end{cases}
\]

The solution \(u = u(t, x) \ (t, x \in \mathbb{R}) \) satisfies

\[
\int_{-T}^{T} \int_{-R}^{R} |\partial_x u(x, t)|^2 \, dx \, dt \leq c(T, R, \|\varphi\|_{L^2})
\]

(Kato 1983).
Normal forms

By linear change of variables, polynomials $a(\xi_1, \xi_2)$ of order 3 are reduced to one of the following normal forms:

\[
\begin{align*}
\xi_1^3, & \quad \xi_1 \xi_2^2, \quad \xi_1^3 + \xi_2^3, \quad \xi_1^3 - \xi_1 \xi_2^2, \\
\xi_1^3 + \xi_2^2, & \quad \xi_1^3 + \xi_1 \xi_2^2, \quad \xi_1 \xi_2^2 + \xi_1^2, \\
\xi_1^3 + \xi_2^2 + \xi_1 \xi_2, & \quad \xi_1^3 - \xi_1 \xi_2^2 + \xi_1^2 + \xi_2^2
\end{align*}
\]

(modulo polynomials of order 1)

Strichartz estimates are given for them except for the case $a(\xi_1, \xi_2) = \xi_1^3, \xi_1 \xi_2^2$ (Ben-Artzi, Koch, Saut 2003).
What are known for smoothing estimates?

We consider smoothing estimates for solutions

$$u(t, x) = e^{ita(Dx)} \varphi(x)$$

to general equations

$$\begin{cases}
(i\partial_t + a(D_x)) u(t, x) = 0 \\
 u(0, x) = \varphi(x) \in L^2(\mathbb{R}^n)
\end{cases}$$

where $a(\xi)$ are real-valued and \textbf{dispersive} in the following senses:
Principal term only

(H) \(a(\xi) = a_m(\xi), \quad \nabla a_m(\xi) \neq 0 \quad (\xi \neq 0), \)

where principal term \(a_m(\xi) \) satisfies

- \(a_m(\xi) \in C^\infty(\mathbb{R}^n \setminus 0), \)

- \(a_m(\lambda \xi) = \lambda^m a_m(\xi) \quad (\lambda > 0, \xi \neq 0) \)

Example: \(a(\xi_1, \xi_2) = \xi_1^3 + \xi_2^3, \quad \xi_1^3 - \xi_1 \xi_2^2 \) satisfy (H).
Principal term + Lower oredr terms:

\[(L) \quad \bullet \quad a(\xi) \in C^\infty(\mathbb{R}^n), \]
\[\nabla a_m(\xi) \neq 0 \ (\xi \neq 0), \nabla a(\xi) \neq 0 \ (\xi \in \mathbb{R}^n) \]
\[\bullet \quad |\partial^\alpha (a(\xi) - a_m(\xi))| \leq C\langle \xi \rangle^{m-1-|\alpha|} \quad (|\xi| \geq 1) \]

\[\iff \]

\[(L) \quad \bullet \quad a(\xi) \in C^\infty(\mathbb{R}^n), \quad |\nabla a(\xi)| \geq C\langle \xi \rangle^{m-1}, \]
\[\bullet \quad |\partial^\alpha (a(\xi) - a_m(\xi))| \leq C\langle \xi \rangle^{m-1-|\alpha|} \quad (|\xi| \geq 1) \]

Example: \[a(\xi) = \xi_1^3 + \xi_2^3 + \xi_1 \] satisfies (L).
Theorem 1. Assume (H) or (L). Let $m > 0$ and let $s > 1/2$. Then we have

$$\left\| \langle x \rangle^{-s} |D_x|^{(m-1)/2} e^{ita(D_x)} \varphi(x) \right\|_{L^2(\mathbb{R}_t \times \mathbb{R}_x^n)} \leq C \| \varphi \|_{L^2(\mathbb{R}^n)}$$

(Ruzhansky and S. 2012).

Remark. Any polynomial $a(\xi)$ which satisfies the estimate in Theorem 1 has to be dispersive, that is

$$\nabla a_m(\xi) \neq 0 \quad (\xi \neq 0).$$

(Hoshiro 2003)
Non-dispersive case

What happens if

\[
\begin{cases}
(i\partial_t + a(D_x))u(t, x) = 0 \\
u(0, x) = \varphi(x) \in L^2(\mathbb{R}^n)
\end{cases}
\]

does not satisfy

\[
\nabla a(\xi) \neq 0 \quad (\xi \in \mathbb{R}^n) ?
\]

We cannot have smoothing estimates (Hoshiro 2003).
But such case appears naturally in equation of water waves:

If fact, normal forms:

\[\xi_1^3, \quad \xi_1 \xi_2, \quad \xi_1^3 + \xi_2^3, \quad \xi_1^3 - \xi_1 \xi_2^2, \]
\[\xi_1^3 + \xi_2^2, \quad \xi_1^3 + \xi_1 \xi_2, \quad \xi_1 \xi_2^2 + \xi_1^2, \]
\[\xi_1^3 + \xi_2^3 + \xi_1 \xi_2, \quad \xi_1^3 - \xi_1 \xi_2^2 + \xi_1^2 + \xi_2^2 \]

does not satisfies (H) nor (L).
Invariant estimate

We suggest an estimate which we expect to have for non-dispersive equations:

\[
\left\| \langle x \rangle^{-s} |\nabla a(D_x)|^{1/2} e^{i\tau a(D_x)} \varphi(x) \right\|_{L^2(R_t \times R^n_x)} \leq C \| \varphi \|_{L^2(R^n_x)} \quad (s > 1/2)
\]

and let us call it invariant estimate.

This estimate has a number of advantages:
• in the dispersive case $\nabla a(\xi) \neq 0$, it is equivalent to the usual estimate (Theorem 1);

• it is invariant under canonical transformations for the operator $a(D_x)$;

• it does continue to hold for a variety of non-dispersive operators $a(D_x)$, where $\nabla a(\xi)$ may become zero on some set and when the usual estimate fails;
Methods of approach

1. **Comparison principle** ⋯ comparison of the symbol implies the comparison of estimate. (New idea)

2. **Canonical Transformation** ⋯ shift an equation to another simple one. (Egorov’s theorem)

These are new method even for dispersive equations!
Comparison Principle

Theorem 2 (1D case). Let \(f, g \in C^1(\mathbb{R}) \) be real-valued and strictly monotone. If \(\sigma, \tau \in C^0(\mathbb{R}) \) satisfy

\[
\frac{|\sigma(\xi)|}{|f'(\xi)|^{1/2}} \leq \frac{|\tau(\xi)|}{|g'(\xi)|^{1/2}}
\]

then we have

\[
\| \sigma(D_x)e^{itf(D_x)}\varphi(x) \|_{L^2(\mathbb{R}_t)} \leq \| \tau(D_x)e^{itg(D_x)}\varphi(x) \|_{L^2(\mathbb{R}_t)}
\]

for all \(x \in \mathbb{R} \).
Theorem 3 (2D case). Let $f(\xi, \eta), g(\xi, \eta) \in C^1(\mathbb{R}^2)$ be real-valued and strictly monotone in $\xi \in \mathbb{R}$ for each fixed $\eta \in \mathbb{R}$. If $\sigma, \tau \in C^0(\mathbb{R}^2)$ satisfy

$$\frac{|\sigma(\xi, \eta)|}{|f_\xi(\xi, \eta)|^{1/2}} \leq \frac{|\tau(\xi, \eta)|}{|g_\xi(\xi, \eta)|^{1/2}}$$

then we have

$$\|\sigma(D_x, D_y)e^{itf(D_x, D_y)}\varphi(x, y)\|_{L^2(\mathbb{R}_t \times \mathbb{R}_y)} \leq \|\tau(D_x, D_y)e^{itg(D_x, D_y)}\varphi(x, y)\|_{L^2(\mathbb{R}_t \times \mathbb{R}_y)}$$

for all $x \in \mathbb{R}$.
Theorem 4 (Radially Symmetric case). Let \(f, g \in C^1(\mathbb{R}_+) \) be real-valued and strictly monotone. If \(\sigma, \tau \in C^0(\mathbb{R}_+) \) satisfy

\[
\frac{|\sigma(\rho)|}{|f'(\rho)|^{1/2}} \leq \frac{|\tau(\rho)|}{|g'(\rho)|^{1/2}}
\]

then we have

\[
\| \sigma(|D_x|)e^{itf(|D_x|)}\varphi(x) \|_{L^2(\mathbb{R}_t)} \leq \| \tau(|D_x|)e^{itg(|D_x|)}\varphi(x) \|_{L^2(\mathbb{R}_t)}
\]

for all \(x \in \mathbb{R}^n \).

21
Low dimensional model estimates

By the comparison principal, we can show the equivalence of low dimensional estimates of various type:

In the 1D case, we have \((l, m > 0)\).

\[
\sqrt{m} \left\| D_x^{(m-1)/2} e^{it|D_x|^m} \phi(x) \right\|_{L^2(\mathbb{R}_t)} = \sqrt{l} \left\| D_x^{(l-1)/2} e^{it|D_x|^l} \phi(x) \right\|_{L^2(\mathbb{R}_t)} \tag{1}
\]

for all \(x \in \mathbb{R}\). Here \(\text{supp} \hat{\phi} \subset [0, +\infty)\) or \((-\infty, 0]\).
In the 2D case, we have \((l, m > 0)\)

\[
\left\| |D_y|^{(m-1)/2} e^{itD_x} |D_y|^{m-1} \varphi(x, y) \right\|_{L^2(\mathbb{R}_t \times \mathbb{R}_y)} = \left\| |D_y|^{(l-1)/2} e^{itD_x} |D_y|^{l-1} \varphi(x, y) \right\|_{L^2(\mathbb{R}_t \times \mathbb{R}_y)}
\]

for all \(x \in \mathbb{R}\).
On the other hand, in 1D case, we have

\[e^{itD_x} \varphi(x) = \varphi(x + t) \]

hence we have trivially

\[\| e^{itD_x} \varphi(x) \|_{L^2(\mathbb{R}_t)} = \| \varphi \|_{L^2(\mathbb{R}_x)} \] \hspace{1cm} (3)

for all \(x \in \mathbb{R} \).

Using the equality (3), the right hand sides of (1) and (2) with \(l = 1 \) can be estimated, and we have:
• 1D Case
\[\left\| D_x \right\|^{(m-1)/2} e^{it \left| D_x \right|^m} \varphi(x) \right\|_{L^2(\mathbb{R}_t)} \leq C \left\| \varphi \right\|_{L^2(\mathbb{R}_x)} \]

• 2D Case
\[\left\| D_y \right\|^{(m-1)/2} e^{it D_x D_y} \varphi(x, y) \right\|_{L^2(\mathbb{R}_t \times \mathbb{R}_y)} \leq C \left\| \varphi \right\|_{L^2(\mathbb{R}_{x,y})} \]
for all \(x \in \mathbb{R} \).

The following is straightforward from these estimates:
Proposition 1. Suppose $m > 0$ and $s > 1/2$. Then for $n \geq 1$ we have

$$\left\| \langle x \rangle^{-s} |D_n|^{(m-1)/2} e^{it |D_n|^m} \varphi(x) \right\|_{L^2(\mathbb{R}_t \times \mathbb{R}_x^n)} \leq C \|\varphi\|_{L^2(\mathbb{R}_x^n)}$$

and for $n \geq 2$ we have

$$\left\| \langle x \rangle^{-s} |D_n|^{(m-1)/2} e^{it D_1 |D_n|^{m-1}} \varphi(x) \right\|_{L^2(\mathbb{R}_t \times \mathbb{R}_x^n)} \leq C \|\varphi\|_{L^2(\mathbb{R}_x^n)},$$

where $D_x = (D_1, \ldots, D_n)$.

The first one gives the invariant estimates for the normal form $a(\xi_1, \xi_2) = \xi_1^3$.
Canonical Transformation

Smoothing estimate for dispersive case (Theorem 1) can be reduced to low dimensional model estimates (Proposition 1) by the Canonical transformation:

For the change of variable \(\psi : \mathbb{R}^n \setminus 0 \to \mathbb{R}^n \setminus 0 \) satisfying \(\psi(\lambda \xi) = \lambda \psi(\xi) \) for all \(\lambda > 0 \) and \(\xi \in \mathbb{R}^n \setminus 0 \), we set

\[
Iu(x) = F^{-1}[(Fu)(\psi(\xi))](x).
\]
Then we have the relation

$$a(D_x) \cdot I = I \cdot \sigma(D_x), \quad a(\xi) = (\sigma \circ \psi)(\xi).$$

In dispersive case, we may replace $a(D)$ by

$$\sigma(D) = |D_n|^m \cdots \text{if } a(\xi) \text{ is elliptic}$$
$$\sigma(D) = D_1|D_n|^{m-1} \cdots \text{if } a(\xi) \text{ is non-elliptic}$$

by canonical transformation!
Summary for dispersive case

- Trivial estimate $\| e^{itD_x} \varphi(x) \|_{L^2(\mathbb{R}_t)} = \| \varphi \|_{L^2(\mathbb{R}_x)}$

 \downarrow (Comparison Principle)

- Low dimensional model estimate

 \downarrow (Canonical Transform)

- Smoothing estimates for dispersive equations
Secondary comparison

By using comparison principle again to the smoothing estimates obtained from the comparison principle, we can have new estimates.

This is a powerful tool to induce the invariant estimates for non-dispersive equations.
Radially symmetric case

From Theorem 1 with $a(\xi) = |\xi|^m$, we obtain

$$\left\| \langle x \rangle^{-s} |D_x|^{(m-1)/2} e^{it|D_x|^m} \varphi \right\|_{L^2(\mathbb{R}_t \times \mathbb{R}_x^n)} \leq C\|\varphi\|_{L^2(\mathbb{R}_x^n)}.$$

If we set $g(\rho) = \rho^m$, $\tau(\rho) = \rho^{(m-1)/2}$, then we have

$$|\tau(\rho)|/|g'(\rho)|^{1/2} = 1/\sqrt{m}.$$

Hence by the comparison result for radially symmetric case (Theorem 4), we have
Theorem 5. Let $f \in C^1(\mathbb{R}_+)$ be real-valued and strictly monotone. If $\sigma \in C^0(\mathbb{R}_+)$ satisfy

$$|\sigma(\rho)| \leq |f'(\rho)|^{1/2},$$

then we have

$$\|\langle x \rangle^{-s} \sigma(|D_x|) e^{itf(|D_x|)} \varphi(x)\|_{L^2(\mathbb{R}_t \times \mathbb{R}^n_x)} \leq C \|\varphi\|_{L^2(\mathbb{R}^n_x)}$$

for $s > 1/2$
A radial function $a(\xi) = f(|\xi|)$ always satisfies

$$|\nabla a(\xi)| = |f'(|\xi|)|.$$

From the secondary comparison (Theorem 5), we obtain

Theorem 6. Suppose $n \geq 1$ and $s > 1/2$. Let $a(\xi) = f(|\xi|)$ and $f \in C^\omega(\mathbb{R}_+)$ be real-valued. Then we have

$$\left\| \langle x \rangle^{-s} |\nabla a(D_x)|^{1/2} e^{ita(D_x)} \varphi(x) \right\|_{L^2(\mathbb{R}_t \times \mathbb{R}^n_x)} \leq C \| \varphi \|_{L^2(\mathbb{R}^n_x)}. $$
Example.

\[a(\xi) = (|\xi|^2 - 1)^2 \] is non-dispersive because

\[\nabla a(\xi) = 4(|\xi|^2 - 1)\xi = 0 \]

if \(|\xi| = 0, 1 \).

But we have the invariant estimate by Theorem 6.
Non-radially symmetric case

*Compare again to the low dimensional model estimates

\[\left\| D_x \right\| (m - 1)/2 e^{it} |D_x|^m \varphi(x) \right\|_{L^2(R_t)} \leq C \left\| \varphi \right\|_{L^2(R_x)} \]

\[\left\| D_y \right\| (m - 1)/2 e^{it} D_x D_y |m - 1| \varphi(x, y) \right\|_{L^2(R_t \times R_y)} \leq C \left\| \varphi \right\|_{L^2(R_x \times R_y)} \]

then we have:
Theorem 7 (1D secondary comparison). Let $f \in C^1(\mathbb{R})$ be real-valued and strictly monotone. If $\sigma \in C^0(\mathbb{R})$ satisfies

$$|\sigma(\xi)| \leq |f'(\xi)|^{1/2},$$

then we have

$$\|\langle x \rangle^{-s} \sigma(D_x)e^{itf(D_x)}\varphi(x)\|_{L^2(\mathbb{R}_t \times \mathbb{R}_x)} \leq C\|\varphi(x)\|_{L^2(\mathbb{R}_x)}$$

for $s > 1/2$.

36
Theorem 8 (2D secondary comparison). Let $f \in C^1(\mathbb{R}^2)$ be real-valued and $f(\xi, \eta)$ be strictly monotone in $\xi \in \mathbb{R}$ for every fixed $\eta \in \mathbb{R}$. If $\sigma \in C^0(\mathbb{R}^2)$ satisfies

$$|\sigma(\xi, \eta)| \leq |\partial f / \partial \xi(\xi, \eta)|^{1/2},$$

then we have

$$\|\langle x \rangle^{-s} \sigma(D_x, D_y)e^{itf(D_x,D_y)}\varphi(x,y)\|_{L^2(\mathbb{R}_t \times \mathbb{R}^2_{x,y})} \leq C\|\varphi(x,y)\|_{L^2(\mathbb{R}^2_{x,y})}$$

for $s > 1/2$.

37
Normal forms:

- $a(\xi) = \xi_1^3 + \xi_2^2$

By 1D secondary comparison (Theorem 7), we have

$$\left\| \langle x_1 \rangle^{-s} |D_1| e^{itD_1^3} \varphi(x) \right\|_{L^2(\mathbb{R}_t \times \mathbb{R}_x^2)} \leq C \| \varphi \|_{L^2(\mathbb{R}_x^2)}$$

$$\left\| \langle x_2 \rangle^{-s} |D_2|^{1/2} e^{itD_2^2} \varphi(x) \right\|_{L^2(\mathbb{R}_t \times \mathbb{R}_x^2)} \leq C \| \varphi \|_{L^2(\mathbb{R}_x^2)}$$

for $s > 1/2$.
Hence by $\langle x \rangle^{-s} \leq \langle x_k \rangle^{-s} (k = 1, 2)$ we have

$$\left\| \langle x \rangle^{-s} \left(|D_1| + |D_2|^{1/2} \right) e^{i\alpha(D_x)} \varphi(x) \right\|_{L^2(R_t \times R^2_x)} \leq C \| \varphi \|_{L^2(R^2_x)}$$

and hence have

$$\left\| \langle x \rangle^{-s} |\nabla a(D_x)|^{1/2} e^{i\alpha(D_x)} \varphi(x) \right\|_{L^2(R_t \times R^2_x)} \leq C \| \varphi \|_{L^2(R^2_x)}.$$
• $a(\xi) = \xi_1^2 + \xi_1 \xi_2$

By 2D secondary comparison (Theorem 8), we have for $s > 1/2$

$$\|\langle x_1 \rangle^{-s} |2D_1 + D_2^2|^{1/2} e^{i\alpha(D_1, D_2)} \varphi(x)\|_{L^2(\mathbb{R}_t \times \mathbb{R}^2_x)} \leq C \|\varphi\|_{L^2(\mathbb{R}^2_x)},$$

$$\|\langle x_2 \rangle^{-s} |D_1 D_2|^{1/2} e^{i\alpha(D_1, D_2)} \varphi(x)\|_{L^2(\mathbb{R}_t \times \mathbb{R}^2_x)} \leq C \|\varphi\|_{L^2(\mathbb{R}^2_x)},$$

hence we have similarly

$$\|\langle x \rangle^{-s} |\nabla a(D_x)|^{1/2} e^{i\alpha(D_x)} \varphi(x)\|_{L^2(\mathbb{R}_t \times \mathbb{R}^2_x)} \leq C \|\varphi\|_{L^2(\mathbb{R}^2_x)}.$$
• \(a(\xi) = \xi_1 \xi_2^2 \)

By 2D secondary comparison (Theorem 8), we have for \(s > 1/2 \)

\[
\left\| \langle x_1 \rangle^{-s} |D_2| e^{i \alpha (D_1, D_2)} \varphi(x) \right\|_{L^2(\mathbb{R}_t \times \mathbb{R}^2_x)} \leq C \| \varphi \|_{L^2(\mathbb{R}^2_x)} ,
\]
\[
\left\| \langle x_2 \rangle^{-s} |D_1 D_2|^{1/2} e^{i \alpha (D_1, D_2)} \varphi(x) \right\|_{L^2(\mathbb{R}_t \times \mathbb{R}^2_x)} \leq C \| \varphi \|_{L^2(\mathbb{R}^2_x)} ,
\]

hence we have similarly

\[
\left\| \langle x \rangle^{-s} |\nabla a(D_x)|^{1/2} e^{i \alpha (D_x)} \varphi(x) \right\|_{L^2(\mathbb{R}_t \times \mathbb{R}^2_x)} \leq C \| \varphi \|_{L^2(\mathbb{R}^2_x)} .
\]
Non-dispersive case controlled by Hessian

We will show that in the non-dispersive situation the rank of $\nabla^2 a(\xi)$ still has a responsibility for smoothing properties.

First let us consider the case when dispersiveness (L) is true only for large ξ:

$$(L') \quad |\nabla a(\xi)| \geq C'\langle \xi \rangle^{m-1} \quad (|\xi| \gg 1),$$

$$|\partial^\alpha (a(\xi) - a_m(\xi))| \leq C'\langle \xi \rangle^{m-1-|\alpha|} \quad (|\xi| \gg 1)$$
Theorem 9. Suppose $n \geq 1$, $m \geq 1$, and $s > 1/2$. Let $a \in C^\infty(\mathbb{R}^n)$ be real-valued and assume that it has finitely many critical points. Assume (L') and

$$\nabla a(\xi) = 0 \Rightarrow \det \nabla^2 a(\xi) \neq 0.$$

Then we have

$$\left\| \langle x \rangle^{-s} |\nabla a(D_x)|^{1/2} e^{ita(D_x)} \varphi(x) \right\|_{L^2(\mathbb{R}_t \times \mathbb{R}^n_x)} \leq C \| \varphi \|_{L^2(\mathbb{R}^n_x)}.$$

Example: $a(\xi) = \xi_1^3 + \xi_1 \xi_2$, $\xi_1^3 + \xi_2^3 + \xi_1 \xi_2$, $\xi_1^3 - \xi_1 \xi_2 + \xi_2^2 + \xi_1^2$ satisfies assumptions in Theorem 9.
Outline of proof: * $\nabla a(\xi) \neq 0 \Rightarrow$ dispersive.

* $\nabla a(\xi) = 0 \Rightarrow$ by Morse’s lemma

$$a(\xi) = (\sigma \circ \exists \psi)(\xi),$$

$\sigma(\eta) =$ non-degenerate quadratic form,
and σ satisfies dispersiveness (H).

Hence the estimate can be reduced to the dispersive case!
Next we consider the case when \(a(\xi) \) is homogeneous (of order \(m \)). Then, by Euler’s identity, we have

\[
\nabla a(\xi) = \frac{1}{m-1} \xi \nabla^2 a(\xi) \quad (\xi \neq 0),
\]

hence

\[
\nabla a(\xi) = 0 \Rightarrow \det \nabla^2 a(\xi) = 0 \quad (\xi \neq 0).
\]

Therefore assumption in Theorem 10 does not make any sense in this case, but we can have the following result if we use the idea of canonical transform wisely:
Theorem 10. Suppose $n \geq 2$ and $s > 1/2$. Let $a \in C^\infty(\mathbb{R}^n \setminus 0)$ be real-valued and satisfy

$$a(\lambda \xi) = \lambda^2 a(\xi) \quad (\lambda > 0, \xi \neq 0).$$

Assume that

$$\nabla a(\xi) = 0 \Rightarrow \text{rank} \, \nabla^2 a(\xi) = n - 1 \quad (\xi \neq 0).$$

Then we have

$$\left\| \langle x \rangle^{-s} |\nabla a(D_x)|^{1/2} e^{ita(D_x)} \varphi(x) \right\|_{L^2(\mathbb{R}_t \times \mathbb{R}_x^n)} \leq C \| \varphi \|_{L^2(\mathbb{R}_x^n)}. $$
Example. \(a(\xi) = \frac{\xi_1^2 \xi_2^2}{\xi_1^2 + \xi_2^2} + \xi_3^2 + \cdots + \xi_n^2 \) satisfies the assumptions in Theorem 11.

In the case \(n = 2 \), this is an illustration of a smoothing estimate for the Cauchy problem for an equation like

\[
i \partial_t u + D_1^2 D_2^2 \Delta^{-1} u = 0
\]

(A mixture of Davey-Stewartson and Benjamin-Ono type equations).
Conclusions

Invariant estimate is true at least for

- radially symmetric \(a(\xi) = f(|\xi|), \ f \in C^\omega(\mathbb{R}_+) \),

- polynomials \(a(\xi_1, \xi_2) \) of order 3.

- non-dispersive \(a(\xi) \) controlled by its Hessian.