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Equations of water waves

e Korteweg-de Vries (shallow water wave)

oru + 8£’u 4+ uoru =0

e Benjamin-Ono (deep water wave)

Oru — Og|Dy|u 4+ udzu = 0O



e Davey-Stewartson (shallow water wave of 2D)
1O — O2u + 8§u = c1|ul?u 4 coud2 A7 ul?

iOpu — O2u + 8y2u = c1|ul?u 4 coud20 1 |ul?

*By further perturbation analysis....



e Dysthe (deep water wave of 2D)
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e Hogan (deep water wave of 2D)
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e Shrira (3D packet of internal gravity wave)
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The equation we will consider

iatu —|— a(Dl, DQ)’LL — F(b(Dl, DQ)U),
w(0,z) = p(z),

where

a(&1,€2) is a polynomial of order 3,
b(&£1,&5) is a function of growth order 1.

Dysthe, Hogan, Shrira equations are of this form.



Two important tools to show the well-posedness

e Strichartz estimate

cita(D1,D)

#(@)| a1y S 19022

e Smoothing estimate®

(@) eIl PrPDe(@) | 5 5l



Historically, smoothing estimate was first shown to the
equation

Ou + 83u + udpu = 0,
w(0,z) = p(z) € L?(R).

The solution u = u(t,z) (t,z € R) satisfies

T rR 5
[ | 1sule. P dedt < (T, R ¢l 2)

(Kato 1983).



Normal forms

By linear chage of variables, polynomials a(£&1,&>) of or-
der 3 are redueced to one of the following normal forms:

&3, €83, g4+, & -8
463, 468, 6163 +¢3,
S+t -3+ 463

(modulo polynomials of order 1)

Strichartz estimates are given for them except for the
case a(é1,&) = €3, €165 (Ben-Artzi, Koch, Saut 2003).
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What are known for smoothing estimates?

We consider smoothing estimates for solutions

u(t,z) = e"P)(z)
to general equations
{ (20t + a(Dz)) u(t,x) =0
uw(0,z) = ¢(z) € L?(R")

where a(£) are real-valued and dispersive in the follow-
INg senses:
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Principal term only

where principal term a,,(§) satisfies

e am(§) € C(R™\ 0),
o am(A§) = A"am(§) (A>0,£#0)

Example: a(&1,£5) = &5 + €3, € — €165 satisfy (H).
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Principal term 4+ Lower oredr terms:

(L) o a(€) € C¥(RM),
Vam(€) #0 (£ #0), Va(¢) # 0 (¢ € RY)
o 0% a(&) —am(©)| < Cle)y™ 7l (g > 1)

<

(L) o a(&) €C®MM), |Va(e)|>cCE)™ 1
o 0% (&) —am(e)| < Cle)y™ 7l (g > 1)

Example: a(¢) = &3 + €3 + & satisfies (L).
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Theorem 1. Assume (H) or (L). Let m > 0 and let
s> 1/2. Then we have

(@)= Da] (D2t ()| iy < Clell2gny

(Ruzhansky and S. 2012).

Remark. Any polynomial a(§¢) which satisfies the esti-
mate in Theorem 1 has to be dispersive, that is

Vam(§) #0 (£ # 0).

(Hoshiro 2003)
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Non-dispersive case

What happens if

{ (10 + a(Dz)) u(t,z) = O
uw(0,z) = ¢(z) € L?(R")

does not satisfy

Va(§) #0 (eR")7?

We cannot have smoothing estimates (Hoshiro 2003).
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But such case appears naturally in equation of water
waves:

If fact, normal forms:

e, 683, 8+, -8,
463, 4616, 6163 +£3
S+t -3+ 463

does not satisfies (H) nor (L).
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Invariant estimate

We suggest an estimate which we expect to have for
non-dispersive equations:

H<x>—slva(Dx)|1/2€ita(Dx)gp(a;)HLQ(RtXRg)
< Cllellpemny  (s>1/2)

and let us call it invariant estimate.

This estimate has a number of advantages:
16



e in the dispersive case Va(€) #= O, it is equivalent to
the usual estimate (Theorem 1);

e it isinvariant under canonical transformations for the
operator a(Dy);

e it does continue to hold for a variety of non-dispersive
operators a(Dy), where Va(£) may become zero on
some set and when the usual estimate fails;
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Methods of approach

1. Comparison principle --- comparison of the symbol
implies the comparison of estimate. (New idea)

2. Canonical Transformation --- shift an equation to
another simple one. (Egorov’'s theorem)

These are new method even for dispersive equations!
18



Comparison Principle

Theorem 2 (1D case). Let f,g € C1(R) be real-valued
and strictly monotone. If o,7 € CO(R) satisfy

o 7))
FOI2 T g/ (O

then we have

||J(Dg;)eitf(D“;)g0(£IJ)||L2(Rt) < ||T(Da:)€itg(Dx)90(x)||L2(Rt)
for all x € R.
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Theorem 3 (2D case). Let f(&,1),q9(&,n) € CL(R?) be
real-valued and strictly monotone in & € R for each fixed
neR. If o,7 € CO(R?) satisfy

o€, ml
feem[?

(€, m)|
(gg(ﬁ,n)\l/Q

then we have

HO-(D% Dy)eitf(D:c,Dy)(p(x’ Y) HLQ(Rthy)

< |7 (D, D™ P0 P (2, 1) | 2R, xR, )
for all x € R.
20



Theorem 4 (Radially Symmetric case). Let f,g € Cl(R_|_)
be real-valued and strictly monotone. If o,7 € CO(R4)
satisfy

o)l 17(p)]
LF1()F2 = g (p)|1/2

then we have

lo(ID2])e™ 1P Do) || 2R,

< |lr(|D2 e NP Dio(@) || 2 g,y
for all x € R™.
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Low dimensional model estimates

By the comparison principal, we can show the equiva-
lence of low dimensional estimates of various type:

In the 1D case, we have (I,m > 0).

Vi [ D[ D2 P o @)

= VI |1Do] D26 ()| (D)

L?(Ry)
for all x € R. Here supp @ C [0, 40c0) or (—oo,0].
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In the 2D case, we have (I,m > 0)

H|Dy|(m—1)/26ith\Dy|m1

ol y)' L2(R;xR,)

_ H|Dy|(l—1)/2€ithDy|ll

(2)

ola.9)|

for all z € R.
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On the other hand, in 1D case, we have

e"™Prp(z) = p(z +t)

hence we have trivially

’Lth;

0@ 20m,y = lell2Ra) (3)
for all x € R.

Using the equality (3), the right hand sides of (1) and
(2) with I = 1 can be estimated, and we have:
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e 1D Case

|||Dx|<m_1>/2€¢tmx\%(m)HLQ(Rt) < Cllel 2,

e 2D Case

: m—1
H| y| L2(Ry ) = || ”L (ny)

sO(fL‘,y)|

for all z € R.

The following is straightforward from these estimates:
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Proposition 1. Suppose m > 0 and s > 1/2. Then for
n > 1 we have

H<x>_8|Dn|(m_1>/2eit‘Dn|m¢(x)HLQ(Rthg) S CHQOHLQ(Rg)

and for n > 2 we have

H<x>—3|Dn|(m—l)/2€itD1\Dn|m190(33)‘

S C 2(R1)s
L2(R,xR) lellr, (R2)

where Dy = (Dq,...,Dp).

T he first one gives the invariant estimates for the normal

form a(é1,£5) = €3
26



Canonical Transformation

Smoothing estimate for dispersive case (Theorem 1) can
be reduced to low dimensional model estimates (Propo-
sition 1) by the Canonical transformation:

For the change of variable ¥ : R\ 0 — R™\ O satisfying
W(AE) = Mp(€) for all A > 0 and £ € R™\ O, we set

Tu(z) = F~H(Fu)($(E)](=).

27



Then we have the relation

a(Dz) - I=1-0(Dz), a(§) = (c0v)(&).

In dispersive case, we may replace a(D) by

o(D) = |Dp|™---if a(§) is elliptic
o(D) = D1|Dp|™ 1 -if a(€) is non-elliptic

by canonical transformation!

28



Summary for dispersive case

e Trivial estimate ||ettP=

e Pro@)] o g,y = lellrar)

(3 (Comparison Principle)

e Low dimensional model estimate

() (Canonical Transform)

e Smoothing estimates for dispersive equations

29



Secondary comparison
By using comparison principle again to the smoothing
estimates obtained from the comparison principle, we

can have new estimates.

This is a powerful tool to induce the invariant estimates
for non-dispersive equations.
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Radially symmetric case

From Theorem 1 with a(§) = |£]™, we obtain

— —1)/2 _it|Dg|™

If we set g(p) = p™, 7(p) = p{™=1)/2 then we have

(p)|/1d' () |}? = 1/v/m.

Hence by the comparison result for radially symmetric
case (Theorem 4), we have
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Theorem 5. Let f € Cl(R+) be real-valued and strictly
monotone. If o € CO(R,.) satisfy

o ()| < | (p)|}2,

then we have

(@) ~*o (1D 1P D o(@)] 12, xmmy < Cliel r2gmn
for s >1/2
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A radial function a(¢) = f(|£|) always satisfies

Va(©)| = [/ (€D

From the secondary comparison (Theorem 5), we obtain

Theorem 6. Supposen > 1 and s > 1/2. Let a(§) =
f(¢]) and f € CY(R4) be real-valued. Then we have

Hm_slw(m)|1/zez-m(Dx>¢(m)HLQ(RMR@ < Cllell 2(ray:

33



Example.

a(€) = (J€]2 — 1)? is non-dispersive because

Va(e) = 4(J¢[° —1)é=0
if |€|=0,1.

But we have the invariant estimate by Theorem 6.
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Non-radially symmetric case

*Compare again to the low dimensional model estimates

|D$|(m_1)/2€it|D$|mS@(x)HLQ(Rt) < C||g0||L2(Rx)

|Dy|(m—1)/2€ith;\Dy\m_1

o(a.9)| < Cligll2(ma,

then we have:
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Theorem 7 (1D secondary comparison). Let f € C1(R)
be real-valued and strictly monotone. If o € CO(R) sat-
isfies

()] < |£/(€)]Y2,

then we have

I(2) "o (D2)e™ Po(@)]| 2r, xR,y < Clle@)lL2er,)
for s > 1/2.
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Theorem 8 (2D secondary comparison). Let f € C1(R?)

be real-valued and f(&,m) be strictly monotone in £ € R
for every fixed n € R. If o € CO(R?) satisfies

o (&,m)| < |8F/0¢(E, m)|H2,

then we have

H <x>—sa(D$, Dy)eitf(Da:,Dy)

i

o(z, y)HLQ(RthQay)

< ClleC, yli2m2 )
for s > 1/2.
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Normal forms:

o a(§) =&+ 63

By 1D secondary comparison (Theorem 7), we have

_ 3
(z1) 8|D1|€7’tD190(a?)‘

L2(R;xR2) — = C”SOHLQ(RQ)

< > S|D |1/2 13D

(@) < Cligll 12(ra)

LQ(RtXRQ)
for s > 1/2.
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Hence by (x)7° < {(x;)"° (k= 1,2) we have

@7 (1D1] + 1Dz 2) P @) gy
< Cllell 2(r2)

and hence have

(@) IV a(D2) M2 P (@)|| g | poy < Cllell2(m).
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o a(§) = &7 + €163

By 2D secondary comparison (Theorem 8), we have for
s>1/2

<33]_>_8|2D1 _I_ D%|1/2€ita(D1,DQ)Sp(gc)HLQ(RtXR%) S CHQOHLQ(R%),

<x2>—8|D1D2|1/2€itCL(D1, D»)

"O(x)||L2(Rthg) < Cllellzrz),

hence we have similarly
— 1/2 ita(Dy
()5 Va(Dy)| /2 )SO(;C)HLQ(RMR%) < Cllgllz2(r2)-

40



e a(§) = &165

By 2D secondary comparison (Theorem 8), we have for
s>1/2

— ta(Dq, D
(w1) % Dale P Q)QD(CB)HLQ(RLLXR%)SC”@HLQ(R%)’
<x2>—8|D1D2|1/2€itCL(D1, D»>)

SO(CB)HLQ(RLLXR%) < Cllell2(rz),

hence we have similarly
— 1/2 ita(Dy
()5 Va(Dy)| /2 )SO(;C)HLQ(RMR%) < Cllgllz2(r2)-
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Non-dispersive case controlled by Hessian

We will show that in the non-dispersive situation the
rank of V2a(¢) still has a responsibility for smoothing
properties.

First let us consider the case when dispersiveness (L) is
true only for large &:

L) |Va(®)|>cCcEe)™t (g >> 1),
0%(a(e) — am(8))| < C(e)ym~1-lel (g >> 1)

42



Theorem 9. Supposen > 1, m > 1, and s > 1/2. Let

a € C°(R"™) be real-valued and assume that it has finitely
many critical points. Assume (L") and

Va(£) =0 = detV2a(¢) # 0.
Then we have

[@)*IVa(D) M2 P o) | oy < ClIellLaay:

Example: a(§) = &7 + &1, &7 + 65 + 160,
f‘i’ — 5155 + f% + 5% satisfies assumptions in Theorem 9.

43



Outline of proof: * Va(£) #= 0 = dispersive.

* Va(£) = 0 = by Morse's lemma

a(€) = (o 0 ) (€),

o(n) = non-degenerate quadratic form,
and o satisfies dispersiveness (H).

Hence the estimate can be reduced to the dispersive
case!

44



© Next we consider the case when a(§) is homogeneous
(of oder m). Then, by Euler's identity, we have

1

m — 1

Va(g) = EVv2a(e) (€#0),

hence

Va() =0 = detVZa(¢) =0 (£ #0).

T herefore assumption in Theorem 10 does not make any
sense in this case, but we can have the following result
if we use the idea of canonical transform wisely:
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Theorem 10. Suppose n > 2 and s > 1/2. Let a €
C°(R™\ O) be real-valued and satisfy

a(A6) = Na(€) (A>0,¢#0).
Assume that
Va(€) =0 = rankV2a(§) =n—1 (£#0).

T hen we have

(@) IVa(D2) V2P| g py < Cllell2qmy):
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2¢2
Example. a(¢) = % + €3 + -+ - + & satisfies the as-
£ + &5

sumptions in Theorem 11.

In the case n = 2, this is an illustration of a smoothing
estimate for the Cauchy problem for an equation like

10¢u + D%D%A_lu =0

(A mixture of Davey-Stewartson and Benjamin-Ono type
equations).
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Conclusions

Invariant estimate is true at least for

e radially symmetric a(§) = f(|¢]), f € C¥(R4),

e polynomials a(&1,&>) of order 3.

e non-dispersive a(£) controlled by its Hessian.
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