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Abstract. The goal of this short course is to review the analysis and the systematic dis-
cretization of saddlepoint systems that arise in the weak formulation of certain fluid flow
problems by Galekrin methods. To demonstrate the applicability of the main arguments
in various situations, we consider the slow flow of water through a channel surrounded by
a porous aquiver. While the free flow of the fluid may be described by the Stokes system,
the flow of the water through the confining porous medium is governed by the Darcy
equations. The coupling of these two rather different fluid flow models is accomplished
by the interface conditions of Beavers, Joseph, and Saffmann. We establish the well-
posedness of this interface problem in the framework of mixed variational problems by
verifying the assumptions of Brezzi’s splitting theorem. Based on the proper variational
setting, we then discuss the Galerkin discretization for the Darcy and Stokes problem.
The discretizations are analyzed with the same arguments as the continuous problem,
and we will highlight the importance of discrete stability conditions for the construction
of reliable schemes. In particular, we will illustrate by explicit examples, that a straight
forward discretization will in general not lead to stable numerical schemes. Based on
appropriate discretization strategies for the Darcy and Stokes problems, we then pro-
pose a combined finite element method which yields quasi-optimal approximations for
the coupled Darcy-Stokes flow problem.

1. Introduction

1.1. The model problem. We consider the flow of an incompressible viscous fluid
through a bounded Lipschitz domain Ω ⊂ Rd, d = 2 or 3, which is separated by an
interface ΓSD into two parts ΩS and ΩD. In the subdomain ΩS, the fluid can propagate
freely and the steady flow is governed by the Stokes equations

−ν∆uS +∇pS = fS, in ΩS, (1a)

divuS = 0, in ΩS, (1b)

uS = 0, on ΓS. (1c)

Here uS denotes the velocity field, pS the pressure, and fS is the density of external forces.
The viscosity ν is assumed to be a positive constant. For ease of presentation, we use
homogeneous Dirichlet boundary conditions at the outer boundary ΓS = ∂ΩS \ ΓSD, but
the incorporation of more general boundary conditions is straight forward.

The second subdomain ΩD is assumed to be covered by a porous medium and the flow
is described by the Darcy equations

ρuD +∇pD = 0, in ΩD, (2a)

divuD = gD, in ΩD, (2b)

nD · uD = 0, on ΓD. (3b)
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As before, uD and pD denote the fluid velocity and pressure and nD is the normal vector
pointing to the outside of ΩD. The constant ρ = κ−1 is the inverse of the hydraulic
permeability of the porous medium, and the function gD represents the density of sources
and sinks. Homogeneous boundary conditions are again presecribed at the outer part of
the boundary ΓD = ∂ΩD \ ΓSD for simplicity.

The coupling of the flow velocity and the pressure field over the interace ΓSD is described
by the following set of conditions

nS · uS = nS · uD, on ΓSD, (3a)

nS · (−ν∂nuS + pSnS) = pD, on ΓSD, (3b)

nS × (−ν∂nuS) = γρ1/2nS × uS, on ΓSD. (3c)

Here nS = −nD denotes the normal vector at the interface ΓSD pointing to the outside
of ΩS. The first condition expresses the mass conservation due to incompressibility of the
fluid, and the second models the equilibrium of normal forces at the interface. The mo-
mentum balance is completed by the third equation, which relates the tangential forces to
the tangential velocity. The interface condition (3c) has been first derived experimentally
in a slightly different form by Beavers and Joseph [2], and then simplified and justified
theoretically by Saffman [23]. A rigorous mathematical justification for the complete
model (1a)–(3c) via homogenization was given by Jäger and Mikelic [18].

1.2. A variational characterization. Let (u, p) be a smooth solution to the cou-
pled Darcy-Stokes problem, i.e., such that the restrictions uS = u|ΩS

, pS = p|ΩS
and

uD = u|ΩD
, pD = p|ΩD

solve (1a)–(1c) and (2a)–(2c), respectively, and also satisfy (3a)–
(3c). Multiplying (1a) by a smooth test function vS, integrating over ΩS, and employing
integration-by-parts, we get

(fS,vS)ΩS
= (−ν∆uS +∇pS,vS)ΩS

= (ν∇uS,∇vS)ΩS
− (pS, divvS)ΩS

+ 〈−ν∂nuS + pSnS,vS〉∂ΩS
.

By testing the (2a) with a smooth function vD, we obtain in a similar manner

(fD,vD)ΩD
= (ρuD +∇pD,vD)ΩD

= (ρuD,vD)ΩD
− (pD, divvD)ΩD

+ 〈pDnD,vD〉∂ΩD
.

The boundary terms can be simplified by utilizing the interface conditions (3b)–(3c) and
by imposing appropriate boundary and interface conditions on the test function vS and
vD. Let us therefore assume that vS = v|ΩS

and vD = v|ΩD
are the restriction a function

v defined on Ω, which is smooth on the two sub-domains, and additionally satisfies

vS = 0 on ΓS, nD · vD = 0 on ΓD, and nS · vS = nS · vD on ΓSD. (4)

Note that the conditions in (4) corresponds to the boundary conditions (1c) and (2c), and
to the interface condition (3a). The sum of the two bundary terms then reads

〈−ν∂nuS + pSnS,vS〉∂ΩS
+ 〈pDnD,vD〉∂ΩD

= 〈−ν∂nuS + pSnS,vS〉ΓSD
− 〈pDnS,vD〉ΓSD

= 〈nS · (−ν∂nuS + pSnS − pD,nS · vS〉ΓSD
+ 〈nS × (−ν∂nuS),nS × vS〉ΓSD

= 〈γρ1/2nS × uS,nS × vS〉ΓSD
.

For the last transformation, we used the interface conditions (3b) and (3c), and in the line
before, we employed to normal continuity of v across the interface. We thuse observe that
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any piecewise smooth solution of the coupled Darcy-Stokes problem (1a)–(3c) satisfies

ν(∇u,∇v)ΩS
+ ρ(u,v)ΩD

+ γρ1/2〈nS × uS,nS × vS〉ΓSD
− (p, divv)Ω = (f ,v)Ω, (5a)

−(divu, q)Ω = −(g, q)Ω. (5b)

The first equation holds for any piecewise smooth test function v that satisfies the bound-
ary and interface conditions given in (4), and the second in this variational prinicple, which
was added to give a complete characterization, is valid for any sufficiently integrable test
function q.

1.3. Weak formulation. The equations (5a)–(5b) can be written in compact form as

a(u,v) + b(p,v) = l(v), (6a)

b(u, q) = j(v), (6b)

with bilinear forms defined by

a(u,v) = (ν∇u,∇v)ΩS
+ (ρu,v)ΩD

+ 〈γρ1/2nS × uS,nS × vS〉ΓSD
, (6c)

b(v, q) = −(q, divv)Ω, (6d)

and linear forms given by

l(v) = (f ,v)Ω and j(q) = −(g, q)Ω. (6e)

For simplicity, we extended f and g by zero to the whole domain. The bilinear and linear
forms are well-defined for functions

u,v ∈ H(div; Ω) with u|ΩS
,v|Ωs ∈ H1(ΩS)d and p, q ∈ L2(Ω).

The Hilbert space

H(div; Ω) = {v ∈ L2(Ω)d : divv ∈ L2(Ω)} (7)

of vector fields with square integrable divergence will play a major role in our considera-
tions and is equipped with the graph norm ‖u‖2

H(div;Ω) = ‖u‖2
L2(Ω) + ‖divu‖2

L2(Ω). Incor-

poriating the boundary and interface conditions, and the usual scaling condition
∫

Ω
p = 0

in order to guarantee uniqueness of the pressure, we obtain the following function spaces

V = {v ∈ H(div; Ω) : v|ΩS
∈ H1(ΩS)d, u = 0 on ΓS, n · vD = 0 on ΓD}, (8a)

Q = {q ∈ L2(Ω) :

∫
Ω

qdx = 0}, (8b)

which can be considered to be the natural choice for the problem under investigation.
Summarizing we arrive at the following weak formulation

Problem 1. Let f ∈ L2(Ω)d and g ∈ L2(Ω) with
∫

Ω
gdx = 0. Find u ∈ V and p ∈ Q,

such that (6a)–(6b) holds for all v ∈ V and q ∈ Q.

The scaling condition on the function g is required to ensure the existence of solutions.
Using the theory of mixed variational problems, we will be able to establish the well-
posedness of this weak formulation for the Darcy-Stokes problem.

Theorem 2. Problem 1 has a unique solution, and

‖u‖H(div,Ω) + ‖u|ΩS
‖H1(ΩS) + ‖p‖L2(Ω) ≤ C(‖f‖L2(Ω) + ‖g‖L2(Ω)).

A complete proof of this result will be given at the end of the next section.
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1.4. Plan for the rest of the lecture. In Section 2, we review the basic existence and
unqiqueness results about mixed variational problems of the form (6a)–(6b). In particular,
we present an extension of the Lax-Milgram lemma due to Brezzi [5], which is suitable
for the analysis of problems of this form. Sufficient conditions on the bilinear forms a
and b for the well-posedness of the mixed problems will be discussed, and their necessity
for many relevant cases will be highlighted. Based on the abstract framework, we then
present short proofs for the existence and uniqueness of weak solutions to the Stokes, the
Darcy, and the coupled Darcy-Stokes problem.

In Section 3, we then discuss the systematic approximation of mixed variational prob-
lems (6a)–(6b) by Galerkin methods. We recall the abstract stability and error estimates,
and highlight the importance of two discrete stability conditions, which are sufficient and
in many cases also necessary for a stable discretization. As a preparation for the last
section, some basic results about piecewise polynomial approximations are recalled.

Section 4 is then devoted to the stable discretization of the flow problems under consid-
eration by appropriate finite element methods. We first discuss the discretization of the
Stokes problem and illustrate that not every approximation, that might seem reasonable
at first sight, yields a stable discretization. We then investigate finite element methods
for the Darcy problem, and again highlight that seemingly reasonable discretization may
fail in practice. In both cases, standard choices of approximation spaces may lead to
instability and possible non- or suboptimal convergence. For both problems, stable finite
element approximations will be discussed as well. These can finally be combined to a
valid and convergence discretization for the coupled Darcy-Stokes problem (1)–(3).

2. Mixed variational problems

Let V and Q be separable Hilbert spaces, a : V × V → R and b : V ×Q→ R be given
bilinear forms, and f : V → R and j : Q→ R be some prescribed linear functionals. We
consider mixed variational problems of the following abstract form:

Problem 3. Find u ∈ V and p ∈ Q such that

a(u, v) + b(p, v) = l(v), for all v ∈ V, (9a)

b(u, q) = j(v), for all q ∈ Q. (9b)

This problem is equivalent to the system of operator equations

Au+B′p = l in V ′, (10a)

Bu = j in Q′, (10b)

where A : V → V ′, B : V → Q′, and B′ : Q → V ′ are linear operators associated to the
bilinear forms a : V × V → R and b : V ×Q→ R by

〈Au, v〉V ′×V = a(u, v) and 〈Bu, q〉Q′×Q = b(v, q) = 〈u,B′q〉V×V ′ .

Here V ′, Q′ denote the dual spaces of V and Q, and 〈·, ·〉V ′×V is the duality product on
V ′ × V . The operator B′ is called the adjoint operator of B. The kernel

N(B) = ker(B) = {v ∈ V : Bv = 0} = {v ∈ V : b(v, q) = 0 ∀q ∈ Q} (11)

of the operator B will play an important role in the subsequent analysis.
If the bilinear form a is symmetric and non-negative, then the problem (9a)–(9b) is the

first order optimality system for the constrained minimization problem

min
u∈V

1
2
a(u, u)− l(u), such that Bu = j.
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In fact, the solution of (9a)–(9b) characterizes the saddlepoint of the Lagrangian

L(u, p) = 1
2
a(u, u)− l(u) + b(u, p)− j(p),

which uniquely decribes the solution of the constrained minimization problem, if the
variational problem (9a)–(9c) is uniquely solvable. For this reason, problems of the form
(9a)–(9b) are usually called saddlepoint problems.

2.1. Brezzi’s theorem. The well-posedness of the mixed variational problem (9a)–(9b)
and of the system (10a)–(10b) is guaranteed by the following result due to Franco Brezzi [5].

Theorem 4 (Brezzi’s splitting theorem).
Assume that the bilinear forms a and b are continuous, i.e., that

(a1) a(u, v) ≤ Ca‖u‖V ‖v‖V for all u, v ∈ V , (continuity of a)

(b1) b(u, q) ≤ Cb‖u‖V ‖q‖V for all u ∈ V and q ∈ Q, (continuity of b)

with some Ca, Cb > 0, and that for some α, β > 0 there holds

(a2) a(u0, u0) ≥ α‖u0‖2
V for all u0 ∈ N(B), (kernel ellipticity)

(b2) supu∈V b(u, q)/‖u‖V ≥ β‖q‖Q for all q ∈ Q. (inf-sup stability)

Then for any data l ∈ V ′ and j ∈ Q′, Problem 2 has a unique solution, and

‖u‖V + ‖p‖Q ≤ C(‖l‖V ′ + ‖j‖Q′),

with C depending only on the constants α, β, Ca of the conditions (a1)–(b2).

Before we present the proof of this result, let us collect some remarks on the meaning of
the conditions and their necessity for the well-posedness in many situations.

2.2. Discussion of the conditions. The continuity conditions (a1) and (b1) ensure that
A : V → V ′, B : V → Q′, and B′ : Q → V ′ are bounded linear operators. The stability
conditions (a2) and (b2), on the other hand, imply that the combined operator

L : V ×Q→ V ′ ×Q′, L(u, p) = (Au+B′p,Bu)

is boundedly invertible. Together the four conditions of Brezzi’s theorem thus guarantee
that the combined operator L is an isomorphism between the solution and the data space.

Let us now discuss in bit more detail the two stability conditions: The condition (a2)
ensures that the operator A is invertible on the kernel N(B), which could also be guaran-
teed under more general conditions on a. Provided that a is symmetric and non-negative,
which is the case for the problems under consideration, the condition (a2) is however
necessary to guarantee invertibility of A on N(B). Condition (b2) can also be written as

(b2’) infq∈Q supu∈V
b(u,q)

‖u‖V ‖q‖Q
≥ β,

which explains the name inf-sup condition. For many problem including those under
consideration, the conditions of Brezzi’s theorem can be shown to be not only sufficient
but even necessary for the well-posedness.

The conditions (b1) and (b2) on the bilinearform b imply some properties of the oper-
ators B and B′, which we summarize for later reference.

Lemma 5. Let (b1) and (b2) hold. Then
(i) B : V → Q′ is surjective, i.e., for any j ∈ Q′ there exists a unique solution u1 ∈ N(B)⊥

such that Bu1 = j. Moreover, ‖u1‖V ≤ 1
β
‖j‖Q′.

(ii) B′ : Q→ V ′ is injective with closed range, and for any

l̃ ∈ N(B)◦ = {l ∈ V ′ : 〈l, v0〉V ′×V = 0 ∀v0 ∈ N(B)} = R(B′),

there exists a unique solution p to B′p = l̃ and ‖p‖Q ≤ 1
β
‖l̃‖V ′.
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Remark on the proof: The inf-sup condition implies that B′ is injective and has closed
range. The assertions then follow by appropriate restriction of the operators and duality.

2.3. Proof of Brezzi’s theorem. We are now in the position to present a short proof
of Brezzi’s theorem. The proof is constructive and follows in three steps:
Step 1: By Lemma 5(i), there exists u1 ∈ N(B) such that Bu1 = j and ‖u1‖V ≤ 1

β
‖j‖Q′ .

Step 2: In order to satisfy (9b) respectively (10b), we have to find the solution u in the
form u = u0 + u1 with u0 ∈ N(B). We test (9a) with v = v0 ∈ N(B) to get

l(v0) = a(u0 + u1, v0) + b(v0, p) = a(u0, v0) + a(u1, v0),

where we employed that b(v0, p) = 〈Bv0, p〉Q′×Q = 0 since v0 ∈ N(B). By the Lax-
Milgram lemma and the conditions (a1) and (a2), the problem

a(u0, v0) = l(v0)− a1(u1, v0) =: l̄(v0) for all v0 ∈ N(B),

has a unique solution u0 ∈ N(B) and ‖u0‖V ≤ 1
α
‖l̄‖V ′ ≤ 1

α
(‖l‖V ′ + Ca‖u1‖V ). Summa-

rizing, we have obtained u = u0 + u1 satisfying (9a) and (9b) for all v = v0 ∈ N(B). It
remains to define p such that (9a) holds for all v ∈ V .
Step 3: By rearranging (10a), we get the condition

B′p = l − Au =: l̃.

By construction of u in Step 1 and 2, we have 〈l̃, v0〉V ′×V = l(v0) − a(u, v0) = 0 for all

v0 ∈ N(B), i.e., l̃ ∈ N(B)◦. Hence by Lemma 5(ii), there exists a unique solution p ∈ Q
for this problem and there holds ‖p‖Q ≤ 1

β
‖l̃‖V ′ ≤ 1

β
(‖l‖V ′ + Ca‖u‖V ).

This complete the proof of existence; uniqueness and the estimates are left as an exercise.

2.4. Application to model problems. We now illustrate the application of Brezzi’s
theorem by establishing well-posedness for the flow problems considered in Section 1.

2.4.1. Stokes flow. Let us consider the Stokes problem

−ν∆u +∇p = f , in Ω, (12a)

divu = 0, in Ω, (12b)

u = 0, on ∂Ω, (12c)

which arises from the problem of Section 1 as a special case by setting ΩD = {}. The
weak formulation leads to a mixed variational problem of the form (9a)–(9b) with spaces
V = H1

0 (Ω)d = {v ∈ H1(Ω)d : v|∂Ω = 0} and Q = L2
0(Ω) = {q ∈ L2(Ω) :

∫
Ω
q = 0},

with bilinear forms a(u,v) = ν(∇u,∇v)Ω and b(v, q) = −(divu, q)Ω, and with linear
functionals l(v) = (f ,v)Ω and j(q) = 0. The linear forms can easily be shown to be
continuous, and by the Cauchy-Schwarz inequality, we have a(u,v) = ν(∇u,∇v)Ω ≤
ν‖u‖H1(Ω)‖v‖H1(Ω) and b(u, q) = −(divu, q)Ω ≤ ‖divu‖Ω‖q‖Ω ≤

√
d‖u‖H1(Ω)‖q‖L2(Ω).

Thus (a1) and (b1) hold with Ca = ν and Cb =
√
d. Using the Friedrichs inequality, we

get a(u,u) = ν‖∇u‖2
Ω ≥ CFν‖u‖2

H1(Ω) for all u ∈ H1
0 (Ω)d. Thus kernel ellipticity (a2)

holds with α = νCF . The remaining inf-sup stability condition (b2) is provided by

Lemma 6 (Necas/Nitsche/Bramble). There exists a constant β = β(Ω) such that

sup
u∈H1

0 (Ω)d
(divu, q)Ω/‖u‖H1(Ω) ≥ β‖q‖L2(Ω) for all q ∈ L2

0(Ω). (LBB)

A recent proof of this important result for Lipschitz domains can be found in [3]. By
using the previous estimates and applying Brezzi’s theorem, we obtain

Theorem 7. The Stokes problem (12a)–(12c) has a unique solution u ∈ H1
0 (Ω)d, p ∈

L2
0(Ω), and ‖u‖H1(Ω) + ‖p‖L2(Ω) ≤ C‖f‖L2(Ω) with C only depending on Ω and ν.
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2.4.2. Darcy flow. The flow in the porous medium is governed by

ρu +∇p = f , in Ω, (13a)

divu = g, in Ω, (13b)

n · u = 0, on ∂Ω. (13c)

This problem results from the general model discussed in Section 1 when ΩS = {}. The
weak formulation again leads to a mixed variational problem of the form (9a)–(9b) with
spaces V = H0(div; Ω) = {v ∈ H(div; Ω) : n · v = 0 on ∂Ω} and Q = L2

0(Ω), with
bilinear forms a(u,v) = ρ(u,v)Ω and b(u, q) = −(divu, q)Ω, and with linear functionals
l(v) = 0 and j(q) = −(g, q)Ω. Again, continuity of the linear a bilinear forms is easily
established and (a1) and (b1) hold with Ca = ρ and Cb = 1, respectively. Note that ther
kernel of the constraint is given by N(B) = {u0 ∈ V : divu0 = 0} and thus,

a(u0,u0) = ρ‖u0‖2
Ω = ρ(‖u0‖2

Ω + ‖divu0‖2
Ω) = ρ‖u0‖H(div;Ω), ∀u0 ∈ N(B),

which shows kernel ellipticity (a2) with α = ρ. Let us emphasize that a is uniformly
elliptic only on the kernel N(B) here, but not on the whole space H0(div; Ω)! Since

H0(div; Ω) ⊃ H1
0 (Ω)d with ‖u‖H(div;Ω) ≤

√
d‖u‖H1(Ω), the inf-sup condition (b2) follows

directly from Lemma 6. Application of Brezzi’s theorem thus yields

Theorem 8. The problem (13a)–(13c) has a unique solution u ∈ H0(div; Ω), p ∈ L2
0(Ω),

and ‖u‖H(div;Ω + ‖p‖L2(Ω) ≤ C(‖f‖L2(Ω) + ‖g‖L2(Ω) with C depending only on Ω and ρ.

2.4.3. Coupled Darcy-Stokes flow. Let us finally return to the full problem discussed in
Section 1. This problem can be cast in the form (9a)–(9b) with inhomogeneous spaces V
and Q defined in (8a) and (8b), with bilinear forms a(u,v) and b(u, q) given in (6c)–(6d)
and linear forms l(v) and j(q) defined in (6e). It is easy to verify that the linear forms
are continuous. Moreover,

a(u,v) ≤ ν‖∇uS‖ΩS
‖∇vS‖ΩS

+ ρ‖uD‖ΩD
‖vD‖ΩD

+ γρ1/2‖n× uS‖ΓSD
‖n× vS‖ΓSD

.

The last term can be estimated via a trace inequality ‖uS‖ΓSD
≤ Ctr‖uS‖H1(ΩS). This

yields the continuity condition (a1) for a with Ca = Ca(ν, ρ, γ; Ω). The second continuity
condition (b1) holds with Cb = 1 again. Because of the Friedrichs’ inequality and the
divergence free condition, we have

a(u0,u0) = ν‖∇u0‖Ω2
S

+ γρ1/2‖ns × (u0)S‖2
ΓSD

+ ρ‖u0‖2
ΩD
≥ α‖u0‖2

V

for all u0 ∈ N(B) = {u ∈ V : divu = 0} with some α > 0 depending on ρ, ν, and the
domain Ω, which yields the kernel ellipticity (a2). The inf-sup condition (b2) finally is
guaranteed by Lemma 6. Theorem 1 now directly follows from Brezzi’s theorem.

3. Finite element approximation for Stokes

The mixed variational framework (9a)–(9b) allows a systematic construction of nu-
merical approximations. We first introduce the general concept, discuss the conditions
required to ensure well-posedness of the numerical approximations, and then turn to the
construction of particular approximations for the problems under investigation.

3.1. Galerkin approximations. Let Vh ⊂ V and Qh ⊂ Q be finite dimensional sub-
spaces of V and Q, equipped with the norms of V and Q, respectively. As numerical
approximation for the problem (9a)–(9b), we consider the discrete variational problem

Problem 9. Find uh ∈ Vh and ph ∈ Qh such that

a(uh, vh) + b(vh, ph) = l(vh), for all vh ∈ Vh, (14a)

b(uh, qh) = j(qh), for all qh ∈ Qh. (14b)
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This problem can again be written equivalently as a discrete operator equation

Ahuh +B′hph = lh, in V ′h, (15a)

Bhuh = jh, in Q′h, (15b)

where Ah : Vh → V ′h, Bh : Vh → Q′h, and B′h : Qh → V ′h are restrictions of the operators
A, B, and B′ to the finite dimensional spaces Vh and Qh, respectively. The kernel

N(Bh) = {vh ∈ Vh : Bhvh = 0} = {vh ∈ Vh : b(vh, qh) = 0, ∀qh ∈ Qh} (16)

of the discrete operator Bh will again be of special interest. By application of Brezzi’s
theorem to the discrete variational problem, we immediately obtain

Theorem 10. Assume that (a1)–(a2) and the discrete stability conditions

(a2h) a(uh, uh) ≥ αh‖uh‖2
V for all uh ∈ N(Bh),

(b2h) supuh∈Vh b(uh, qh)/‖uh‖V ≥ βh‖qh‖Q for all qh ∈ Qh,

hold. Then Problem 9 admits a unique solution uh ∈ Vh, ph ∈ Qh with

‖uh‖V + ‖ph‖Q ≤ Ch(‖l‖V ′ + ‖j‖Q′)

with Ch depending only on the constants Ca, Cb, αh, βh of (a1)–(b1) and (a2h)–(b2h).

Note that the two discrete stability conditions (a2h) and (b2h) are not only sufficient, but
if a is symmetric and non-negative, which is the case for the problems of Section 1, they
are even necessary for the existence of a unique solution for the discretized problem!

3.2. Transformation to a linear system of equations. By choosing bases for the
finite dimensional spacesVh and Qh, the discrete variational problem can be turned into
a linear system of equations: Let {φi} and {ψj} be linear independent systems such
that Vh = span{φi : i = 1, . . . , N} and Qh = span{ψj : j = 1, . . . ,M}. Then the discrete
functions can be expanded as uh =

∑
i uiφi and ph =

∑
j pjψj, and the discrete variational

problem (14a)–(14b) can be expressed equivalently as a linear system

Au + B>p = l, in RN , (17a)

Bu = j, in RM , (17b)

with Aij = a(φj, φi), Bij = b(φj, ψi), li = l(φi), and ji = j(ψi). The condition (b2h)
means that B has full rank, and in particular, that M ≤ N , i.e., the number of constraints
in (17b) is less than the number of degrees of freedom in u. The conditions (a2h) and
(b2h) together imply that [A; B] has full rank and that the system matrix L = [A, B>; B, 0]
is regular. This yields the well-posedness of the discrete problem.

3.3. Error estimates. Note that the Galerkin method (14a)–(14b) is already completely
defined by the choice of the spaces Vh and Qh. The following results states that the error
of the numerical approximation does also depend only on the choice of the spaces.

Theorem 11. Let (a1)–(b1) and (a2h)–(b2h) hold, and let (u, p) and (uh, ph) denote
solutions of the continuous and discrete variational problems, respectively. Then

‖u− uh‖V + ‖p− ph‖Q ≤ Ch( inf
v∈Vh
‖u− vh‖V + inf

qh∈Qh

‖p− qh‖Q) (1)

with Ch depending only on the constants Ca, Cb, αh, βh of (a1)–(b1) and (a2h)–(b2h).

For a proof, see [5] or [4]. The error of the Galerkin method is therefore as good as
the best-approximation error, i.e., the Galerkin method is quasi-optimal. Note that, in
general, the error in both components will depend on the best-approximation error in
both components. For later reference, let us also mention the following specialized result.
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Theorem 12. In addition to (a2h) and (b2h), assume that N(Bh) ⊂ N(B). Then

‖u− uh‖V ≤ Ch inf
v∈Vh
‖u− vh‖V . (2)

For the problems under consideration, the condition N(Bh) ⊂ N(B) means that the
numerical approximation of the velocity is exactly divergence free. As we will see, this
is valid only for very particular discretizations of flow problems. In particular, stable
discretizations of the Stokes problem do often not lead to divergence free approximations.

3.4. Finite element basics. According to the results of Theorems 10 and 11, we should
select finite dimensional subspaces Vh ⊂ V and Qh ⊂ Q that have

(i) good approximation properties, i.e., such that the best-approximation errors
infvh∈Vh ‖u− vh‖V and infq∈Qh

‖p− qh‖Q become small;

(ii) good stability properties, i.e., such that (a2h) and (b2h) hold with αh, βh ≥ c > 0.

For variational problems stemming from partial differential equations, piecewise polyno-
mials have been proven to be particularly useful for the approximation of solutions. In
the following, we recall some basic results and notation about the piecewise polynomial
function spaces that will be relevant.

3.4.1. Mesh. For ease of presentation, let us assume that Ω ⊂ R2 is a bounded two-
dimensional Lipschitz domain with polygonal boundary. We assume that Th = {T} is
a partition of Ω into triangles T , i.e., a triangulation. The mesh Th is called regular, if
for two different triangles T1, T2 ∈ Th, their intersection is either a vertex x of of both
triangles, or an edge e of both triangles, or empty. We denote by hT the diameter and by
ρT the radius of the inner circle of the triangle T . The number h = maxT hT is called the
meshsize. A mesh Th is called θ-shape-regular, if θh ≤ hT ≤ h for all T ∈ Th with some
θ > 0. We will assume that this is the case, throughout.

3.4.2. Piecewise polynomials. Let Pk(T ) = span{xiyj : 0 ≤ i, j, i+ j ≤ k} be the space of
polynomials up to order k on T , and let Pk(Th) = {v ∈ L2(Ω) : v|T ∈ Pk(T ) ∀T ∈ Th} be
the space of piecewise polynomials over the mesh Th. For the Galerkin approximation of
the flow problems under investigation, we have to require that the approximating functions
have some global regularity, i.e., to be elements of H1(Ω)d and H(div; Ω), respectively.

Lemma 13. Let vh ∈ Pk(Th). Then

(i) vh ∈ H1(Ω)d if, and only if, vh ⊂ C(Ω)d, i.e., v|T1 = v|T2 on every e = ∂T1∩∂T2.

(ii) vh ∈ H(div; Ω) if, and only if, v|T1 · ne = v|T2 · ne for all e = ∂T1 ∩ ∂T2.

Functions with enough global regularity will be calledH1- respectivelyH(div)-conforming.
As a next step, let us characterize the approximation properties of the piecewise polyno-
mial spaces introduced above.

Lemma 14 (Approximation).
Let Th be a θ-shape-regular triangulation. Then
(i) For Qh = P0(Th) ∩ L2

0(Ω) there holds

inf
qh∈Qh

‖p− qh‖L2(Ω) ≤ Ch‖p‖H1(Ω) for all p ∈ H1(Ω) ∩ L2
0(Ω).

(ii) For Vh = P1(Th)
2 ∩H1

0 (Ω)2 there holds

inf
vh∈Vh

‖u− vh‖H1(Ω) ≤ Ch‖u‖H2(Ω) for all u ∈ H2(Ω)2.
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(iii) For Vh = P2(Th)
2 ∩H1

0 (Ω)2 there holds

inf
vh∈Vh

‖u− vh‖H1(Ω) ≤ Chl‖u‖H2(Ω) for all u ∈ H l+1(Ω)2, l = 1, 2.

(vi) For Vh = P1(Th)
d ∩H0(div; Ω) there holds

inf
vh∈Vh

‖u− vh‖H(div,Ω) ≤ Ch‖u‖H2(Ω) for all u ∈ H2(Ω)2.

The operators can be constructed explicitly by construction of certain interpolation
operators. The approximation properties follow by a mapping argument and the Bramble-
Hilbert lemma. On simple elements, such as triangles, the estimates can also be derived
by averaged Taylor approximation.

4. Mixed finite elements methods for flow problems

We will now discuss simple examples of stable and unstable finite element schemes for
the Stokes and the Darcy flow problems. As it will turn out, the most obvious choices of
spaces sometimes do not work.

4.1. Stokes problem. We consider the Galerkin approximation of the variational prob-
lem (12a)–12c). Since a(u,v) = ν(∇u,∇v)Ω is elliptic on the whole space V = H1

0 (Ω)d,
the discrete satbility condition (a2h) follows from (a2) on the continuous level. Therefore,
only the discrete inf-sup condition

sup
uh∈Vh

b(uh, qh)/‖uh‖V ≥ β‖qh‖Q, ∀qh ∈ Qh, (b2h)

has to be taken into account. Spaces Vh and Qh satisfying such a condition are called an
inf-sup stable finite element pair.

4.1.1. The P1–P0 element. The most simple non-trivial choice of finite element spaces
for the Stokes problem would be

Vh = P1(Th)
d ∩H1

0 (Ω)d and Qh = P0(Th) ∩ L2
0(Ω),

which is typically refered to as the P1 − P0 element. By construction, these spaces are
conforming, i.e., Vh ⊂ V and Qh ⊂ Q. For u ∈ H2(Ω)d, p ∈ H1(Ω), which is a reasonable
regularity assumption, the solution could be approximated with an error of O(h); see
Lemma 14. According ti Theorem 11, the same rate of convergence should be valid, if
the approximation spaces Vh and Qh satisfy the discrete inf-sup stability condition (b2h).
As we will demonstrate now, the condition (b2h) can however not hold for this choice of
spaces, except in trivial cases. To see this, let us recall the following relation between
the number of inner vertices ni, of vertices at the boundary nb, and of elements nT in a
regular two-dimensional mesh, viz.

nT = 2ni + nb − 2.

By counting the dimensions of the finite element spaces Vh and Qh, we obtain

N = dimVh = 2ni and M = dimQh = nt − 1 = 2ni + nb − 3.

Note that for any non-trivial triangular mesh nb > 3, and thus we always have M > N .
As a consequence, the matrix B in (17b) cannot have full row rank, i.e., the operator Bh

in (15b) is not surjective, and B′h is not injective. In particular, (b2h) does not hold.
Since the condition (b2h) is necessary for the well-posedness of the discrete variational

problem (14a)–(14b), this finite element approximation doe not yield a well-posed discrete
problem. Note that for the Stokes problem a is elliptic on the whole space V , and therefore
the operator Ah in (15a) is always regular. Since B′h is not injective, the pressure can
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however not be determined uniquely. The functions ph ∈ N(B′h) are called spurious
pressure modes.

4.1.2. The P2-P0 element. In order to satisfy the discrete inf-sup condition (b2h), we
have to increase the dimension of the discrete velocity space Vh sufficiently. The next
simple possible choice of spaces is

Vh = P2(Th)
d ∩H1

0 (Ω)d and Qh = P0(Th) ∩ L2
0(Ω),

which is usually called the P2 − P0 element. For this discretization, one can show

Lemma 15. The P2-P0 element is discrete inf-sup stable, i.e., the condition (b2h) holds
with βh = cθβ > 0, where β is the constant of the LBB condition, and cθ is related only
to the shape regularity of the mesh.

For a proof of this result, let us refer to [15]. Using the a-priori estimate of Theorem 11
and the approximation error estimates (i) and (ii) of Lemma 14, we therefore obtain

Theorem 16. Assume that the weak solution of (15a)–(15b) satisfies u ∈ H2(Ω)2 and
p ∈ H1(Ω). Then the finite element approximation uh, ph obtained with the P 2 − P0

element satisfies

‖u− uh‖H1(Ω) + ‖p− ph‖L2(Ω) ≤ Ch(‖u‖H2(Ω) + ‖p‖H1(Ω)),

and the constant C only depends on the Ω, ν, and the shape regularity of the mesh.

On a sequence of uniformly shape regular meshes, we therefore obtain an O(h) conver-
gence of the error. Note that the P2 finite elemens for the velocities would in principle
allow an O(h2) approximation of the velocity. Since functions divvh are piecewise linear,
the condition Bhvh = 0 does not imply that divvh = 0. The condition N(Bh) ⊂ N(B)
is therefore not valid for this discretization, and the O(h) approximation of the pressure
limits the overall accuracy.

4.2. Discretization of the Darcy problem. We will now discuss the stable discretiza-
tion of the Darcy equations (16a)–(16c). Besides the discrete inf-sup condition (b2h), also
the discrete kernel ellipticity

a(uh,uh) ≥ α‖uh‖2
V , for all uh ∈ N(Bh) (3)

will play a role now; compare with the continuous level. Note that by inceasing the space
Vh in order to satisfy (b2h), also the space N(Bh) may increase, so the condition (a2h)
may be violated. This explains the failure of the first of our examples.

4.2.1. Instability of the P2-P0 discretization. As before, we set

Vh = P2(Th)
d ∩H1

0 (Ω)d and Qh = P0(Th) ∩ L2
0(Ω).

According to Lemma 15, the discrete inf-sup condition (b2h) is satisfied for this choice,
and it remains to prove the discrete kernel ellipticity (a2h). As mentioned before, the
condition Bhuh = 0 does not imply divuh = 0, and as a consequence, the P2-P0 element
does not satisfy (a2h) with αh independent of h. By an inverse inequality, one can show
however, that (a2h) holds with αh = O(h). Therefore, the discrete system (16a)–(16b) is
uniquely solvable, but the convergence is spoiled by the lack of stability.
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4.2.2. A stable BDM1-P0 discretization. The discrete kernel ellipticity condition (a2h)
directly follows from the stability condition (a2) on the continuous level, if N(Bh) ⊂ N(B)
holds. This is always the case, if we choose Vh ⊂ Pk(Th)

d and Qh = Pk−1(Th) ∩ L2
0(Ω),

since in that case, we have enough constraints. The simplest H(div)-conforming choice
then reads

Vh = P1(Th)
d ∩H0(div; Ω) and Qh = P0(Th) ∩ L2

0(Ω).

The space Vh is called the BDM1 element, after Brezzi, Douglas and Marini. The combi-
nation with the P0 element for the pressure has the following stability property.

Lemma 17. Let Bhuh = 0, then divuh = 0, i.e., N(Bh) ⊂ N(B). As a consequence, the
discrete kernel ellipticity condition (a2h) with αh = α from condition (a2).

As a last step, we now have to verify the discrete inf-sup stability condition (b2h) again.
Note that in comparison to the P1 − P0 element, which was not stable, only the normal
components of the velocities are required to be continuous here. Therefore, the BDM1

velocity space is larger than the H1-conforming P1 space. The increase in dimension is in
fact sufficient to obtain the inf-sup stability condition. To prove it, we use

Lemma 18 (Fortin operator).
There exists a bounded linear operator Πh : H0(div; Ω)→ Vh, such that

(i) b(Πhv, qh) = b(v, qh) for all v ∈ V = H0(div; Ω).

(ii) ‖Πhv‖V ≤ C‖v‖V for all v ∈ V .

The proof is based on an explicit construction; see [6, 15] for details. Using the Fortin
operator, we obtain

Lemma 19. The BDM1-P0 element satisfies the inf-sup condition (b2h) with βh = β/C.

Proof. Let qh ∈ P0(Th) ∩ L2
0(Ω) be given. By Lemma 6, there exists u ∈ H1

0 (Ω)2 with
b(u, qh)/‖u‖H1(Ω) ≥ β‖qh‖L2(Ω). Choosing uh = Πhv, we have

b(uh, qh)/‖uh‖H1(Ω) ≥ b(u, qh)/(C‖u‖H1(Ω)) ≥ β/C‖qh‖L2(Ω),

which already yields the proof of the assertion. Note that both conditions of the Fortin
operator were used in the first inequality. �

By combination of the two stability estimates, the a-priori error estimate of Theorem 11,
and the approximation error results (i) and (iv) of Lemma 14, we obtain

Theorem 20. Let the solution u, p of the Darcy problem (17a)–(17b) be regular, i.e.,
u ∈ H2(Ω)d and p ∈ H1(Ω). Then the BDM1-P0 approximation uh, ph satisfies

‖u− uh‖H(div;Ω) + ‖p− ph‖L2(Ω) ≤ Ch(‖u‖H2(Ω) + ‖p‖H1(Ω)),

and the constant C only depends on ρ, Ω, and the shape regularity of the mesh.

The BDM1-P0 element thus yields an order optimal approximation of O(h) again.

4.3. Discretization of the Darcy-Stokes problem. For the discretization of the cou-
pled Darcy-Stokes problem, (6a)–(6d), we then consider the following finite element spaces

Vh = {v ∈ H(div; Ω) : v|ΩS
∈ H1(ΩS)d, v = 0 on ΓS, n · v = 0 on ΩD,

such that v|ΩS
∈ P2(Th ∩ ΩS), v|ΩD

∈ P1(Th ∩ ΩD)},
Qh = P0(Th) ∩ L2

0(Ω).

A combination of the stability estimates for the Stokes and the Darcy problem yields
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Lemma 21. The above spaces satisfy the discrete kernel ellipticity condition (a2h) and
the discrete inf-sup condition (b2h) with αh = cα and βh = cβ, where α and β are the
stability constants of the continuous problem, and c only depends, on the domain Ω and
the shape-regularity of the mesh.

A combination of the a-priori error estimates of Theorem 11 and approximation error
estimates similar to those of Lemma 14 then yields

Theorem 22. Assume that the solution u, p of the Darcy-Stokes problem (1a)–(3c) is
sufficiently smooth. Then the approximation uh, ph for the above spaces satisfies

‖u− uh‖H(div;Ω) + ‖u− uh‖H1(ΩS) + ‖p− ph‖L2(Ω)

≤ Ch(‖u‖H2(Ω) + ‖p‖H1(Ω)).

The constant C only depends on the ρ, ν, ΩS, ΩD, and the shape-regularity of the mesh.

Let us note that the regularity conditions for the solution can be relaxed to some extent.
In particular, continuity of the pressure and the tangential velocities is not required across
the interface ΓSD. Also the regularity requirement on the velocities in the Darcy domain
could be relaxed.

Further reading

The coupling conditions for Darcy-Stokes problem has been investigated experimentally
by Beavers and Joseph [2], and later be simplified and explained theoretically by Saffmann
[23]. A rigorous justification based on homogenization has been given in [18]. For mod-
elling issues, see also [1, 8, 9, 20, 17]. Some more practical applications are discussed in
[16]. The analysis of saddlepoint problems goeas back to the seminal paper [5], which
initiated the research on mixed variational problems. For an extensive treatment, see
[6]. Background material on finite element methods, including the theory of saddlepoint
problems, can be found [4, 15]. The mixed formulation for the Poisson problem goes back
to [21]. Applications in fluid dynamics are discuss in particular in [15], where also a proof
of the (LBB) condition can be found; but see also [3] and [12] for other analytical results
in the context of flow problems. The coupling of Darcy and Stokes flow in finite element
methods has been investigated in [13, 14, 22]. Time dependent problems are investigated,
e.g., in [7]. Other aspects of the coupling are treated in [10]. Monolithic discretizations,
that use the same discretization spaces for the Darcy and Stokes subproblems can be
found in [11, 19]. In [24], a related method is studied for discretization of the Stokes
problem.
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