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The Cauchy problem for the heat equation

First, we consider the Cauchy problem for the heat equation

ut(x , t) = ∆u(x , t) for x ∈ Rn and t > 0 (1)

u(x , 0) = u0(x). (2)

A solution of the initial value problem (1)-(2) is represented by

u(x , t) =

∫
Rn

G (x − y , t)u0(y) dy for x ∈ Rn and t > 0,

with the Gauss-Weierstrass kernel

G (x , t) =
1

(4πt)n/2
exp

(
−|x |

2

4t

)
for x ∈ Rn and t > 0.

In these lectures,

for x ∈ Rn, we have always denoted |x | =
√

x2
1 + ...+ x2

n .



The Cauchy problem for the heat equation

Figure : A few examples of the graph of G(x , t) as a function of x for n = 1



The Cauchy problem for the heat equation

The following theorem gathers typical properties of the solution
u = u(x , t).

Theorem
Assume that u0 ∈ L1(Rn).
Then

1. u ∈ C∞(Rn × (0,∞)),

2. u satisfies equation (1) for all x ∈ Rn and t > 0,

3. ‖u(·, t)− u0(·)‖1 → 0 when t → 0,

4. ‖u(·, t)‖1 6 ‖u0(·)‖1 for all t > 0.

This is the unique solution of problem (1)-(2) satisfying these properties.

The proof of this theorem can be found in the Evans book.



Decay estimate of solutions

u(x , t) =

∫
Rn

G (x − y , t)u0(y) dy for x ∈ Rn and t > 0,

with the Gauss-Weierstrass kernel

G (x , t) =
1

(4πt)n/2
exp

(
−|x |

2

4t

)
for x ∈ Rn and t > 0.

DECAY ESTIMATES

sup
x∈Rn

|u(x , t)| 6 1

(4πt)n/2

∫
Rn

|u0(x)| dx .

One can also prove the following decay estimates of other Lp-norms.

‖u(·, t)‖p 6 C (p, q)t−
n
2 ( 1

q−
1
p )‖u0‖q

for all t > 0 and every 1 6 q 6 p 6∞.



Self-similar asymptotics of solutions

u(x , t) =

∫
Rn

G (x − y , t)u0(y) dy for x ∈ Rn and t > 0,

Theorem
Let u be the solution of the heat equation with initial datum
u0 ∈ L1(Rn). Let M =

∫
Rn

u0(y) dy. Then

lim
t→∞

t(n/2)(1−1/p)‖u(·, t)−MG (·, t)‖p = 0,

where G (x , t) is the Gauss-Weierstrass kernel.



Scaling and self-similar solutions

Let us notice that the heat equation

ut = ∆u, x ∈ Rn, t > 0

has the following property:

If u = u(x , t) is a solution of this equation, then the
function

uλ(x , t) ≡ λku(λx , λ2t)

is a solution for each λ > 0. Here, k ∈ R is a fixed
parameter.

Definition
A solution u = u(x , t) is called self-similar if there exists k ∈ R such that

λku(λx , λ2t) = u(x , t)

for all x ∈ Rn, t > 0, and λ > 0.



Scaling and self-similar solutions

The heat kernel (also called the Gauss-Weierstrass kernel) is a self-similar
solution with k = n of the heat equation. Indeed, it is easy to see that

λnG (λx , λ2t) = λn
1

(4πλ2t)n/2
exp

(
−|λx |2

4λ2t

)
=

1

(4πt)n/2
exp

(
−|x |

2

4t

)
= G (x , t).



Scaling and self-similar solutions

Theorem
Denote

uλ(x , t) = λnu(λx , λ2t).

Fix p ∈ [1,∞]. The following two conditions are equivalent

1. limt→∞ t(n/2)(1−1/p)‖u(·, t)−MG (·, t)‖p = 0

2. for every t0 > 0,

uλ(·, t0)→ MG (·, t0), as λ→∞,

where the convergence is in the usual norm of Lp(Rn).



Scaling and self-similar solutions

Proof.
Scaling property of the Lp-norm:

‖v(λ·)‖p = λ−n/p‖v‖p,

Now, using this scaling property we obtain

‖uλ(·, t0)−MG (·, t0)‖p = ‖λnu(λ·, λ2t0)−MλnG (λ·, λ2t0)‖p
= λn−n/p‖u(·, λ2t0)−MG (·, λ2t0)‖p (substituting λ =

√
t/t0)

= C (t0)t(n/2)(1−1/p)‖u(·, t)−MG (·, t)‖p.



NEW APPROACH: Four steps method

Step 1. Scaling. We introduce the rescaled family of functions

uλ(x , t) = λnu(λx , λ2t) for every λ > 0.

Step 2. Estimates and compactness. We show that the embedding

{uλ(·, t)}λ>0 ⊂ Lp(Rn) is compact for every t > 0.

Step 3. Passage to the limit. By compactness there exists a sequence
λn →∞ and a functions ū(x , t) such that

uλn(·, t)→ ū(·, t) in Lp(Rn) for every t > 0.

Since uλ satisfies the heat equation, one can show that ū is a weak
solution of the heat equation, as well.

Step 4. Identification of the limit. The limit function ū corresponds
usually to singular initial conditions.
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uλn(·, t)→ ū(·, t) in Lp(Rn) for every t > 0.

Since uλ satisfies the heat equation, one can show that ū is a weak
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Initial condition

Lemma
Let u0 ∈ L1(Rn). For every test function ϕ ∈ C∞c (Rn) we have∫

Rn

λnu0(λx)ϕ(x) dx → Mϕ(0) as λ→∞,

where M =
∫
Rn

u0(x) dx.

Proof.
This is an immediate consequence of the Lebesgue dominated
convergence theorem, because∫

Rn

λnu0(λx)ϕ(x) dx =

∫
Rn

u0(x)ϕ(x/λ) dx ,

by a simple change of variables.



Initial condition

Lemma
Let u0 ∈ L1(Rn). For every test function ϕ ∈ C∞c (Rn) we have∫

Rn

λnu0(λx)ϕ(x) dx → Mϕ(0) as λ→∞,

where M =
∫
Rn

u0(x) dx.

Proof.
This is an immediate consequence of the Lebesgue dominated
convergence theorem, because∫

Rn

λnu0(λx)ϕ(x) dx =

∫
Rn

u0(x)ϕ(x/λ) dx ,

by a simple change of variables.



Application to
convection-diffusion
equation



Self-similar asymptotics of solutions to
convection-diffusion equation

We are going to show the Four Step Method “in action”, by applying it
to the initial value problem for the nonlinear convection diffusion equation

ut − uxx + (uq)x = 0 for x ∈ R, t > 0, (3)

u(x , 0) = u0(x), (4)

where q > 1 is a fixed parameter.



Theorem (Existence of global-in-time solution)

Assume that
u0 ∈ L1(R) ∩ L∞(R) ∩ C (R).

Suppose u0 > 0.

Then the initial value problem (3)–(4) has a nonnegative, global-in-time
solution u ∈ C 2,1(R× (0,∞)).

This solution satisfies

u ∈ C 1((0,∞), Lp(R)) ∩ C ((0,∞),W 2,p(R)))

for each p ∈ [1,∞]. Moreover,

M ≡ ‖u(t)‖1 =

∫
R

u(x , t) dx =

∫
R

u0(x) dx = ‖u0‖1 for all t > 0.



Local existence via the Banach contraction principle

Local-in-time mild solutions:

u(t) = G (·, t) ∗ u0 +

t∫
0

∂xG (·, t − s) ∗ uq(s) ds

with the heat kernel G (x , t) = (4πt)−1/2 exp
(
− |x |2/(4t)

)
.

By the Young inequality for the convolution:

‖G (·, t) ∗ f ‖p ≤ Ct−
1
2 ( 1

q−
1
p )‖f ‖q, (5)

‖∂xG (·, t) ∗ f ‖p ≤ Ct−
1
2 ( 1

q−
1
p )− 1

2 ‖f ‖q (6)

for every 1 ≤ q ≤ p ≤ ∞, each f ∈ Lq(R), and C = C (p, q) independent
of t, f .

Notice that C = 1 in inequality (5) for p = q because ‖G (·, t)‖L1 = 1 for
all t > 0.



Lemma (Local existence)

Assume that
u0 ∈ L1(R) ∩ L∞(R) ∩ C (R).

Then there exists T = T (‖u0‖1, ‖u0‖∞) > 0 such that the integral
equation (18) has the unique solution in the space

YT = C ([0,T ], L1(R)) ∩ C ([0,T ], L∞(R)),

supplemented with the norm ‖u‖YT
= sup0≤t≤T ‖u‖1 + sup0≤t≤T ‖u‖∞.

Proof.
The Banach contraction principle.
For sufficiently small T the right hand side of this equation defines the
contraction in the space YT .



Regularity and comparison principle

One can show that a local in time solution is nonnegative, if an initial
condition is so. Moreover, this solution has the following regularity
property

u ∈ C 1((0,∞), Lp(R)) ∩ C ((0,∞),W 2,p(R)))

for each p ∈ [1,∞].

Below, we show that the solution satisfies the following a priori estimates
for each p ∈ [1,∞]:

‖u(·, t)‖p 6 ‖u0‖p for all t > 0.

Hence, by a standard reasoning, we can show that the solution is global
in time.



Self-similar large time behavior of solutions

Theorem (LINEAR Self-similar asymptotics)

Let
q > 2.

Every solution u = u(x , t) of problem (3)–(4) satisfies

t(1−1/p)/2‖u(t)−MG (t)‖p → 0 as t →∞

for every p ∈ [1,∞], where M =
∫
R

u0(x) dx and

G (x , t) =
1√
4πt

exp
(
− |x |

2

4t

)
is the heat kernel.



Self-similar large time behavior of solutions

Theorem (NONLINEAR Self-similar asymptotics)

If
q = 2,

we have
t(1−1/p)/2‖u(t)− UM(t)‖p → 0 as t →∞

for every p ∈ [1,∞], where

UM(x , t) =
1√
t
UM
( x√

t
, 1
)

is the so-called nonlinear diffusion wave:

Ut − Uxx +
(
U2
)
x

= 0, for x ∈ R, t > 0, (7)

U(x , 0) = Mδ0, (8)

where δ0 is the Dirac measure.



Remark on nonlinear diffusion waves
The Hopf-Cole transformation allows us to solve this problem:

UM(x , t) =
t−1/2 exp (−|x |2/(4t))

CM + 1
2

x/
√
t∫

0

exp (−ξ2/4) dξ

,

where CM is a constant which is determined uniquely as a function of M
by the condition

∫
R
UM,A(η, 1) dη = M.

For every M ∈ R the function UM is a unique solution of the Burgers
equation in the space C ((0,∞); L1(R)) having the properties∫

R

UM(x , t) dx = M for all t > 0

and ∫
R

UM(x , t)ϕ(x) dx → Mϕ(0) as t → 0

for all ϕ ∈ C∞c (R).



Idea of the proof.
Rescaled family of functions

We study the behavior, as λ→∞, of the rescaled family of functions

uλ(x , t) = λu(λx , λ2t) for every λ > 0,

which satisfy
∂tuλ − ∂2xuλ + λ2−q∂xuq

λ = 0,

uλ(x , 0) = u0,λ(x) = λu0(λx).

Notice that, by a simple change of variables, we have the following
identity

‖uλ(t)‖1 = ‖u0‖1
holds true for all t > 0 and all λ > 0.



Optimal Lp-decay of solutions

Theorem
Under the assumptions of Theorem 6, the solution of problem (3)–(4)
satisfies

‖u(·, t)‖p 6 Ct−(1−1/p)/2‖u0‖1
for each p ∈ [1,∞], a constant C = C (p) and all t > 0.

We sketch the proof for p = 2, only.
Multiplying the equation by u and integrating the resulting equation over
R we have

1

2

d

dt

∫
R

u2 dx = −
∫
R

|ux |2 dx .

Here, we have used an elementary equalities∫
R

uq
x (x , t)u(x , t) dx =

1

q + 1

∫
R

(uq+1(x , t))x dx = 0

if u(x , t)→ 0 when |x | → ∞.



1

2

d

dt

∫
R

u2 dx = −
∫
R

|ux |2 dx

Now, by the Nash inequality

‖u‖2 ≤ C‖ux‖1/32 ‖u‖
2/3
1 ,

which is valid for all u ∈ L1(R) such that ux ∈ L2(R), (since the L1-norm
of the solution is constant in time) we obtain the differential inequality

d

dt
‖u(t)‖22 + C‖u0‖−41

(
‖u(t)‖22

)3 ≤ 0,

which implies
‖u(t)‖2 ≤ Ct−1/4

for all t > 0 and C > 0 independent of t.



Estimates of the rescaled family of solutions

Lemma
For each p ∈ [1,∞] there exists C = C (‖K ′‖1, ‖u0‖1) > 0, independent
of t and of λ, such that

‖uλ(t)‖p ≤ Ct−
1
2 (1− 1

p )

for all t > 0 and all λ > 0.

Proof.
By the change of variables and the decay estimate we obtain

‖uλ(t)‖p = λ1−
1
p ‖u(·, λ2t)‖p ≤ Cλ1−

1
p
(
λ2t
)− 1

2 (1− 1
p )

= Ct−
1
2 (1− 1

p ).



Estimates of the rescaled family of solutions

Lemma
For each p ∈ [1,∞) there exists C = C (p, ‖K ′‖1, ‖u0‖1) > 0,
independent of t and of λ, such that

‖∂xuλ(t)‖p ≤ Ct−
1
2 (1− 1

p )− 1
2

for all t > 0 and all λ > 0.

Identical estimates hold true for uλ.



Aubin-Lions-Simon’s compactness result

Theorem
Let X , B and Y be Banach spaces satisfying

X ⊂ B ⊂ Y

with compact embedding X ⊂ B and continuous embedding B ⊂ Y .
Assume, for 1 ≤ p ≤ ∞ and T > 0, that

I F is bounded in Lp(0,T ; X ),

I {∂t f : f ∈ F} is bounded in Lp(0,T ; Y ).

Then F is relatively compact in Lp(0,T ; B)
and in C (0,T ; B) if p =∞.



Compactness in L1
loc(R)

Lemma
For every 0 < t1 < t2 <∞ and every R > 0, the set

{uλ}λ>0 ⊆ C ([t1, t2], L1([−R,R]))

is relatively compact.

Proof.
We apply Theorem with p =∞, F = {uλ}λ>0, and

X = W 1,1([−R,R]), B = L1([−R,R]), Y = W−1,1([−R,R]),

where R > 0 is fixed and arbitrary, and Y is the dual space of
W 1,1

0 ([−R,R]).

Obviously, the embedding X ⊆ B is compact by the Rellich-Kondrashov
theorem.



Compactness in L1(R)

Lemma
For every 0 < t1 < t2 <∞, the set

{uλ}λ>0 ⊆ C ([t1, t2], L1(R))

is relatively compact.

Proof.
Let ψ ∈ C∞(R) be nonnegative and satisfy ψ(x) = 0 for |x | < 1 and
ψ(x) = 1 for |x | > 2.
Put ψR(x) = ψ(x/R) for every R > 0. It suffices to show that

sup
t∈[t1,t2]

‖uλ(t)ψR‖1 → 0 as R →∞, uniformly in λ ≥ 1.



Initial condition

Lemma
For every test function φ ∈ C∞c (R), there exists C = C (φ, ‖K ′‖1, ‖u0‖1)
independent of λ such that∣∣∣∣∣∣

∫
R

uλ(x , t)φ(x) dx −
∫
R

u0,λ(x)φ(x) dx

∣∣∣∣∣∣ ≤ C
(

t + t1/2
)
. (9)



Proof of the main result

By compactness, there exists a subsequence of {uλ}λ>0 (not relabeled)
and a function ū ∈ C ((0,∞), L1(R)) such that

uλ → ū in C ([t1, t2], L1(R)) as λ→∞.

Passing to a subsequence, we can assume that

uλ(x , t)→ ū(x , t) as λ→∞

almost everywhere in (x , t) ∈ R× (0,∞).
Now, multiplying the equation by a test function φ ∈ C∞c (R× (0,∞))
and integrating over R× (0,∞), we obtain

−
∫
R

∞∫
0

uλφt dsdx =

∫
R

∞∫
0

uλφxx dsdx + λ2−q
∫
R

∞∫
0

uq
λφx dsdx .



We obtain that ū(x , t) is a weak solution of the equation

ūt = ūxx − (ū2)x

if q = 2.
Initial conditions:∫

R

u0,λ(x)φ(x) dx =

∫
R

u0(x)φ(x/λ) dx → Mφ(0)

as λ→∞. Hence,
ū(x , 0) = Mδ0.

Thus, ū is a weak solution of the initial value problem

ūt = ūxx − (ū2)x , (10)

ū(x , 0) = Mδ0. (11)

Since problem (10)-(11) has a unique solution, we obtain that ū = UM .



Obviously, if q > 2, this limit function is a solution to the linear problem

ūt = ūxx , (12)

ū(x , 0) = Mδ0. (13)

So, it is the multiple of Gauss-Weierstrass kernel

ū(x , t) = MG (x , t) = M
1√
4πt

exp
(
− |x |

2

4t

)
.

Hence, we have
lim
λ→∞

‖uλ(1)− ū(1)‖1 = 0

and, after setting λ =
√

t and using the self-similar form of
ū(x , t) = t−1/2ū(xt−1/2, 1), we obtain

lim
t→∞

‖u(t)− ū(t)‖1 = 0.



The convergence of u(·, t) in the Lp-norms for p ∈ (1,∞):

‖u(t)−ū(t)‖p 6
(
‖u(t)‖∞+‖ū(t)‖∞

)1−1/p‖u(t)−ū(t)‖1/p1 = o(t−(1−1/p)/2)

as t →∞.

The convergence in the L∞-norm. Here, by the
Gagliardo-Nirenberg-Sobolev inequality, we obtain

‖u(t)− ū(t)‖∞ 6 C
(
‖ux(t)‖2 + ‖ūx(t)‖2

)1/2‖u(t)− ū(t)‖1/22 = o(t−1/2)

as t →∞.



Summary on ut − uxx + (uq)x = 0.
Suppose that u0 ∈ L1(R). Put

M =

∫
R

u0(x) dx .

Then

I Case I: linear asymptotics

For q > 2 and for every p ∈ [1,∞]

t
1
2 (1− 1

p )‖u(·, t)−MG (·, t)‖Lp(R) → 0

as t →∞, where

G (x , t) =
1√
4πt

exp

(
−x2

4t

)
is the Gauss-Weierstrass kernel.

I Case II: balance case
For q = 2 , the large time asymptotics of solutions is described as

t →∞ by a self-similar solution of the convection-diffusion equation
with the initial datum

u0(x) = Mδ0.



Hyperbolic asymptotics

ut − uxx + (uq)x = 0

Case III: For 1 < q < 2 , the asymptotics is given by a self-similar

solution of the convection equation

vt + (|v |q)x = 0

with the initial datum
v0(x) = Mδ0.

One should use the following different scaling

uλ(x , t) = λu(λx , λqt).

and the rescaled equation

∂uλ − λq−2∂xuλ + ∂(uλ)q = 0.
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Zero mass initial conditions

The main assumption

u0 ∈ L1(R, (1 + |x |) dx), u0 6≡ 0

and ∫
R

u0(x) dx = 0.

Define

U0(x) =

x∫
−∞

u0(y) dy = −
∞∫
x

u0(y) dy .



Diffusion-dominated case
Assume that one of the following assertions hold true:

(i) U0 ≥ 0 and q > 3/2,
(ii) U0 ≤ 0 and q > 2,
(iii) U0 ≤ 0, q ∈ (3/2, 2) the quantity∣∣∣∣∣∣

∫
R

xu0(x) dx

∣∣∣∣∣∣ ‖u0‖2q−3L∞(R)

is sufficiently small.

Then

t
1
2 (1− 1

p )+ 1
2

∥∥∥∥∥u(·, t)− I∞∂xG (·, t)

∥∥∥∥∥
Lp(R)

→ 0,

as t →∞, where

I∞ ≡ − lim
t→∞

∫
R

xu(x , t) dx

= −
∫
R

xu0(x) dx −
∞∫
0

∫
R

|u(x , s)|q dx ds.



Other results

I the convergence towards very singular solutions (special self-similar
solutions of the convection-diffusion equation)

I the convergence towards hyperbolic waves

Conclusion:
The large time asymptotics of zero mass solutions depends not only on
the exponent of the nonlinearity q > 1 but also on the

size, sign, and shape

of the initial datum.


