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LECTURE 2
Self-similar solutions to the
Navier-Stokes system



Navier–Stokes equations
Navier–Stokes equations for x ∈ R3:

ut −∆u + (u · ∇)u +∇p = F , (1)

∇ · u = 0, (2)

u(0) = u0. (3)

The external force F and initial velocity u0 are assigned.

Equivalent form for sufficiently regular solutions:

ut −∆u +∇ · (u ⊗ u) +∇p = F , ∇ · u = 0.

The Leray projector on solenoidal vector fields:

Pv = v −∇∆−1(∇ · v).

We formally transform the system into

ut −∆u + P∇ · (u ⊗ u) = PF , ∇ · u = 0.



The Leray projector P

The Riesz transforms

R̂k f (ξ) =
iξk
|ξ|

f̂ (ξ).

The Fourier transform: v̂(ξ) ≡ (2π)−n/2
∫
Rn

e−ix·ξv(x) dx .

Using these well-known operators we define

(Pv)j = vj +
3∑

k=1

RjRkvk .

Note that

(P̂(ξ))j,k = δjk −
ξjξk
|ξ|2

,

hence
max

16j,k63
sup

ξ∈R3\{0}
|(P̂(ξ))j,k | = 1.



Statement of the problem

The Duhamel principle:

u(t) = S(t)u0 −
t∫

0

S(t − τ)P∇(u ⊗ u)(τ) dτ

+

t∫
0

S(t − τ)PF (τ) dτ,

where S(t) is the heat semigroup given as the convolution with the
Gauss–Weierstrass kernel:

G (x , t) = (4πt)−3/2 exp(−|x |2/(4t))



ABSTRACT LEMMA

Lemma
Let (X , ‖ · ‖X ) be a Banach space and B : X × X → X a bounded
bilinear form satisfying

‖B(x1, x2)‖X 6 η‖x1‖X ‖x2‖X

for all x1, x2 ∈ X and a constant η > 0. Then, if

0 < ε < 1/(4η)

and if y ∈ X such that ‖y‖ < ε, the equation

x = y + B(x , x)

has a solution in X such that ‖x‖X 6 2ε. This solution is the only one in
the ball B̄(0, 2ε). Moreover, the solution depends continuously on y in
the following sense: if ‖ỹ‖X 6 ε, x̃ = ỹ + B(x̃ , x̃), and ‖x̃‖X 6 2ε, then

‖x − x̃‖X 6
1

1− 4ηε
‖y − ỹ‖X .



Two solutions u1 and u2 of the quadratic equation u = y0 + ηu2.



Function spaces

PMa ≡ {v ∈ S ′(R3) : v̂ ∈ L1
loc(R3), ‖v‖PMa ≡ ess sup

ξ∈R3

|ξ|a|v̂(ξ)| <∞},

where a ∈ [0, 3) is a given parameter.



Definition
By a solution we mean in this chapter a function u = u(x , t) belonging
to the space

X = Cw ([0,T );PM2),

0 < T ≤ ∞, and such that

û(ξ, t) = e−t|ξ|
2

û(ξ, 0) +

t∫
0

e−(t−τ)|ξ|
2

iξ · P̂(ξ)
(

û ⊗ u
)

(ξ, τ) dτ

+

t∫
0

e−(t−τ)|ξ|
2

P̂(ξ)F̂ (ξ, τ) dτ

for all 0 6 t 6 T .



Remark
Given f ∈ S ′(R3) ∩ L1

loc(R3) we denote the rescaling

fλ(x) = f (λx).

It follows from elementary calculations that

f̂λ(ξ) = λ−3 f̂ (λ−1ξ).

Hence, for every λ > 0, we obtain the scaling property of the norm in
PMa

‖fλ‖PMa = λa−3‖f ‖PMa .

In particular, the norm PM2 is invariant under rescaling f 7→ λf (λ ·).

Moreover, for a = 3(1− 1/p), the norms ‖ · ‖PMa and ‖ · ‖Lp(R3) have the
same scaling property.



To simplify the notation, the quadratic term in (4) will be denoted by

B(u, v)(t) = −
t∫

0

S(t − τ)P · ∇(u(τ)⊗ v(τ)) dτ,

where u = u(t) and v = v(t) are functions defined on [0,T ) with values
in a vector space (here most frequently PM2).



The space
X = Cw ([0,∞),PM2)

The integral equation
u = y + B(u, u),

where the bilinear form is as above and

y = S(t)u0 +

t∫
0

S(t − τ)F (τ) dτ.

Lemma
Given u0 ∈ PM2, we have S(·)u0 ∈ X .



Proof.
By the definition of the norm in PM2, it follows that

‖S(t)u0‖PM2 = ess sup
ξ∈R3

|ξ|2
∣∣∣e−t|ξ|2 û0(ξ)

∣∣∣ 6 ess sup
ξ∈R3

|ξ|2|û0(ξ)| = ‖u0‖PM2 ,

so, S(·)u0 ∈ L∞([0,∞),PM2).

The weak continuity with respect to t. For every ϕ ∈ S(R3), by the
Plancherel formula, we obtain

|〈S(t)u0 − u0, ϕ〉| =

∣∣∣∣∫ (e−t|ξ|
2

− 1
)

û0(ξ)ϕ̂(ξ) dξ

∣∣∣∣
6 t ess sup

ξ∈R3

∣∣∣∣∣e−t|ξ|
2 − 1

t|ξ|2

∣∣∣∣∣ ‖u0‖PM2‖ϕ̂‖L1R3 → 0

as t ↘ 0.
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|ξ|2|û0(ξ)| = ‖u0‖PM2 ,

so, S(·)u0 ∈ L∞([0,∞),PM2).

The weak continuity with respect to t. For every ϕ ∈ S(R3), by the
Plancherel formula, we obtain

|〈S(t)u0 − u0, ϕ〉| =

∣∣∣∣∫ (e−t|ξ|
2

− 1
)
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Lemma
Given F ∈ Cw ([0,∞),PM), it follows that

w ≡
t∫

0

S(t − τ)F (τ) dτ ∈ X .

Moreover, ‖w‖X 6 ‖F‖Cw ([0,∞),PM).

Proof.

‖w(t)‖PM2 = ess sup
ξ∈R3

|ξ|2
∣∣∣∣∣∣

t∫
0

e−(t−τ)|ξ|
2

F̂ (ξ, τ) dτ

∣∣∣∣∣∣
6 |ξ|2

t∫
0

e−(t−τ)|ξ|
2

dτ‖F‖Cw ([0,∞),PM)

6 ‖F‖Cw ([0,∞),PM).



X = Cw([0,∞),PM2)

Lemma
There exists a constant η > 0 such that for every u, v ∈ X , it follows

‖B(u, v)‖X 6 η‖u‖X ‖v‖X .

Proof
Using elementary properties of the Fourier transform we obtain∣∣∣ ̂(u ⊗ v)(ξ, τ)

∣∣∣ 6 C

∫
R3

dz

|ξ − z |2|z |2
‖u(τ)‖PM2‖v(τ)‖PM2

=
η

|ξ|
‖u(τ)‖PM2‖v(τ)‖PM2 .

In the computations above, we use the equality

|ξ|−2 ∗ |ξ|−2 = π3|ξ|−1.



Now, the boundedness of the bilinear form on X results from the
following estimates

|ξ|2
∣∣∣∣∣∣

t∫
0

e−(t−τ)|ξ|
2

i P̂ξ · ̂(u ⊗ v)(ξ, τ)

∣∣∣∣∣∣ dτ

6 η|ξ|2
t∫

0

e−(t−τ)|ξ|
2

dτ ‖u‖X ‖v‖X

6 η‖u‖X ‖v‖X .



Main theorem

Theorem
Assume that u0 ∈ PM2 and F ∈ Cw ([0,∞),PM) satisfy

‖u0‖PM2 + ‖F‖Cw ([0,∞),PM) < ε

for some 0 < ε < 1/(4η) where η is defined above.
There exists a global-in-time solution of the Navier-Stokes system in the
space

X = Cw ([0,∞),PM2).

This is the unique solution satisfying the condition

‖u‖Cw ([0,∞),PM2) 6 2ε.

Moreover, this solution depends continuously on initial data and external
forces in the sense of Abstract Lemma.



Self-similar solutions

ut −∆u + (u · ∇)u +∇p = 0

If u solves the Cauchy problem, then the rescaled functions

uλ(x , t) = λu(λx , λ2t)

is also a solution for each λ > 0 (scaling of the pressure λ2p(λx , λ2t)).

Forward self-similar solution: Uλ ≡ U for all λ > 0.

Take t = 1 and λ = t1/2 in the equation U ≡ Uλ to obtain

U(x , t) = t−1/2U(x/t1/2, 1)

The initial condition:
lim
t↘0

U(x , t)

has to be a distribution homogeneous of degree −1 at the origin.
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Self-similar solutions

Theorem
Assume that u0 ∈ PM2 and F ∈ Cw ([0,∞),PM) satisfy

‖u0‖PM2 + ‖F‖Cw ([0,∞),PM) < ε

for some 0 < ε < 1/(4η) where η is defined above.

Suppose that the initial condition u0 ∈ PM2 is homogeneous of degree
−1 and F ∈ Cw ([0,∞),PM) satisfies

λ3F (λx , λ2t) = F (x , t) for all λ > 0

Then, the corresponding unique solution is self-similar.



Stationary solutions

ut −∆u + (u · ∇)u +∇p = F , ∇ · u = 0

Theorem
Assume that u = u(x) ∈ PM2 and F = F (x) ∈ PM. The following two
facts are equivalent

1) u = u(x) is a stationary mild solution of the Navier-Stokes system in
our sense. Hence, u is the solution of the integral equation

u = S(t)u −
t∫

0

S(t − τ)∇P(u ⊗ u)(τ) dτ +

t∫
0

S(τ)F dτ

for every t > 0;

2) u satisfies the integral equation

u = −
∞∫
0

S(τ)∇P(u ⊗ u)(τ) dτ +

∞∫
0

S(τ)F dτ.



Proof.

û(ξ) = e−t|ξ|
2

û(ξ)−
t∫

0

e−(t−τ)|ξ|
2

dτ iξP̂(ξ) ̂(u ⊗ u)(ξ)

+

t∫
0

e−(t−τ)|ξ|
2

dτ P̂(ξ)F̂ (ξ)

= e−t|ξ|
2

û(ξ)− 1− e−t|ξ|
2

|ξ|2
iξP̂(ξ) ̂(u ⊗ u)(ξ) +

1− e−t|ξ|
2

|ξ|2
P̂(ξ)F̂ (ξ).

for every t > 0. Passing to the limit as t →∞ and using the identity

1

|ξ|2
=

∞∫
0

e−τ |ξ|
2

dτ for ξ 6= 0,

we complete the proof.



Existence of stationary solutions

Theorem
Assume that F ∈ PM satisfies

‖F‖PM < ε < 1/(4η).

There exists a stationary solution u∞ to the Navier–Stokes system in the
space PM2 with F as the external force.

This is the unique solution satisfying the condition ‖u‖PM2 6 2ε.



Smooth solutions

Solutions of the Cauchy problem for the Navier-Stokes system
constructed in the space

X = Cw ([0,∞),PM2)

are, in fact, more regular for sufficiently regular external forces.



Lemma
For every p ∈ (3,∞], there exists a constant C = C (p) such that

sup
t>0

t(1−3/p)/2‖S(t)u0‖Lp(R3) 6 C‖u0‖PM2

for all t > 0 and u0 ∈ PM2.

Proof.
Here, our tool is the Hausdorff–Young inequality:

‖S(t)u0‖qLp(R3) 6 C

∫
R3

∣∣∣e−t|ξ|2 û0(ξ)
∣∣∣q dξ

6 C

(
ess sup
ξ∈R3

|ξ|2|û0(ξ)|

)q ∫
R3

∣∣∣∣∣e−qt|ξ|
2

|ξ|2q

∣∣∣∣∣ dξ

= C‖u0‖qPM2t−3/2+q

∫
R3

∣∣∣∣∣e−q|w |
2

|w |2q

∣∣∣∣∣ dw .



Remark for experts

Now, given u0 ∈ PM2 with sufficiently small PM2-norm and for F ≡ 0
we may apply the above theory to get the solution u = u(x , t) which is
unique in the space

Cw ([0,∞), Ḃ−1+3/p,∞
p (R3)) ∩ {v : t(3/p−1)/2‖v(t)‖Lp(R3) <∞}.



Regularizing effect

Definition
Let 2 6 a < 3. We define the Banach space

Ya ≡ Cw ([0,∞),PM2)

∩ {v : (0,∞)→ PMa : |||v |||a ≡ sup
t>0

ta/2−1‖v(t)‖PMa <∞}.

The space Ya is normed by the quantity ‖v‖Ya = |||v |||2 + |||v |||a.

Remark
The norm ||| · |||a is invariant under the rescaling

uλ(x , t) = λu(λx , λ2t)

for every λ > 0.



Theorem
Let 2 6 a < 3. There exists a constant ηa > 0 such that for every
u ∈ Cw ([0,∞),PM2) and v ∈ {v(t) ∈ PMa : |||v |||a <∞} we have

|||B(u, v)|||a 6 ηa|||u|||2|||v |||a.

Proof.
We have

| ̂(u ⊗ v)(ξ, t)| 6
∫
R3

1

|ξ − z |2|z |a
dz ‖u(t)‖PM2‖v(t)‖PMa

= C |ξ|1−a‖u(t)‖PM2‖v(t)‖PMa .

For every a > 2

ta/2−1
t∫

0

|ξ|2e−(t−τ)|ξ|
2

τ 1−a/2 dτ 6 C

independent of ξ and t.



Soothing of the heat semi-group

Lemma
For every u0 ∈ PM2 and t > 0, it follows that S(t)u0 ∈ PMa with a > 2.
Moreover, there exists C depending on the exponent a only such that

sup
t>0

(
ta/2−1‖S(t)u0‖PMa

)
6 C‖u0‖PM2 .

Proof.
Simple estimates give

sup
t>0

(
ta/2−1‖S(t)u0‖PMa

)
6 ‖u0‖PM2 sup

ξ∈R3

(
ta/2−1|ξ|a−2e−t|ξ|

2
)

= C‖u0‖PM2

where C = supw∈R3

(
|w |a−2e−|w |

2
)

.



Estimates of the external force

Lemma
Let 2 6 a < 3. Assume that F (t) ∈ PMa−2 for all t > 0 and

sup
t>0

ta/2−1‖F (t)‖PMa−2 <∞.

There exists a constant C such that for w(t) =
t∫
0

S(t − τ)F (τ) dτ it

follows that
|||w |||a 6 C sup

t>0
ta/2−1‖F (t)‖PMa−2 .



Existence of regular solutions

Theorem
Let a ∈ [2, 3). There exists ε > 0 such that for every u0 ∈ PM2 and
F ∈ Cw ([0,∞),PM) satisfying

‖u0‖PM2 + ‖F‖Cw ([0,∞),PM) + sup
t>0

ta/2−1‖F (t)‖PMa−2 < ε,

the Cauchy problem for the Navier-Stokes system has a solution in the
space

Ya = Cw ([0,∞),PM2) ∩ {u : sup
t>0

ta/2−1‖u(t)‖PMa <∞}.

This is the unique solution under the condition |||u|||a 6 2ε.



Interpolation inequality involving Lq and PMa norms

Lemma
Fix a ∈ (2, 3). For every q ∈

(
3, 3

3−a

)
there exists a constant

C = C (a, q) such that

‖v‖Lq(R3) 6 C‖v‖1−βPM2‖v‖βPMa

for all v ∈ PM2 ∩ PMa, where β = 1
a−2

(
1− 3

q

)
.

Proof.
The Hausdorff–Young inequality (with 1/p + 1/q = 1 and p ∈ [1, 2)):

‖v‖pq 6 C‖v̂‖pp 6 C‖v‖pPM2

∫
|ξ|6R

1

|ξ|2p
dξ + C‖v‖pPMa

∫
|ξ|>R

1

|ξ|ap
dξ

6 C‖v‖pPM2R3−2p + C‖v‖pPMaR3−ap

for all R > 0 and C independent of v and R.



Corollary

Under the above assumptions, the constructed solution satisfies

‖u(·, t)‖Lq(R3) 6 Ct−(1−3/q)/2

for each 3 < q < 3/(3− a), all t > 0, and C independent of t.



Singular solutions



The Navier-Stokes system

∂tu −∆u + (u · ∇)u +∇p = 0, div u = 0,

for (x , t) ∈ R3 × R+.

explicit stationary SINGULAR SOLUTIONS

uc
1(x) = 2

c |x |2 − 2x1|x |+ cx2
1

|x |(c |x | − x1)2
, uc

2(x) = 2
x2(cx1 − |x |)
|x |(c |x | − x1)2

,

uc
3(x) = 2

x3(cx1 − |x |)
|x |(c |x | − x1)2

, pc(x) = 4
cx1 − |x |

|x |(c |x | − x1)2
,

where |x | =
√

x2
1 + x2

2 + x2
3 and c ∈ R is an arbitrary constant such that

|c | > 1.

These explicit stationary solutions seem to be discovered first by Slezkin
and described by Landau.

Independently, they were obtained by Tian and Xin (1998).
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These are solutions of the singular Navier-Stokes problem

∂tu + (u · ∇)u −∆u +∇p = κ(c)(δ0, 0, 0), (x , t) ∈ R3 × (0,∞),

div u = 0.

Here, κ(c)→ 0 as |c | → ∞.

Note that
(δ0, 0, 0) ∈ PM0.

It is easy to show that

uc
k ∈ PM

2 k ∈ 1, 2, 3.



Singular solution on a curve

We focus on the following initial value problem for the incompressible
Navier-Stokes system with a singular force

∂tu + (u · ∇)u −∆u +∇p = κδγ(t)ē1, (x , t) ∈ R3 × (0,∞),

div u = 0,

u|t=0 = 0,

where κ ∈ R, ē1 = (1, 0, 0) and δγ(t) is the Dirac measure on R3

concentrated at the point x = γ(t).



Singular solution on a curve

Theorem
Assume that γ : [0,∞)→ R3 is Hölder continuous with an exponent
α ∈

(
1
2 , 1
]

and denote by Γ the curve {(γ(t), t) ∈ R3 × R+ : t > 0}.

There exists a vector field u(x , t) = (u1, u2, u3) ∈ L∞
(
[0,∞); L3,∞(R3)

)
and a pressure p ∈ L∞

(
[0,∞); L

3
2 ,∞(R3)

)
such that

1. u(x , t) and p(x , t) satisfy the homogeneous Navier-Stokes system
for all (x , t) ∈ (R3 × R+)\Γ in the sense of distributions,

2. u ∈ L∞loc
(
(R3 × R+)\Γ

)
,

3. for every t > 0
I u(·, t)− V c(· − γ(t)) ∈ Lq(R3) for each q ∈

(
3, 3

2−2α

)
,

I p(·, t)− Qc(· − γ(t)) ∈ Lq(R3) for each q ∈
(
3
2
, 3
3−2α

)
,

where (V c ,Qc) denotes the Slezkin-Landau solution with fixed and
sufficiently large |c | > 1.



Proof of Theorem

1. Work space: For every fixed a > 0, we set

PMa ≡
{

v ∈ S ′(R3) : v̂ ∈ L1
loc(R3), ‖v‖PMa ≡ ess sup

ξ∈R3

|ξ|a|v̂(ξ)| <∞
}
.

and the Banach space

Ya
T ≡ Cw

(
[0,T ),PM2

)
∩
{

v : (0,T )→ PMa : |||v |||a,T ≡ sup
0<t6T

ta/2−1‖v(t)‖PMa <∞
}
,

for each a > 2 and T ∈ (0,∞]. The space Ya
T is normed by the

quantity ‖v‖Ya
T

= |||v |||2,T + |||v |||a,T and of course,

Y2
∞ = Cw

(
[0,∞),PM2

)
with this definition.

2. The main method: The Banach fixed point theorem.



By the Duhamel formula, we know that

û(ξ, t) =

t∫
0

e−(t−τ)|ξ|
2

P̂(ξ) iξ·
(
û ⊗ u

)
(ξ, τ)dτ+κ

t∫
0

e−(t−τ)|ξ|
2

P̂(ξ)e iγ(τ)·ξ ē1 dτ

for all t > 0 and almost all ξ ∈ R3, where for two tempered distributions

u, v ∈
(
PM2

)3
.



Back to the heat equation

Yanagida and his collaborators studied solutions of the linear heat
equation with time-dependent singularities

∂tu −∆u = δγ(t), (x , t) ∈ R3 × R+, (4)

with the singular force δγ(t) for every t > 0. It is shown that if a
singularity is weaker than the order of the fundamental solution of the
Laplace equation, then it is removable. Now, we denote by

Φ(x , t) = (4πt)−
3
2 e−

|x|2
4t

the fundamental solution of the heat equation. Moreover, we define F in
R3 × (0,T ) by

F (x , t) =

t∫
0

Φ
(
x − γ(τ), t − τ

)
dτ,

which satisfies (4) in the distribution sense.



Theorem
Let Γ =

{
(γ(t), t), t > 0

}
⊂ R3 × R+ be a curve, where γ = γ(t) is

Hölder continuous of exponent α ∈ ( 1
2 , 1]. There exists a function u(x , t)

such that

1. u is regular in (R3 × R+)\Γ;

2. ∂tu = ∆u, for all (x , t) ∈ (R3 × R+)\Γ;

3. we have the decomposition u(x , t) = ω0(x , t) + 1
4π|x−γ(t)| , where the

function ω0 satisfies ‖ω0(·, t)‖Lq(R3) 6 Ct
1
2 ( 3

q−1) for every

q ∈ (3, 3
2−2α ) and t ∈ (0,T ] with a constant C = C (q, α,T ) > 0.


