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Introduction

Linear dispersion

iut + p(
1

i
∇)u = 0

where p(1
i ∂) is self-adjoint differential operator. Fourier transform:

i∂tû+ p(ξ)û = 0

û(t, ξ) = eitp(ξ)û(0, ξ)
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Introduction

Examples

1 The Schrödinger equation in R× Rn 3 (t, x), p(ξ) = −|ξ|2

i∂tu+ ∆u = 0

2 The Airy equation in R× R 3 (t, x), p(ξ) = ξ3

∂tu+ ∂xxxu−3uux = 0

3 The linear Kadomtsev-Petviashvili equations in R× R2 3 (t, x, y),

p(ξ, η) = ξ3 ± η2

ξ , v = −(3ξ2 ∓ η2

ξ2 ,
η
ξ )

∂x(∂tu+ ∂xxxu−3u∂xu)± uyy = 0

4 The half wave equation

i∂tu+

√
1+|1

i
∇|2u = 0.
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Introduction

What is dispersion?

1 The group velocity depends on the frequency. For compactly
supported smooth initial data the wave decays pointwise, despite the
conservation of the L2 norm.

2 The characteristic set {(τ, ξ) : τ = p(ξ)} is curved. Stationary phase:
Curvature leads to pointwise decay of the fundamental solution. The
main contribution to ∫

ei(x·ξ+tp(ξ))dξ

comes from points with stationary phase x
t = −∇p(ξ) - the group

velocity at frequency ξ is
−∇p(ξ)

3 Decay of the fundamental solution.
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Introduction

Bow Wave

Herbert Koch (Universität Bonn) Nonlinear dispersive equations 6 / 104



Introduction

Bow Wave, Berry (Bristol)
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Introduction

Nonlinear waves

The nonlinearity may cooperate with dispersion ( defocusing) , or work
against it (focusing). (KPII)
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Introduction

Outline

1 The spaces Up and V p

2 Strichartz estimates and bilinear estimates

3 Nonlinear dispersive equations

4 Dynamics near solitons
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The spaces Up and V p

Motivation

We consider
iut +Au = f(u)

where A is self adjoint and f is nonlinear. Search function spaces X and
Y so that

X 3 u→ f(u) ∈ Y is smooth (polynomial)

There is a unique solution u ∈ X to data f ∈ Y and u0 ∈ H such
that ‖u‖X ≤ c(‖u0‖H + ‖f‖Y ).

Then a solution can be constructed as fixed point of the map which maps
u to the solution J(u) with initial data u0 and right hand side f(u).
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The spaces Up and V p

Motivation

One needs

A radius R so that, if ‖u‖X ≤ R,

‖J(u)‖X ≤ c (‖u0‖H + ‖f(u)‖Y ) ≤ R

The map J(u) has a small Lipschitz constant

‖J(u)− J(v)‖X ≤ c‖f(u)− f(v)‖Y ≤ µ‖u− v‖X .

There are usually (but not always) two ways to achieve that: Small time,
or small data. In this setting the assumptions of the implicit function
theorem are satisfied.
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The spaces Up and V p

Example: The nonlinear Schrödinger equation

We begin with the nonlinear Schrödinger equation

i∂tu+ ∆u = |u|
4
nu.

Here

H = L2(Rn), X = L
2(n+2)
n (R× Rn), Y = L

2(n+2)
n+4 (R× Rn).

The estimates are

The estimate of the nonlinearity

‖|u|
4
nu‖

L
2(n+2)
n+4

= ‖u‖
4
n

+1

L
2(n+2)
n

.

Strichartz estimate

‖u‖
L2n+2

n (R×Rn)
≤ c
(
‖u0‖L2(Rn) + ‖i∂tu+ ∆u‖

L
2(n+2)
n+4

)
.
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The spaces Up and V p

Desired properties

We want the following properties of the function spaces.

1 Heritates Strichartz estimates as embeddings, bilinear estimates, and
’high modulation estimates’ in the elliptic part.

2 Allow duality arguments.

Example:

ut = f

Would want: X = Ḣ1/2 and Y = Ḣ−1/2. Then∫
ufdt ≤ ‖u‖Ḣ1/2‖f‖Ḣ−1/2

would give everything. Not true! How close can we get? This is relevant
in probability and dispersive equations.
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The spaces Up and V p

Bounded p variation

A partition is defined by an increasing (finite) sequence τ = (tj)0≤j≤N ,

t0 < t1 · · · < tn ≤ ∞.

We denote the set of all partition by T . Let
S be the set of all step functions with finitely many discontinuities (test
functions) and
R the set of ruled functions with left and right limits everywhere including
±∞ (distributions).
We define v(∞) = 0. All these functions are bounded.
For a function space X we denote by Xrc the subspace of right continuous
functions with limit 0 at −∞.

Herbert Koch (Universität Bonn) Nonlinear dispersive equations 14 / 104



The spaces Up and V p

Stieltjes integral

The regulated Stieltjes integral

R× Src 3 (v, u)→
∫
vdu =

∑
j

v(tj)(u(tj)− u(tj−1))

defines a duality. We equip Src with the norm

‖u‖BV =
∑
j

|u(tj)− u(tj−1)|.

and R with the supremum norm. If L : Src → R is continuous we define

v(t) = L(χ[t,∞))

It is in R.
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The spaces Up and V p

Definition of V p

Let 1 ≤ p <∞.

Definition (Definition of V p)

We define the space V p as the space of all functions such that the norm

‖u‖V p = sup
τ

(∑
|u(ti+1)− u(ti)|p

)1/p

is finite.

Herbert Koch (Universität Bonn) Nonlinear dispersive equations 16 / 104



The spaces Up and V p

The definition of Up

We call a a p atom if there exist a partition τ and φi with
∑
|φi|p ≤ 1 and

a =
∑

φiχ[ti,ti+1).

Definition

The p atoms define an atomic space Up by

‖u‖Up = inf
{∑

|λj | : u =
∑

λjaj

}
.

(there exist atoms aj and numbers λj with u =
∑

j λjaj).
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The spaces Up and V p

Density

Theorem

We have
Src ⊂ Up ⊂ V p ⊂ R.

Step functions are dense in Up. If p ≤ q then

Up ⊂ U q, V p ⊂ V q.

Step functions are also dense in V p, but the proof requires duality.
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The spaces Up and V p

Interpolation

Lemma

Let 1 ≤ p < q <∞. There exists C > 0 so that for all M > 0 and v ∈ V p
rc

there exist u ∈ Up and w ∈ U q with

v = u+ w,
1

M
‖u‖Up + eM‖w‖Uq ≤ C‖v‖V p

Corollary

Let 1 ≤ p < q <∞. Then

Up ⊂ U q, V p ⊂ V q

and
V p
rc ⊂ U q ⊂ V q
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The spaces Up and V p

Proof

This is proven via a sort of parametrization invariant Littlewood-Paley
decomposition. Without loss of generality we assume that ‖v‖V p = 1. If
t1 ≤ t2 ≤ t3 then

‖χ[t1,t2)(v− v(t2))‖pV p + ‖χ[t2,t3)(v− v(t3))‖pV p ≤ ‖‖χ[t1,t2)(v− v(t3))‖pV p .

We choose
tk,0 = −∞, tk,1 =∞, u0 = lim

t→−∞
u(t)

tk,2j = tk−1,j

tk,2j−1 = sup
{
t : t < tk,2j , ‖χ(−∞,t)(v−v(t))‖pV p ≥ ‖χ(−∞,tk,2j)(v−v(tk,2j))‖pV p−2−k

}
.

uk(t) =
∑
j

(v(tk,2j−1)− v(tk,2(j−1)))χ[tk,2j−1,tk,2j).
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The spaces Up and V p

Proof of interpolation II

Let

u =

k0∑
k=1

uk, w = v − u

Then ∥∥∥v − k0∑
j=0

uj
∥∥∥
sup
≤ 2−k0/p

‖uk‖sup ≤ 2−k/p, #τ(uk) ≤ 2k.

‖uk‖Ur ≤ 2
−k( 1

p
− 1
r

)
.

and we arrive at

‖u‖Up ≤ k0, ‖w‖Uq ≤
1

1− 2
1
q
− 1
p

2
−k0( 1

p
− 1
q

)
.
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The spaces Up and V p

Duality

Recall
B(v, u) =

∑
v(tj)(u(tj)− u(tj−1)).

Theorem

Let 1
q + 1

p = 1,1 < p, q <∞. The bilinear map defines a unique bilinear
map B : V p × U q such that

V p 3 v → (u→ B(v, u)) ∈ (U q)∗

is an isometric isomorphism.
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The spaces Up and V p

Proof of Duality

Proof.

For atoms (after an integration/summation by parts, with tN =∞)

B(v, a) ≤
∑
|v(tj+1)− v(tj)||a(tj)| ≤ ‖v‖V p .

This gives the bound. If L ∈ (U q)∗ define

v(t) = L([t,∞)).
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The spaces Up and V p

This is a generalization of Young’s integral (1912).∫ b

a
uv′dt

with u ∈ V p ∩ C, v ∈ V q ∩ C, 1
p + 1

q > 1.

Lemma

Step functions are dense in V p. Test functions are weak* dense in V p.

Proof.

Let Ṽ p be the closure of the step functions in V p. Let X ⊂ U q be the set
of all functions for which B(v, u) = 0 for all v ∈ Ṽ p. Since
u(t) = −B(χ[t,∞), u) the set X is trivial. Then {0} = X∗ = V p/Ṽ p.

Let Ṽ p be the weak closure of C∞0 and let (Ṽ p)⊥ ⊂ U q be the functions
which are orthogonal. It suffices to show that u(0) = 0 for all functions in
(Ṽ p)⊥. This requires a simple explicit construction.
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The spaces Up and V p

Duality 2

Theorem

The space U q is the dual space to

V p
C := {v ∈ V p ∩ C(R) : v(t)→ 0 as t→∞}

C∞0 ⊂ Up is weak∗ dense.

In particular is suffices to test by smooth functions.

Proof.

It suffices to find a representation of a linear functional L.We reverse time.
Then UpC = Up ∩ C ⊂ V p

C . Thus L ∈ (UpC)∗. By Hahn Banach there is an
extension L̃ ∈ (Up)∗. By the duality theorem it can be represented by a
function g ∈ V q which we can choose to be right continuous. Now we
integrate by parts. The weak* density is almost obvious.
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The spaces Up and V p

Duality 3

We can consider sequence spaces up and vp on sequences (uj)j∈N. Let v0
p

be the subspace of sequences converging to 0. Then

(v0
p)
∗ = up

u∗p = vp

v0
p ⊂ vp has codimension 1

The space v0
2 has been introduced by James (1951) because of this

property. These spaces played a role in the study of Banach spaces by
Pisier.
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The spaces Up and V p

Relation to function spaces

An almost trivial computation implies

‖u‖V p([0,1]) ≤ ‖u‖Ċ1/p([0,1]).

Lemma

Let φ ∈ C∞0 (R) with
∫
φ = 1. Then

‖f ∗ φ‖Lp ≤ c‖f‖V p .

Moreover
B

1/p
p,1 ⊂ U

p ⊂ V p
rc ⊂ B1/p

p,∞.

In particular
‖uΛ‖Lp ≤ cΛ−1/p‖uΛ‖V p .
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The spaces Up and V p

Solving ODEs

We consider the initial value problem ut = f , u(0) = u0.

Theorem

Suppose that f is a distribution and

‖f‖DV p = sup
{∫

fφdx : φ ∈ C∞0 , ‖φ‖Uq ≤ 1
}
<∞.

Then there exists a unique solution u ∈ V p with

‖u‖V p ≤ ‖f‖DV p + |u0|

‖f‖DUp = sup
{∫

fφdx : φ ∈ C∞0 , ‖φ‖V q ≤ 1
}
<∞.

Then there exists a unique solution u ∈ Up for t ≥ 0 with

‖u‖Up ≤ ‖f‖DUp + |u0|.
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The spaces Up and V p

Probability, rough path theory

The Brownian Bt motion satisfies for all p, q > 2∥∥∥‖Btχ[0,1]‖V p
∥∥∥
Lq
≤ cp,q

The space V p are invariant under reparametrization, and
reparametrizations of the Brownian motion are in V p.

Herbert Koch (Universität Bonn) Nonlinear dispersive equations 29 / 104



The spaces Up and V p

Stochastic differential equation lead to integrals∫
fdg

where typically g is the Brownian motion and f is a local martingal. The
integrals are pathwise defined if g ∈ U2. This is not the case, and we need
the Ito- or the Stratonovitch integral to integrate the Brownian motion.
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The spaces Up and V p

T. Lyons has observed that one may enhance the Young integral by
defining the Levy process by stochastic integration, and then a rough path
integral depending only on the path and the Levy area process.
Hairer and Gubinelli have extended these ideas to partial differential
equations.
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The spaces Up and V p

Modifications

Functions spaces on bounded intervals: Extend functions in V p by
zero to the right, and constant to the left, and functions in Up

constant to the right, and by zero to the left.

Values in Hilbert/Banach spaces. If q ≥ p by Minkowski’s inequality

‖v‖V q(Lp) ≤ ‖v‖L(V q)

‖u‖Lq(Up) ≤ ‖u‖Up(Lq).

Pull back a unitary evolution

‖u‖UpP = ‖e−itP (D)u‖Up
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The spaces Up and V p
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Summary

The spaces Up and V p

V p: Bounded p variation.

p- atom: a =
∑
φjχ[tj ,tj+1),

∑
|φj |p = 1.

Up: u =
∑
λjaj .

T : Up → X, ‖T‖L(Up,X) = sup ‖Ta‖.
Duality: V p × U q 3 (v, u)→ B(v, u) =

∫
vdu defines an isometric

isomorphism V q → (Up)∗ and Up → (V q
C)∗.

Embeddings

B
1/p
p,1 ⊂ U

p ⊂ V p
rc ⊂ B1/p

p,∞.

High modulation estimate

‖u>Λ‖Lp ≤ cΛ−
1
p ‖u‖V p

Step functions are dense. Test functions are weak* dense.

Herbert Koch (Universität Bonn) Nonlinear dispersive equations 34 / 104



Summary

Adaptation to operator

Values in L2.

sup
t
‖u(t)‖L2 ≤ ‖u‖V p ≤ c‖u‖Up ≤ c‖u‖BV .

Consider
i∂tu+Au = 0

Pull back
‖u‖UpA = ‖e−itAu(t)‖Up

‖v‖V pA = ‖e−itAv(t)‖V p .
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Summary

Solving differential equations

To solve
i∂tu+Au = f

in V p prove ∫ ∞
0
〈f, φ〉L2dt ≤ C1

for φ ∈ C∞0 with ‖φ‖Uq ≤ 1. Then there exists a unique solution u
(distributional with values in L2) with

‖u‖V p ≤ ‖u0‖L2 + C1.

Similarly with Up.
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Strichartz and bilinear estimates Strichartz estimates

Strichartz estimates

The linear Schrödinger equation

i∂tu+ ∆u = 0

has a fundamental solution

gt(x) = ((4πit)1/2)−ne−
|x|2
4it

with Fourier transform
ĝt(x) = eit|ξ|

2

hence
‖u(t)‖L2 = ‖u0‖L2 ‖u(t)‖L∞ ≤ |4πt|−n/2‖u0‖L1
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Strichartz and bilinear estimates Strichartz estimates

Strichartz estimates

1 Interpolation: ‖u(t)‖Lp′ ≤ |4πt|
−n( 1

p
− 1

2
)‖u0‖Lp(Rn).

2 Duhamel’s formula, weak Young (Keel-Tao)

‖u‖
Lr
′
t L

p′ (Rn)
≤ c‖i∂tu+ ∆u‖LrtLp(Rn)

if r, p ≥ 2, (r, p, n) 6= (2, 1, 2) and

2
(1

r
− 1

2

)
+ n

(1

p
− 1

2

)
= 1

3 A TT ∗ argument gives

‖u‖L∞L2 + ‖u‖Lr′Lp′ ≤ c (‖u0‖L2 + ‖i∂tu+ ∆u‖LrLp)
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Strichartz and bilinear estimates Strichartz estimates

Strichartz estimates

The pointwise decay follows typically by stationary phase. For the Airy
equation

ut + uxxx = 0

there is a fundamental solution (up to constants)

g(t, x) = t−1/3 Ai(x/t1/3)

where

Ai(x) =

∫
ei(xξ+ξ

3)

The Lemma of van der Corput implies that Ai is bounded. Stationary
phase implies that half a derivative is bounded.
The half wave equation

i∂tu± |D|u = 0

( and hence the wave equation) has a characteristic set with n− 1
nonvanishing curvatures. This implies a shift of the exponents compared
to the Schrödinger equation.
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Strichartz and bilinear estimates Strichartz estimates

Strichartz estimates and embedding for Up and V p

Let A be a selfadjoint operator on L2. Then

i∂tu+Au = 0

generates the unitary group S(t) = eitA.

Definition

UpA = S(t)Up, V p
A = S(t)V p

‖u‖UpA = ‖S(−t)u(t)‖UpA , ‖u‖V pA = ‖S(−t)u(t)‖V pA .

Theorem

Suppose the unitary group admits Strichartz estimates with the exponents
r, p. Then

‖u‖Lr′Lp′ ≤ c‖u‖Ur′A
and

‖u‖V rA ≤ c‖(i∂t + ∆)u‖LrLp
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Strichartz and bilinear estimates Strichartz estimates

Proof

It suffices to prove the first estimate for atoms, and hence for free
solutions.
Similarly for the second part we choose a partition. Then the estimate
reduces to proving them for a fixed interval of the partition. But this is
equivalent to the Strichartz estimate for free solutions.
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Strichartz and bilinear estimates Free waves

The Fourier transform of free waves

Consider
i∂tu− φ(D)u = 0

where φ is a real valued function, and φ(D) is the Fourier multiplier. Then

i∂tû = φ(ξ)û

and
û(t, ξ) = e−itφ(ξ)û(0, ξ)

Thus ∫
Ft,xuψdξdτ =

∫
Rn
ψ(φ(ξ), ξ)u0(ξ)dτdξ

hence
Ft,xu = û0(ξ)δτ−φ.
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Strichartz and bilinear estimates Convolution estimates

Convolution estimates

Let Σj , j = 1, 2 be two hypersurfaces defined by Ξj(ξ) = 0. We search
estimates

‖uv‖L2 ≤ C‖û‖L2(δΞ1
)‖v̂‖L2(δΞ2

)

where by and abuse of notation the Fourier transform of û resp v̂ is ûδΞ1

resp. ûδΞ1 . By Plancherel this reduces to

‖(ûδΞ1) ∗ (v̂δΞ2)‖L2 ≤ C‖û‖L2(δΞ1
)‖v̂‖L2(δΞ2

).
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Strichartz and bilinear estimates Convolution estimates

The calculation

We approximate the Dirac function by smooth functions. Then, with
nonnegative functions h1 and h2,

‖uh1 ∗ vh2‖2L2

=

∫ ∣∣∣∣∫ u(ξ − η)h
1/2
1 (ξ − η)h

1/2
2 (η)v(η)h

1
2
2 (η)h

1/2
1 (ξ − η)dη

∣∣∣∣2 dξ
≤
∫ ∫

|u(η)|2h1(η)h2(ξ − η)dη

∫
|v(η)|2h2(η)h1(ξ − η)dηdξ

≤C2
h‖h

1
2
1 u‖

2
L2‖h1/2v‖2L2(δΞ2

)

where

C2
h = sup

ξ1,ξ2

∫
h1(ξ − ξ1)h2(ξ − ξ2)dξ.
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Strichartz and bilinear estimates Convolution estimates

The calculation

We set hi = jk ◦ Ξi for a Dirac sequence and obtain in the limit by the
coarea formula with respect to hi

C2 = sup
ξ1∈Σ1,ξ2∈Σ2

∫
δΞ1(ξ − ξ2)δΞ2(ξ − ξ1)dξ. (1)

For this limit we used the coarea formula: φ : U → V ⊂ Rm, m < n.

∫
U

det(DφDφT )1/2f(x)dmn(x) =

∫
V

∫
φ−1(y)

f(x)dHn−mdmm(y)
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Strichartz and bilinear estimates Convolution estimates

A reduction

Consider
Ξ1(τ, ξ) = τ − φ1(ξ), Ξ2(τ, ξ) = τ − φ2(ξ)

In this case the formula (1) can be considerably simplified.

Lemma ∫ ∞
−∞

δΞ1δΞ2dt = δφ1−φ2

Proof.

By the calculation of Gram determinants

δΞ1δΞ2 = δΞ1δΞ2−Ξ1

and hence
δτ−φ1δτ−φ2 = δτ−φ1δφ2−φ1

Now the formula follows by an application of Fubini’s theorem.
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Strichartz and bilinear estimates Applications

Local smoothing

Consider d = 1, Ξ1 = τ − ξ3, Ξ2 = τ . The equation ξ3
1 = (ξ − ξ2)3 with

the unique solution ξ = ξ2 − ξ1. The gradients are 0 and 3ξ2
1 . Hence∫

(ξf)δτ−ξ3 ∗ (gδτ )dη
1√
3
≤ ‖f‖L2

δ(τ−ξ3)
‖g‖L2(R).

This gives the local smoothing estimate below.

Theorem

Let u be the solution to the Airy equation with initial data u0 given by the
Fourier transform. Then

sup
x

(∫
|ux(t, x)|2dt

)1/2

≤ 1√
3
‖u0‖L2
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Strichartz and bilinear estimates Applications

Local smoothing

Proof.

We apply the previous formula with u and a sequence gj(x) so that g2
j is

Dirac measure. Then

‖(∂xu(x, t))gj(x)‖L2 →
(∫
|∂xu(t, 0)|2dx

)1/2

and
‖(∂xu)gj‖L2(R×R) ≤ c‖u(0)‖L2(R)

In the limit we obtain the bound at x = 0, and by translation we obtain
the general bound.

Herbert Koch (Universität Bonn) Nonlinear dispersive equations 48 / 104



Strichartz and bilinear estimates Applications

One space dimension

Consider Ξ1 = Ξ2 = τ − ξ3.

Theorem

Suppose that u and v satisfy the Airy equation. Then

‖||D1|2 − |D2|2|
1
2uv‖L2 ≤ c‖u0‖L2‖v0‖L2 .

Proof.

This is roughly a gain of one derivative. The proof requires going through
the proof of the bilinear estimate with a bilinear multiplier,∫

η1+η2=η
|η2

1 − η2
2|1/2|û(t, η1)û(t, η2)|dη1.

This exactly compensates for C without further changes.
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Strichartz and bilinear estimates Applications

Schrödinger equations

Theorem

Let a, b ∈ R\0 and
ia∂tu+ ∆u = 0

ib∂tv + ∆v = 0

Suppose that the Fourier transform of u is supported in BR(ξ0). Then, if
a = b

‖|D1 −D2|1/2(uv)‖L2(R×Rn) ≤ cR
n−1

2 ‖u‖L2(Rn)‖v‖L2(Rn).
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Strichartz and bilinear estimates Applications

Proof of bilinear estimates for Schrödinger 1

Proof.

Let τ1 = |ξ1|2 and τ2 = |ξ2|2. The equations

τ − |ξ2|2 − |ξ − ξ2|2 = 0 = τ − |ξ1|2 − |ξ − ξ1|2

lead to
〈ξ, ξ2 − ξ1〉 = 0.

We integrate out τ in the definition of C and get with

φ(ξ) = 2〈ξ, ξ2 − ξ1〉

C2 ≤ sup
ξ1,ξ2

∫
BR(ξ0−ξ2)

δ2〈ξ,ξ2−ξ1〉dξ = 2|ξ2 − ξ1|−1|B1|R1−n.
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Strichartz and bilinear estimates Applications

Comment

It is worthwhile to explore the case a 6= b. Then we obtain a codimension
2 parabola.
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Strichartz and bilinear estimates Applications

Kadomtsev-Petviashvili II,2d

The Kadomtsev-Petviashvili II equation is

∂tu+ uxxx + ∂−1
x uyy + ∂xu

2 = 0.

where (t, x, y) ∈ R× R× R, and (τ, ξ, η) are the corresponding Fourier
variables. The Strichartz estimate is

‖u‖L4(R3) ≤ c‖u‖U4 .

The bilinear estimate is (with uλ the Littlewood Paley projection to
λ ≤ |ξ| ≤ 2λ)

‖uµuλ‖L2 ≤ c
(µ
λ

)1/2
‖uµ‖L2‖uλ‖L2 .

Here
ûλ = χλ≤|ξ|<2λû

is a Littlewood-Paley decomposition with respect to x.
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Strichartz and bilinear estimates Applications

Kadomtsev-Petviashvili II, 3d

With two y directions for µ ≤ λ/4

‖uλ‖L4(R×R×R2) ≤ cλ1/2‖uλ(0)‖L2(R×R2)

and
‖uµuλ‖L2 ≤ cµ‖uµ‖L2‖uλ‖L2 .
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Strichartz and bilinear estimates Applications

Proof of the bilinear estimate

By the reduction

C = sup

∫
δφ(ξ1,η1)+φ(ξ−ξ1,η−η1)−φ(ξ2,η2)−φ(ξ−ξ2,η−η2)

with µ ≤ |ξ1| ≤ 2µ, λ ≤ |ξ2| ≤ 2λ and φ = ξ3 − |η|
2

ξ . The set is given by

φ(ξ1, η1) + φ(ξ − ξ1, η − η1) = φ(ξ2, η2) + φ(ξ − ξ2, η − η2)

An algebraic calculation gives

φ(ξ2, η2)− φ(ξ1, η1)− Φ(ξ1 − ξ2, η1 − η2) + 3(ξ1 − ξ2)(ξ − ξ1)(ξ − ξ2)

=φ(ξ − ξ1, η − η1)− Φ(ξ − ξ2, η − η2) + Φ(ξ1 − ξ2, η1 − η2)

+ 3(ξ1 − ξ2)(ξ − ξ1)(ξ − ξ2)

=(ξ2 − ξ1)(ξ − ξ1)(ξ − ξ2)


∣∣∣η−η1

ξ−ξ1 −
η−η2

ξ−ξ2

∣∣∣
|ξ1 − ξ2|

2

.
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Strichartz and bilinear estimates Applications

Proof

This describes a circle in the η variables, or a point, or the empty set, for
fixed ξ1, ξ2, ξ, η1 and η2.
We apply Fubini’s theorem and integrate in the η variables. This integral
does not depend on the the radius:∫

R2

δa(|x|2−R2)dx = |a|−1π.

We are left with

π

2|ξ2 − ξ1|

∫
|ξ−ξ2|≤µ

|ξ − ξ2||ξ − ξ1|dξ ≤ πµ2.
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Strichartz and bilinear estimates Applications

Connection to U 2

There is a general argument that deduces bilinear estimates with respect
to U2.

Theorem

Suppose that u and v are solutions to the dispersive equations

i∂tu− p1(D)u = 0 = i∂tv − p2(D)v∥∥∥∫ k(ξ, η)û(t, ξ − η)v̂(t, η)
∥∥∥
L2
≤ c‖u0‖L2‖v0‖L2

Then ∥∥∥∫ k(ξ, η)û(t, ξ − η)v̂(t, η)
∥∥∥
U2
p1

≤ c‖u0‖U2
p1
‖v0‖U2

p2
.
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Strichartz and bilinear estimates Applications
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Summary

The spaces Up and V p

V p: Bounded p variation.

p- atom: a =
∑
φjχ[tj ,tj+1),

∑
|φj |p = 1.

Up: u =
∑
λjaj .

T : Up → X, ‖T‖L(Up,X) = sup ‖Ta‖.
Duality: V p × U q 3 (v, u)→ B(v, u) =

∫
vdu defines an isometric

isomorphism V q → (Up)∗ and Up → (V q
C)∗.

Embeddings

B
1/p
p,1 ⊂ U

p ⊂ V p
rc ⊂ B1/p

p,∞.

High modulation estimate

‖u>Λ‖Lp ≤ cΛ−
1
p ‖u‖V p

Step functions are dense. Test functions are weak* dense.

Herbert Koch (Universität Bonn) Nonlinear dispersive equations 59 / 104



Summary

Adaptation to operator

Values in L2.

sup
t
‖u(t)‖L2 ≤ ‖u‖V p ≤ c‖u‖Up ≤ c‖u‖BV .

Consider
i∂tu+Au = 0

Pull back
‖u‖UpA = ‖e−itAu(t)‖Up

‖v‖V pA = ‖e−itAv(t)‖V p .
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Summary

Solving differential equations

To solve
i∂tu+Au = f

in V p prove ∫ ∞
0
〈f, φ〉L2dt ≤ C1

for φ ∈ C∞0 with ‖φ‖Uq ≤ 1. Then there exists a unique solution u
(distributional with values in L2) with

‖u‖V p ≤ ‖u0‖L2 + C1.

Similarly with Up.
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Strichartz and bilinear estimates Strichartz estimates

Strichartz estimates

The linear Schrödinger equation

i∂tu+ ∆u = 0

has a fundamental solution

gt(x) = ((4πit)1/2)−ne−
|x|2
4it

with Fourier transform
ĝt(x) = eit|ξ|

2

hence
‖u(t)‖L2 = ‖u0‖L2 ‖u(t)‖L∞ ≤ |4πt|−n/2‖u0‖L1
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Strichartz and bilinear estimates Strichartz estimates

Strichartz estimates and bilinear estimates

Strichartz estimates for free waves

‖|D|su‖LptLq ≤ c‖u(0)‖L2

imply
‖|D|su‖LptLq ≤ c‖u(0)‖Up

Bilinear estimates for free solutions

∥∥∥∫
η1+η2=η

k(η1, η2)û(t, η1)v̂(t, η2)dη1

∥∥∥
L2(R×Rn)

≤ c‖u(0)‖L2‖v(0)‖L2

imply∥∥∥∫
η1+η2=η

k(η1, η2)û(t, η1)v̂(t, η2)dη1

∥∥∥
L2(R×Rn)

≤ c‖u‖U2‖v‖U2 .
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Nonlinear dispersive equations

A toy problem

Consider in R× R2 3 (t, x)

i∂tu+ ∆u = ∂x1 ū
2

with initial condition u(0, x) = u0(x).

Theorem

There exists ε > 0 such that for all u0 with ‖u0‖L2 < ε there exists a
unique global in time solution u. It scatters at ∞: The limit

lim
t→∞

e−it∆u(t)

exists in L2.
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Nonlinear dispersive equations

Step 1: Littlewood-Paley decomposition, duality

Let λ ∈ 2Z and ûλ = χλ≤|ξ|<2λû. Let

‖u‖X =

∑
λ∈2Z

‖uλ‖2V 2

1/2

.

Then

v(t) =

{
eit∆u0 if t > 0

0 otherwise

satisfies
‖v‖X ≤

√
2‖u0‖L2 .
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Nonlinear dispersive equations

Reduction to a trilinear estimate

We claim ∣∣∣∣∫
R×R2

ūv̄∂x1w̄dxdt

∣∣∣∣ ≤ c‖u‖X‖v‖X‖w‖X . (2)

Then, by duality ∥∥∥∥∫ t

0
ei(t−s)∆∂x1 ūv̄ds

∥∥∥∥
X

≤ c‖u‖X‖v‖X

and the theorem follows by standard arguments.
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Nonlinear dispersive equations

Littlewood-Paley reduction

We expand

u =
∑
λ∈2Z

uλ

where
ûλ = χλ≤|ξ|<2λû

and expand the integral. We claim

∑
µ≤λ

∣∣∣∣∫ ūµv̄λw̄λdxdt

∣∣∣∣ ≤ cλ−1

∑
µ≤λ
‖uµ‖2V 2

1/2

‖vλ‖V 2‖vλ‖V 2 . (3)
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Nonlinear dispersive equations

Dyadic implies full estimate

We expand (with sums over 2Z)∫
ūv̄∂x1w̄dxdt ≤

∑
λ1,λ2,λ2

∣∣∣∣∫ ūλ1 v̄λ2∂x1w̄λ3 .dxdt

∣∣∣∣ .
Since the integral of the product is the evaluation of the Fourier transform
of the triple convolution at 0, there is only a contribution if there are

ξ1 + ξ2 + ξ3 = 0, λj ≤ |ξj | ≤ 2λj .

Then necessarely the two larger numbers of λj are of similar size. To
simplify the notation we assume that they are equal and we denote them
by λ and the smaller number by µ.
Moreover

‖∂x1wλ3‖V 2 ≤ 2λ3‖wλ3‖V 2

and we may replace the derivative with a multiplication by λ3.
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Nonlinear dispersive equations

The bound

We bound using (3)

∑
λ

∑
µ≤λ

∣∣∣∣λ ∫ ūµv̄λw̄λdxdt

∣∣∣∣ ≤c∑
λ

∑
µ≤λ
‖uµ‖2V 2

1/2

‖uλ‖V 2‖wλ‖V 2

≤ c‖u‖X‖v‖X‖w‖X

and ∑
λ

∑
µ≤λ

µ

∣∣∣∣∫ ūλv̄λw̄µdxdt

∣∣∣∣ ≤c∑
λ

∑
µ≤λ

µ

λ
‖uλ‖V 2‖vλ‖V 2‖wµ‖V 2 .

≤ c‖u‖X‖v‖X‖w‖X

Herbert Koch (Universität Bonn) Nonlinear dispersive equations 69 / 104



Nonlinear dispersive equations

Modulation

Step 2. We want to bound the left hand side of (3), in particular∣∣∣∣∫ ūµv̄λw̄λdxdt

∣∣∣∣ .
The integral is zero unless there are points in the support which add up to
0. If τ1 = |ξ1|2 and τ2 = |ξ2|2 and τ3 = −τ1 − τ2 and ξ3 = −ξ1 − ξ2 then

τ3 − |ξ3|2 = −|ξ1|2 − |ξ2|2 − |ξ1 + ξ2|2

Thus, with µ ≤ λ, in ∫
ūµv̄λw̄λdx dt

at least one of the terms has high modulation - i.e. vertical distance λ2/3
to the characteristic set, otherwise the integral is zero.
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Nonlinear dispersive equations

High modulation on low frequency

We denote this term by h and we have to bound∣∣∣∣∫ ūhµv̄λw̄λdxdt

∣∣∣∣ ≤‖uhµ‖L2‖(vλwλ)µ‖L2

≤λ−1‖uµ‖V 2‖vλ‖L4‖wλ‖L4

≤λ−1‖uµ‖V 2‖vλ‖U4‖wλ‖U4

This completes the estimate in this case since

‖vλ‖U4 ≤ c‖vλ‖V 2

and ∑
µ≤λ
‖(vλwλ)µ‖2L2

1/2

≤ ‖vλwλ‖L2
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Nonlinear dispersive equations

High modulation on high frequency

Here we bound ∣∣∣∣∫ ūµv̄λw̄
h
λdxdt

∣∣∣∣ ≤ c‖uµvλ‖L2‖whλ‖L2 .

The bilinear estimate gives

‖uµvλ‖L2 ≤ c(µ/λ)1/2‖uµ‖U2‖vλ‖U2

and the Strichartz estimate implies

‖uµvλ‖L2 ≤ c‖uµ‖U4‖vλ‖U4

which is not good enough. How do we replace U2 by V 2?
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Nonlinear dispersive equations

Logarithmic interpolation

For M > 1 we write
uµ = u1

µ + u2
µ

with
1

M
‖u1

µ‖U2 + eM‖u2
µ‖U4 ≤ c‖uµ‖V 2

and similarly vλ = v1
λ + v2

λ. Then

‖uµvλ‖L2 ≤ c
((µ

λ

)1/2
M2 +Me−M + e−2M

)
‖uµ‖V 2‖vλ‖V 2 .

Now we obtimize M so that

‖uµvλ‖L2 ≤ c
(
µ/λ)1/2 ln(1 + λ/µ)

)
‖uµ‖V 2‖vλ‖V 2 .
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Nonlinear dispersive equations

Conclusion

We obtain

λ

∣∣∣∣∫ ūµv̄λw̄
h
λdxdt

∣∣∣∣ ≤ c((µ/λ)1/2 ln(1 + λ/µ)
)
‖uµ‖V 2‖vλ‖V 2‖wλ‖V 2 .

This allows to sum to get the desired estimate.
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Nonlinear dispersive equations

The Kadomtsev Petviashvili II equation in 2d

ut + uxxx + ∂−1
x uyy + ∂xu

2 = 0

Symmetries: Scaling λ2u(λ3t, λx, λ2y)
Galilean: u(t, x− cy − |c|2t, y + 2ct)
Critical space:

|Dx|−1/2u0 ∈ L2.

Estimates: Strichartz ‖u‖L4 ≤ c‖u‖U4

Bilinear: ‖uµuλ‖L2 ≤ (µ/λ)1/2‖uµ‖U2‖uλ‖U2 .
Here

ûλ = χλ≤|ξ|<2λû.
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Nonlinear dispersive equations

Theorem (Hadac, Herr, Koch 2008)

There exists δ > 0 so that there is a unique global solution for all initial
data with ‖|Dx|−1/2u0‖L2 ≤ δ. The solution scatters.

The proof is almost verbatim the same as for the nonresonant Schrödinger
equation.
Bourgain: Wellposed in L2. No scattering.
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Nonlinear dispersive equations

The Kadomtsev Petviashvili II equation in 3d

ut + uxxx + ∂−1
x uyy + ∂xu

2 = 0

Critical space: |Dx|1/2u0 ∈ L2.
Strichartz estimate: ‖uλ‖L4 ≤ cλ1/2‖uλ‖U4

Bilinear: ‖uµuλ‖L2 ≤ cµ‖uµ‖U2‖uλ‖U2 .

Theorem (Koch, Li 2015)

There exists δ > 0 so that the equation is well posed for

‖D1/2
x u0‖L2

∗
< δ

and the solution scatters.

The space L2
∗ differs from L2m but it reflect to full symmetry of the

equation.
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Nonlinear dispersive equations

The geometry

ξ

η

Herbert Koch (Universität Bonn) Nonlinear dispersive equations 78 / 104



Nonlinear dispersive equations

Nonlinear Klein Gordon

Theorem (Schottdorf)

Let n ≥ 2, s ≥ max{1
2 ,

n−2
2 }. Then there exists δ > 0 so that for initial

data
‖u0‖Hs + ‖u1‖Hs−1 < δ

there is a unique global solution to the quadratic Klein-Gordon equation

utt −∆u+ u = u2

u(0, x) = u0 ut(0, x) = u1

Nonresonant systems. Without decay assumptions on the initial data.
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Nonlinear dispersive equations KdV and gKdV

gKdV

We consider the generalized Korteweg-de Vries equation

ut + uxxx + (up)x = 0, u(0) = u0

Tools:

‖|D|
1
r u‖LrtLqx ≤ c‖u‖Ur for 2

r + 1
q = 1

2 ((∞, 2), (6, 6), (4,∞), (8, 4))
(Strichartz)

‖(|D1|2 − |D2|2)1/2(uv)‖L2(R×R) ≤ cλ−1‖u‖U2‖v‖U2 (bilinear)

High modulation
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Nonlinear dispersive equations KdV and gKdV

Wellposedness for gKdV

p = 5. Scaling: L2. Wellposedness L2 (Kenig, Ponce, Vega) (Ḃ0
2,∞)

p = 4. Scaling Ḣ−1/6. Wellposedness Ḣ−1/6, Ḃ
−1/6
2,∞ (Tao, Koch &

Marzuola)

Stability of soliton: Martel & Merle (H1), scattering at soiton in
Ḣ−1/6 (Tao, smallness assumption in H1 ∩H−1/6, Koch & Marzuola
smallness in Ḣ−1/6).

p = 3. Scaling Ḣ−1/2. Global wellposedness H1/4 (Kenig, Ponce,
Vega)

p = 2. Scaling Ḣ−3/2. Global wellposedness H−3/4 Christ &
Colliander & Tao (local) Nishimoto (local & global) Guo (global).
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Nonlinear dispersive equations KdV and gKdV

Nonlinear Schrödinger equation on torus

Consider
i∂tu+ ∆u = |u|4u, u(0) = u0 ∈ H1(M)

on a three dimensional manifold M . Globally wellposed in R3 (Colliander,
Keel, Tao, Staffilani, Takaoka, Tao 2008).

Theorem (Herr & Tataru & Tzvetkov, Pausader & Ionescu, Pausader &
Tzvetkov & Wang 12)

Quintic equation wellposed in H1(T3).

Theorem (Herr, Pausader & Tzvetkov & Wang 13)

Quintic equation wellposed in H1(S3).

Theorem (Strunk 14)

Quintic equation wellposed on rectangular torus for small data.
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Nonlinear dispersive equations KdV and gKdV
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Solitons, Korteweg-de Vries equation and the Miura map Introduction and soliton resolution

Introduction

In this section we consider the Korteweg-de Vries equation

ut + uxxx − 6uux = 0

with the soliton solution

−2 sech2(x− 4t)

and the modified Korteweg-de Vries equation

vt + vxxx − 6v2vx = 0

for which the kinks
± tanh(x+ 2t)

are special solutions.
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Solitons, Korteweg-de Vries equation and the Miura map Introduction and soliton resolution

Global stability of the kink

Conjecture (Global orbital stability)

Suppose that
v0 − tanh(x) ∈ H1.

Then there exists γ < −2 and y ∈ C1(R) so that

‖v(t, .)− tanh(x− y(t))‖H1((γt,∞) → 0

and
lim
t→∞

y′ = −2.
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Solitons, Korteweg-de Vries equation and the Miura map Introduction and soliton resolution

Soliton resolution

Corollary (Soliton resolution)

Suppose that the conjecture is true, u0 ∈ L2 and ε > 0. Let (λj) be the
eigenvalues of

ψ → −ψ′′ + uψ

in increasing order. There exists N ∈ N and functions yj ∈ C1 so that

y′j → 4λ2
j

‖u(t)−
N∑
j=0

(−2λ2
j sech2(λj(x− y)))‖L2(εt,∞) → 0
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Solitons, Korteweg-de Vries equation and the Miura map Introduction and soliton resolution

Remarks

Different regimes

Via inverse scattering under much stronger conditions (implying at
most finite number of eigenvalues, decay and integrability).

Here: Local stability of the kink in L2 and local asymptotic stability
of solitons in H−1 (with T. Buckmaster, 2015) .

Stability of soliton for gKdV: Martel & Merle: Distance in H1. KdV:
Merle and Vega: Distance in L2.

Wellposedness in H−1 is not known. We obtain global in time
estimates in H−1 without conserved quantity.

Baoping Liu 2014: Apriori estimates in Hs for some −5
6 > s > −1,

not uniform in time. (As for cubic nonlinear Schrödinger in H−1/4).
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Solitons, Korteweg-de Vries equation and the Miura map The Miura map

The Miura map

The kink and the soliton are connected via the Miura map.

Lemma

Suppose that v satisfies mKdV. Then

u(t, x) = vx(t, x− 6t) + v2(t, x− 6t)− 1

satisfies the Korteweg-de Vries equation.

Proof.

Calculation.
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Solitons, Korteweg-de Vries equation and the Miura map The Miura map

Diffeomorphism in function spaces

Example: v = tanh(x), vx + v2 = 1, (−v)x + (−v)2 = 1− 2 sech2(x).

u(t, x) = vx(t+ 6t, ) + v2(t+ 6t, x)− 1

The Miura map relates

1 A neighborhood of 0 for KdV

2 A neighborhood of tanh for mKdV

3 A neighborhood of − tanh for mKdV and

4 A neighborhood of −2 sech2 for KdV
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Solitons, Korteweg-de Vries equation and the Miura map The Miura map

Lax pair

Suppose that u satisfies the KdV equation. Let

Lu = −∂2
x + u

be the time dependent Schrödinger operator with potential u. Let

P = −4∂3
x + 3(u∂x + ∂xu)

Then
Lt = [P,L].

We may factor
−∂2

xx + u = (∂x + v)(−∂x + v)

provided
u = vx + v2.
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Solitons, Korteweg-de Vries equation and the Miura map The Miura map

Lemma (Perry, Kappeler, Shubin,Topalov)

The potential u is in the range of the Miura map if and only if L ≥ 0.

Proof.

Let u = vx + v2. Then

〈Luψ,ψ〉 = ‖ψx − vψ‖2L2 ≥ 0

Vice verse, if Lu ≥ 0 and t0 < 0 then there is a unique nonnegative
solution to

−ψxx + uψ = 0

in [t0,∞) with ψ(t0) = 0 and ψ(0) = 1. This yields a nonnegative solution
ψ as t0 → −∞. We define

v = ∂x lnψ

Then

∂xv + v2 =
ψxx
ψ

= u.

In particular, if v ∈ Hs then u contains no soliton!
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Shifts

Let u ∈ H−1. There exists C so that Lu+C is positive. This is in the
range of the Miura map. We consider the Miura map applied to
±(λ tanh(λx) + r) and define

F+
λ (r) = rx + (2λ tanh(λx) + r)r

F−λ (r) = −rx + (2λ tanh(λx) + r)r − 2λ2 sech2(λx)

Theorem

Let s ≥ 0 and λ >. Then

F+
λ : HstoHs−1

is analytic. The range of F+
λ is the set of all potentials such that the

corresponding Schrödinger operator has spectrum in (−λ2,∞). The null
space of its derivative has dimension 1. Let r0 ∈ L2. The map

(F+)−1(r0) 3 r → lim
ε→0

∫
e−ε|x|

2
(r − r0)dx

is an analytic diffeomorphism.

Remark

The last map describes the relative position of the kink.
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F−

Theorem

The map
(0,∞)×Hs 3 (λ, r)→ Fλ(r) ∈ Hs−1

is an analytic diffeomorphism to its image. Its range consists of all
potentials in Hs with at least on negative eigenvalue. The lowest
eigenvalue of the potential Fλ(r) is −λ2.
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The spectrum and the Miura map

The proof relies on a study of the Riccati type differential equation

vx + v2 = u.

The linearization at tanh(x) is

wx + 2 tanh(x)w = f

hence

w(x) = w(0)e−2
∫ x
0 tanh(t)dt +

∫ x

0
e
∫ x
s −2 tanh(t)dtf(s)ds.

The operator has a one dimenensional kernel and it is surjective.
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The spectrum and the Miura map

Similarly, if
wx − 2 tanh(x)w = f

then

w(x) =

{ ∫∞
x e

∫ s
x −2 tanh(t)dtf(s)ds if x > 0∫∞

x e
∫ x
s 2 tanh(t)dtf(s)ds

which yields a solution only under the compatibility condition of continuity
at 0. The operator is injective, with a range of codimension 1.
The nonlinear equation requires further similar considerations.
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The spectrum and the Miura map

Let u ∈ C(R, L2) be a solution to the Korteweg-de Vries equation. The
Lax pair

Lt = [P,L]

implies that the spectrum does not change: P defines a unitary evolution
S(s, t) and

S(s, t)L(t) = L(s)S(s, t).

For matrices this implies similarity.
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Soliton resolution

We can derive soliton resolution from the conjecture above. Suppose that
the smallest eigenvalue is −λ2

0. Then there exists a unique v with
v + λ0 tanh(λ0x) ∈ H1 and

vx + v2 = u

Let
u1 = −vx + v2
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Since

(−∂xx + u1 + λ2
0)(−∂x + v) =(−∂x + v)(∂x + v)(−∂x + v)

=(−∂x + v)(−∂xx + u+ λ2
0)

the effect on the spectrum is simple: It removes the lowest eigenvalues.
(−∂x + v is surjective and it has a one dimensional null space. Thus the
operator on the right is surjective. Every other eigenfunction is mapped to
an eigenfunction).
We iterate and arrive at an operator which has only small eigenvalues.
This procedure commutes with the evolution - since v is unique.
If we wait long then we can isolate and remove the eigenvalues (and
solitons ) one by one. With the reverse procedure we regain the solitons.
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The linear problem

The linearization at the kink in moving coordinates is

ut + uxxx − 4ux = ∂x(6 sech2(x)u)+α(t) sech2(x).

The spectrum of the generator is the imaginary axis. It has an eigenvalue
0 with eigen function sech2(x) imbedded in the continuous spectrum. The
red term is added in order to mode out the motion in the null space. The
effect of this mode on the dynamics is simple: It corresponds to
translations. Now

d

dt

∫
exu2dx = −3B(ex/2u)+α〈ex sech2(x), u〉

where

B(f) :=

∫
f2
x +

(
5

4
− 2 sech2(x)− 4 sech2(x) tanh(x)

)
f(x)2 dx.
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The quadratic form

Lemma

B(f) + 2〈f, e·/2 sech2(·)〉2 ≥ 1

3
‖f‖2L2 ,

holds for all f ∈ H1; moreover we also have the estimate

B(f) + 2〈f, e·/2 sech2(·)〉2 ≥ 1

20
‖f‖2H1 .
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The quadratic form

Proof.

Lieb-Thirring inequality: −∆ + V∑
j

|λj |γ ≤ Lγ,n
∫
|V−|γ+n/2dx.

Lγ,1 =
1

2
√
π

Γ(γ + 1)

Γ(γ + 3/2)∑
|λj |

3
2 ≤ 3

16

∫
|V−|2dx =

567

320

Now we test functions to get upper bounds on λ0, and get control on the
lowest eigen function. Geometrie in Hilbert space.

Herbert Koch (Universität Bonn) Nonlinear dispersive equations 101 / 104



Solitons, Korteweg-de Vries equation and the Miura map Linearization at the kink

The linear equation

Consider again

ut + uxxx − 4ux = ∂x(6 sech2(x)u)+α(t) sech2(x)

with the orthogonality condition

〈u, ex sech2(x)〉 = 0 (4)

This determines α.

Lemma

Let u0 satisfy ∫
exu2

0dx <∞, 〈u0, e
x sech2(x)〉 = 0.

Then there exists a unique solution in that space which satisfies∫
exu(t)2dx ≤ e−t

∫
exu2

0dx.

for t > 0.
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Nonlinear equation

Ansatz:
v = tanh(x− y(t)) + u

Then

ut + uxxx − 6ux − 2∂x(u3 + 3 tanh(x− y(t))u3 − 3 sech2(x− y(t))u)

=(ẏ + 2) sech2(x− y).

We choose
η(x) = ε+ 1 + tanh((x−A)/2)

for some large A and require (4). Then

d

dt

∫
η(x− y(t))u2dx+ 3B((η′)1/2u) ≤ l.o.t.

This gives stability.
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The theorem

Theorem (Buckmaster and K’, 2015)

Let γ > 0. There exists ε > 0 so that if u0 ∈ Hk(R), k ≥ −1,

‖u0 + 2 sech2(x)‖H−1 ≤ ε

then there exists y(t) ∼ 4t so that the solution to KdV satisfies

lim
t→∞
‖u(t) + 2 sech2(x− y(t))‖Hk([γt,∞)) = 0.
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