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Navier—Stokes Equations (NSt)
u—Au+u-Vu+Vp = f inQx(0,7)
divu = 0 inQ2x(0,7)
u = 0 ondQx(0,7T)
w(0) = wy att=0

where © C R3 bounded (or exterior domain), 992 € C1:1,

0<T<oo,v=1
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Theorem (Existence of Weak Leray-Hopf Solutions)
Let ug € L2(Q) and f = divF with F € L*(0,T; L?) be given.
Then there exists at least one weak Leray-Hopf solution
u € LHp = L®°(0,T; L(Q)) N L*(0, T; Hy ,(€2))
of (NSt) in the sense of distributions. Moreover,

u € CO([0,T); L2(R)), i.e., u is weakly continuous in L2(£),
and u satisfies the strong energy inequality (SEI), i.e.,

1 . 1 1 o
Slu@I3 + [ IVl dr < 2 lutto)l3 + / (f, w)dr

to to

for a.a. 0 <ty <T (including to =0) and all t € (to,T).
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Theorem (Existence of Weak Leray-Hopf Solutions)
Let ug € L2(Q) and f = divF with F € L*(0,T; L?) be given.

Then there exists at least one weak Leray-Hopf solution

u € LHp = L®°(0,T; L(Q)) N L*(0, T; Hy ,(€2))
of (NSt) in the sense of distributions. Moreover,
u € CO([0,T); L2(R)), i.e., u is weakly continuous in L2(£),
and u satisfies the strong energy inequality (SEI), i.e.,

1 . 1 1 v
Slu@I3 + [ IVl dr < 2 lutto)l3 + / (f, w)dr

to to

for a.a. 0 <ty < T (including to =0) and all t € (to,T).

Note A weak solution satisfies

we L¥0,7,L(Q)) forall s>2,¢>2:
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Strong Solutions

Definition A weak solution w € LH is called a strong solution if
additionally
=1

we€ L%(0,T; L%(Q)) forsome s>2,¢g>3:—+

® | DD

Theorem (Uniqueness) Let u be a strong solution of (NSt). Then
u is unique among all weak solutions satisfying (E/) (only to = 0 is
required).

Theorem (Regularity) Let u be a strong solution of (NSt) and
F€CEQx(0,T)), 00 € C*®. Then u € C®(2 x (0,T)).

21



Initial Values — Optimal Condition (Sohr, Varnhorn, F. ('09))

Let 2 C R? bounded with 9Q € C*! and ug € L2(2), let
2 < s, 3<qand%+§=1.
© The condition

o0
/ e~ 2uo|3 dr < 0o
0

is necessary and sufficient for the existence of a unique strong
solution u € L(0,T; L?), 0 < T < oo, of (NSt).
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Initial Values — Optimal Condition (Sohr, Varnhorn, F. ('09))

Let 2 C R? bounded with 9Q € C*! and ug € L2(2), let
2 < s, 3<qand%+%:1.
© The condition

o0
/ e~ 2uo|3 dr < 0o
0

is necessary and sufficient for the existence of a unique strong
solution uw € L*(0,7; L9), 0 < T' < oo, of (NSt).

Q@ Je=¢.(Q,9) >0:If
T
/0 le 2o dr < e,

then there exists a unique strong solution « on [0,7") with
u(0) = up.
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Initial Values — Optimal Condition (Sohr, Varnhorn, F. ('09))

Let 2 C R? bounded with 9Q € C*! and ug € L2(2), let
2 < s, 3<qand%+%:1.
© The condition

o0
/ e~ 2uo|3 dr < 0o
0

is necessary and sufficient for the existence of a unique strong
solution uw € L*(0,7; L9), 0 < T < oo, of (NSt).

Q@ Je=¢.(Q,9) >0:If
T
/0 e~ 2|8 dr < e,

then there exists a unique strong solution « on [0,7") with
u(0) = up.

Exterior domain: Komo-Fa., Analysis 33 (2013)
General domain: L*-theory (Sohr, Varnhorn, Fa. (2009)) or
Li-spaces L? = L4 N/+ L? (Riechwald, PhD, Darmstadt 2011)
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Ideas of Proof |

(i) A weak solution u has the representation
t
u(t) = B(t) — / AV2e=EAAY2 Pdiv ) (u @ u) (1) dr
0

where E(t) = e~*4ug and the formal operator A~'/?Pdiv is
bounded on each L4(f2), 1 < ¢ < oo
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Ideas of Proof |

(i) A weak solution u has the representation
t
u(t) = B(t) — / AV2e=EAAY2 Pdiv ) (u @ u) (1) dr
Jo

where E(t) = e~*4ug and the formal operator A~'/?Pdiv is
bounded on each L4(f2), 1 < ¢ < oo

(ii) The operator F for & = u — E,
t
Fla)e) = — / AV2e=0=TVAA=1/2 pdiy (i E) @ (ii+E)) (7) dr,
0

defines a strict contraction in a closed ball of L*(0,7"; L%(£2)) for
sufficiently small 0 < 7" < oo (need e, and T” small)
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Ideas of Proof Il

(iii) Show that @ = F (@) defines a weak solution v = @ + E of
(NSt) in LH 7 with initial value ug

Step 1: Show that Vi € L?(0,T; L?()):
Use Yosida approximation operators to get for u,, = J,u that

1
22T S C ||'LL q,8;T HAQUTLHZQ;T ar ||VE||2,2;T

Choose T' small for absorption = uniformly in n € N

1
HA2un

e

2,2:T < 2 ”qu,s;T HVEHQ,Q;T < 00.

n— oo = .
A24, Vi, Vu € L*(0,T'; L*(Q))
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Ideas of Proof Il

(iii) Show that @ = F (@) defines a weak solution v = @ + E of
(NSt) in LH 7 with initial value ug

Step 1: Show that Vi € L?(0,T; L?()):
Use Yosida approximation operators to get for u,, = J,u that

1
22T S C ||'LL q,8;T HAQUTLHZQ;T a4 ||VE||2,2;T

Choose T' small for absorption = uniformly in n € N

1
HA2un

e

2,2:T < 2 ”qu,s;T HVEHQ,Q;T < 00.

n— oo = .
A24, Vi, Vu € L*(0,T'; L*(Q))

Step 2: Show that uu € L?(0,T; L?) = u is a weak Leray-Hopf
solution satisfying the energy equality on [0, T Ol

V.




Besov space notation by H. Amann (2002):

B/% () = BY/S(NLE(Q) = {v € BY/%() : dive = 0, N-v|og = 0}

q',s q',s o
Define

B_Q/S(Q) - (BQ’/S’(Q>)* - (Lg',‘/’D(Aq/))le—l/s’,s’ - (D(A ) Lq)l 1/s,s

q,;8 q,s

using real interpolation, duality =

- A
ol gy ~ 1A~ vl gy~ (I ol i) "

for bounded €2 and with §
= integrability of He_TAu()HZ, ug € L2(12), is crucial only near 0



Applications

Apply criteria using ]B%,;z/s(Q) along a given weak solution at all g

(or at almost all ty (?)) and identify the local strong solution
starting at to with the weak solution via Serrin’s Uniqueness
Theorem

= left-hand or right-hand local/global regularity and uniqueness,
see Sohr, Varnhorn, F. (Indiana Univ. Math. J. 2007, JMFM 2008,
2012, 2014, Ann. Univ. Ferrara 2009, 2014)
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Extension to Quasi-optimal Initial Values

D(AY*) ¢ L3(Q) C L¥"(Q) € By2/*(Q) = B, 1/4(Q)

q,5q

where 2 + 3 = 1.
Sq q

Jlo /21




Extension to Quasi-optimal Initial Values

D(A*) € L3(Q) € L37(Q) € Bya) ™ () = B, L3/

q,5q

where % + % = 1.
e _
For s, <'s < 0o we proceed with

B, 1"3/9(Q) c B, 1H3/9(Q) ¢ B L3/1(q)

q,5q

where%+2:1—2a,0<a<%.

(©2)
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Extension to Quasi-optimal Initial Values

D(AY*) ¢ L3(Q) C L¥"(Q) € By2/*(Q) = B, 1/4(Q)

q,5q

where % + % = 1.
e _
For s, <'s < 0o we proceed with

B, 1"3/9(Q) c B, 1H3/9(Q) ¢ B L3/1(q)

4,5q
where%+2:1—2a,0<a<%.

Here By s ™/9() = (D(Ag)*, L&), 414, and

T

AUO|

(o]
Juollg 1300 ~ e Hualzg o o= [ (e unly)"dr < o0
)8 0

1)
N/ (rlle~ugly)° dr < oo
0
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How far do the previous results hold when s, < s < 00?

We are looking for an L{ (L?)-strong solution u, i.e., uw is a
Leray-Hopf weak solution and

T
| oy dr < oc
0

Where2<s<oo,3<q<oo,0<a<%With%+%:1—2a

11/21



Main Theorem (Giga, Hsu, F. ('14))
Let ug € L2(Q2) and s,q, « be given.
(1) There exists an €, = €.(q, s, , Q) > 0: If

—TA
He 7 U’O’ L3,(0,T;L9) < €,

then (NSt) has a unique L (LY)-strong solution with data ug on
[0,T).

12 /21




Main Theorem (Giga, Hsu, F. ('14))
Let ug € L2(Q2) and s,q, « be given.
(1) There exists an €, = €.(q, s, , Q) > 0: If

lle™ ™ uo| < e,

L,(0,T;L9)

then (NSt) has a unique L (LY)-strong solution with data ug on
[0,T).

(2) The condition

o0
/ (7% |e"ug|lg)* dr < o0
0

is sufficient and necessary for the existence of a unique
L (L7)-strong solution u € L?(0,T; L) with data .

(3) The L (L%)-strong solution satisfies the energy equality on
0,T).

2 /21




Ideas of Proof |

(i) Construction of the L? (L4)-strong solution: Find & = u — E,
E(t) = e *uy, as fixed point % = F (@) of the operator

/A1/2 ~t=1AA2Pdiv ) (i+ E) @ (a+ E)) (1) dr.
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Ideas of Proof |
(i) Construction of the L? (L4)-strong solution: Find & = u — E,

E(t) = e "y, as fixed point % = F (i) of the operator
/A1/2 ~t=AA72 pdiv) (a4 E) @ (a+ E)) (1) dr.
Lemma: (Weighted Hardy-Littlewood-Sobolev inequality)

Let0<)\<1 a2<a1,1<31<32<oo——<aj<1 J,
j=1,2and - 51 (A+a1—a2)—1+5 Then

L) = /R (t— ) f(r) dr

defines a bounded operator 7, : L (R) — L3 (R).

13 /21



Ideas of Proof Il

Lemma: Vu € L?(0,7T; L?), hence v € L?(0,T; L)
Proof Weighted Hardy-Littlewood-Sobolev inequality =

HA%Jnu

< 2¢||ullps (pay IVE |90, < 0. [

2995
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Ideas of Proof Il
Lemma: Vu € L%(0,T;L?), hence u € L?(0,T; L°)
Proof Weighted Hardy-Littlewood-Sobolev inequality =

HA%Jnu

< 2CHUHL3(LQ) VE|g 0.7 < c0. [

2995

As a direct consequence of Holder's inequality and @ = F (@) (this
argument requires o > 0 (!))

la(@)ll2 < cllully o609 VullL2 )

= u € L>®(0,7T;L?) and ||i(t)||ls = 0ast— 0
= u(t) = ug in L?(Q) ast — 0

= wu is a weak solution with u(0) = ug

14 /21



Ideas of Proof IlI

Lemma: u € Li/(2+8a)(0,T; LA(Q)).
Proof With 8= ﬁ, Q1,81 -+ % + q% = % and an interpolation
inequality

T
4(1
| el dr <l o Il 2, < 0. O

i5 /21




Ideas of Proof IlI

Lemma: u € Li/(%w)(o,T; LA(Q)).
Proof With 8= ﬁ, Q1,81 -+ % + q% = % and an interpolation
inequality

T
a1
| el dr <l o Il 2, < 0. O
= u € L(e,T; L*()) = u®u € L%(e, T; L?) can be considered

as right-hand side of a Stokes system on (e,T")
= u satisfies the energy equality on (¢,7):

1 t 1
5Hu(t)H§ +/ IVull3 dr = 5Hu(€)H§
g

Since u(e) — ug in L*(Q) as ¢ — 0,

u satisfies the energy equality on [0, 7).
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Are L (L?)-strong solutions unique?

The proof of Serrin’s uniqueness theorem

does not work when o > 0!
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Are L (L?)-strong solutions unique?

The proof of Serrin’s uniqueness theorem
does not work when o > 0!

Uniqueness Theorem: Llet2 <s<o00,3<g<o00, 0<a< %

—143
with 2 4+ 3 =1 —2a and ug € L3 (Q) NBg,s ().

Then the unique L?(0,T; L7)-strong solution w is unique on [0,T)
in the class of all well-chosen weak solutions.
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Definition of well-chosen weak solutions |

Assumptions

143
(i) Let ug, — ug in L2(Q) and ug, — ug in Bq,;q(Q) as n — 00

(ii) Let (J,) C £(L&(R), D(Ay?)) such that
1
[Inllzezey + ||EA;/2Jn||L(Lg) < Cy and Jpu "2 in LL(Q)

Consider the approximate (NSt)

{ Oy, — Auy + (Jpuy) - Vuy + Vp, =0, divu, =0
un|BQ = 07 un(o) = UQn

7 /21




Definition of well-chosen weak solutions |

Assumptions

143
(i) Let ug, — ug in L2(Q) and ug, — ug in IBq,SJrq(Q) as n — 00

(ii) Let (J,) C £(L&(R), D(Ay?)) such that
1
[Inllzezey + ||EA(11/2Jn||L(Lg) < Cy and Jpu "2 in LL(Q)

Consider the approximate (NSt)

{ Oy, — Auy + (Jpuy) - Vuy + Vp, =0, divu, =0
un|BQ =0, un(o) = Uon
Example Yosida approximation J,, = (I+ %Al/z)_l, Uon = Jplo

Consequences 1! weak solution u, € LH:

7 /21

lunllpoo(z2) + llunllz2(any < Clluonllz < C < oo




Definition of well-chosen weak solutions |1

There exists (up,) C (up) and v € LH:
Up, — vin L2(HY), up, =vin L®(L?), u,, — vin L*(L?).
= Up, (to) — v(to) in L*(Q) for a.a. tg € (0,7).

= v is a weak solution of (NSt) with v(0) = ug

v
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Definition of well-chosen weak solutions |1

There exists (up,) C (up) and v € LH:

Up, — vin L2(HY), up, =vin L®(L?), u,, — vin L*(L?).
= Up, (to) — v(to) in L*(Q) for a.a. tg € (0,7).
= v is a weak solution of (NSt) with v(0) = ug

Definition The solution v constructed as above is called a
well-chosen weak solution of (NSt) with v(0) = uyg.

Remark By the uniqueness theorem (to be proved) the
well-chosen weak solution v with v(0) = ug is unique;

= v does not depend on the choice of ugy, — 1y and the choice of
(weakly) convergent subsequences!

v
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Proof of uniqueness theorem for well-chosen weak solutions |

(i) Construction of a local strong L£ (L?)-solution ' on [0,T”):

J e, > 0, and since ug, — ug in IB%;;H/(I(Q), we find 0 < T" < T

T’
/ (7 le™ ™ ugnlly)’ dr < &x
0

= the approximate (NSt) has a unique solution
un € LE(0,T"; L) with bound

lunllLs (0,r7;09) < Cex Vn

= 3 subsequence (uy,, ) of (un,): u,, — u"in L5 (0,7"; L9)
= u' = v is a strong L?,(L%)-solution on [0,7") with u/(0) = wo.




Proof of uniqueness theorem for well-chosen weak solutions |l

Up to now we got 3 solutions:
we L3(0,T;L9), o €L:(0,T;L7), wveLHr

Uniqueness in L5(0,7"; LY) = u=u' = v on (0,7")

= up, =~ u =win L5(0,T'; LY) (whole sequence (uy,)),
U, = v =uin LHr
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Proof of uniqueness theorem for well-chosen weak solutions |l

Up to now we got 3 solutions:
we L3(0,T;L9), o €L:(0,T;L7), wveLHr

Uniqueness in L5(0,7"; LY) = u=u' = v on (0,7")

= up, =~ u =wuin L5(0,T'; L9) (whole sequence (uy)),
U, = v =uin LHr

= v satisfies (EE) on [0,7"] and, of course, (SEI) on [0,T")
= v satisfies (El) on [T”,T'). Serrin’s Uniqueness Theorem =

u=v on [T',T)
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The limit s = 0o

1+3/q(Q) too large? For Q = (0,27)3

Is the space B, ber

Juge [ Ba¥uQ)nLi()

1<g<oo
such that each Leray-Hopf weak solution u with u(0) = ug satisfies
lu(t) — ol 15570 > 3> 0
with ¢ independent of u, although
lu(t) —vollp2() = 0 ast—0,

cf. Cheskidov-Shvydkoy, Proc. AMS 2010
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The limit s = 0o

1+3/q(Q) too large? For Q = (0,27)3

Is the space B, .

Juge [ Ba¥uQ)nLi()

1<qg<

such that each Leray-Hopf weak solution u with u(0) = ug satisfies
lu(t) — ol 15570 > 3> 0
with ¢ independent of u, although
lu(t) —vollp2() = 0 ast—0,

cf. Cheskidov-Shvydkoy, Proc. AMS 2010

What about By ad/4(Q)° := (D(A,)', L4(Q))°

l—a,00"
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