Quasi-optimal initial value conditions for the Navier-Stokes equations

11th Japanese-German International Workshop
on Mathematical Fluid Dynamics,

Waseda University, Tokyo, March 10-13, 2015

Reinhard Farwig, TU Darmstadt Yoshikazu Giga, Tokyo University Pen Yuan Hsu, Tokyo Institute of Technology

Navier-Stokes Equations (NSt)

$$\begin{array}{rcl} u_t - \Delta u + u \cdot \nabla u + \nabla p & = & f & \text{ in } \Omega \times (0,T) \\ & \text{div } u & = & 0 & \text{ in } \Omega \times (0,T) \\ & u & = & 0 & \text{ on } \partial \Omega \times (0,T) \\ & u(0) & = & u_0 & \text{ at } t = 0 \end{array}$$

where $\Omega\subset\mathbb{R}^3$ bounded (or exterior domain), $\partial\Omega\in C^{1,1},$ $0< T\leq \infty, \ \nu=1$

Theorem (Existence of Weak Leray-Hopf Solutions)

Let $u_0 \in L^2_{\sigma}(\Omega)$ and $f = \operatorname{div} F$ with $F \in L^2(0,T;L^2)$ be given.

Then there exists at least one weak Leray-Hopf solution

$$u \in \mathcal{LH}_T = L^{\infty}(0, T; L^2_{\sigma}(\Omega)) \cap L^2(0, T; H^1_{0,\sigma}(\Omega))$$

of (NSt) in the sense of distributions. Moreover,

$$u\in C^0_w([0,T);L^2_\sigma(\Omega))$$
, i.e., u is weakly continuous in $L^2_\sigma(\Omega)$,

and u satisfies the strong energy inequality (SEI), i.e.,

$$\frac{1}{2}\|u(t)\|_{2}^{2} + \int_{t_{0}}^{t} \|\nabla u\|_{2}^{2} d\tau \le \frac{1}{2}\|u(t_{0})\|_{2}^{2} + \int_{t_{0}}^{t} \langle f, u \rangle d\tau$$

for a.a. $0 \le t_0 \le T$ (including $t_0 = 0$) and all $t \in (t_0, T)$.

Theorem (Existence of Weak Leray-Hopf Solutions)

Let $u_0 \in L^2_{\sigma}(\Omega)$ and $f = \operatorname{div} F$ with $F \in L^2(0,T;L^2)$ be given.

Then there exists at least one weak Leray-Hopf solution

$$u \in \mathcal{LH}_T = L^{\infty}(0, T; L^2_{\sigma}(\Omega)) \cap L^2(0, T; H^1_{0,\sigma}(\Omega))$$

of (NSt) in the sense of distributions. Moreover,

$$u\in C^0_w([0,T);L^2_\sigma(\Omega))$$
 , i.e., u is weakly continuous in $L^2_\sigma(\Omega)$,

and u satisfies the strong energy inequality (SEI), i.e.,

$$\frac{1}{2}\|u(t)\|_{2}^{2} + \int_{t_{0}}^{t} \|\nabla u\|_{2}^{2} d\tau \le \frac{1}{2}\|u(t_{0})\|_{2}^{2} + \int_{t_{0}}^{t} \langle f, u \rangle d\tau$$

for a.a. $0 \le t_0 \le T$ (including $t_0 = 0$) and all $t \in (t_0, T)$.

Note A weak solution satisfies

$$u\in L^s(0,T;L^q_\sigma(\Omega))$$
 for all $s\geq 2,\, q\geq 2:rac{2}{s}+rac{3}{q}=rac{3}{2}$

Strong Solutions

Definition A weak solution $u \in \mathcal{LH}_T$ is called a *strong solution* if additionally

$$u\in L^s(0,T;L^q_\sigma(\Omega)) \quad \text{for some} \quad s>2, \ q>3: \frac{2}{s}+\frac{3}{q}=1$$

Theorem (Uniqueness) Let u be a strong solution of (NSt). Then u is unique among all weak solutions satisfying (EI) (only $t_0=0$ is required).

Theorem (Regularity) Let u be a strong solution of (NSt) and $f \in C_0^\infty(\overline{\Omega} \times (0,T))$, $\partial \Omega \in C^\infty$. Then $u \in C^\infty(\overline{\Omega} \times (0,T))$.

Initial Values – Optimal Condition (Sohr, Varnhorn, F. ('09))

Let $\Omega \subset \mathbb{R}^3$ bounded with $\partial \Omega \in C^{1,1}$ and $u_0 \in L^2_{\sigma}(\Omega)$, let $2 < s, \ 3 < q$ and $\frac{2}{s} + \frac{3}{q} = 1$.

The condition

$$\int_0^\infty \|e^{-\tau A_2} u_0\|_q^s \, d\tau < \infty$$

is *necessary and sufficient* for the existence of a unique strong solution $u \in L^s(0,T;L^q)$, $0 < T < \infty$, of (NSt).

Initial Values – Optimal Condition (Sohr, Varnhorn, F. ('09))

Let $\Omega \subset \mathbb{R}^3$ bounded with $\partial \Omega \in C^{1,1}$ and $u_0 \in L^2_{\sigma}(\Omega)$, let $2 < s, \ 3 < q$ and $\frac{2}{s} + \frac{3}{q} = 1$.

The condition

$$\int_0^\infty \|e^{-\tau A_2} u_0\|_q^s \, d\tau < \infty$$

is *necessary and sufficient* for the existence of a unique strong solution $u \in L^s(0,T;L^q)$, $0 < T < \infty$, of (NSt).

$$\int_0^T \|e^{-\tau A_2} u_0\|_q^s d\tau \le \varepsilon_*$$

then there exists a unique strong solution u on [0,T) with $u(0)=u_0$.

Initial Values – Optimal Condition (Sohr, Varnhorn, F. ('09))

Let $\Omega \subset \mathbb{R}^3$ bounded with $\partial \Omega \in C^{1,1}$ and $u_0 \in L^2_{\sigma}(\Omega)$, let $2 < s, \ 3 < q$ and $\frac{2}{s} + \frac{3}{q} = 1$.

The condition

$$\int_0^\infty \|e^{-\tau A_2} u_0\|_q^s d\tau < \infty$$

is necessary and sufficient for the existence of a unique strong solution $u \in L^s(0,T;L^q)$, $0 < T < \infty$, of (NSt).

 $\exists \varepsilon_* = \varepsilon_*(\Omega, q) > 0: \mathsf{If}$

$$\int_0^T \|e^{-\tau A_2} u_0\|_q^s d\tau \le \varepsilon_*$$

then there exists a unique strong solution u on [0,T) with $u(0)=u_0$.

Exterior domain: Komo-Fa., Analysis 33 (2013) General domain: L^2 -theory (Sohr, Varnhorn, Fa. (2009)) or \tilde{L}^q -spaces $\tilde{L}^q = L^q \cap /+ L^2$ (Riechwald, PhD, Darmstadt 2011)

Ideas of Proof I

(i) A weak solution u has the representation

$$u(t)=E(t)-\int_0^t A^{1/2}e^{-(t- au)A}(A^{-1/2}P{\sf div}\,)(u\otimes u)(au)\,d au$$

where $E(t)=e^{-tA}u_0$ and the formal operator $A^{-1/2}P{\rm div}$ is bounded on each $L^q(\Omega),\ 1< q<\infty$

Ideas of Proof I

(i) A weak solution u has the representation

$$u(t) = E(t) - \int_0^t A^{1/2} e^{-(t-\tau)A} (A^{-1/2} P \mathsf{div}) (u \otimes u)(\tau) \, d\tau$$

where $E(t)=e^{-tA}u_0$ and the formal operator $A^{-1/2}P{\rm div}$ is bounded on each $L^q(\Omega)$, $1< q<\infty$

(ii) The operator \mathcal{F} for $\tilde{u} = u - E$,

$$\mathcal{F}(\tilde{u})(t) = -\int_0^t A^{1/2} e^{-(t-\tau)A} (A^{-1/2} P \mathrm{div}\,) (\tilde{u} + E) \otimes (\tilde{u} + E))(\tau) \, d\tau,$$

defines a strict contraction in a closed ball of $L^s(0,T';L^q(\Omega))$ for sufficiently small $0 < T' < \infty$ (need ε_* and T' small)

Ideas of Proof II

(iii) Show that $\tilde{u}=\mathcal{F}(\tilde{u})$ defines a weak solution $u=\tilde{u}+E$ of (NSt) in $\mathcal{LH}_{T'}$ with initial value u_0

Step 1: Show that $\nabla \tilde{u} \in L^2(0,T;L^2(\Omega))$:

Use Yosida approximation operators to get for $\tilde{u}_n = J_n \tilde{u}$ that

$$\left\|A^{\frac{1}{2}}\tilde{u}_{n}\right\|_{2,2;T} \leq c \left\|u\right\|_{q,s;T} \left(\left\|A^{\frac{1}{2}}\tilde{u}_{n}\right\|_{2,2;T} + \left\|\nabla E\right\|_{2,2;T}\right)$$

Choose T small for absorption \Rightarrow uniformly in $n \in \mathbb{N}$

$$\left\|A^{\frac{1}{2}}\tilde{u}_{n}\right\|_{2,2:T} \le 2c \left\|u\right\|_{q,s;T} \left\|\nabla E\right\|_{2,2;T} < \infty.$$

$$n \to \infty \Rightarrow$$

$$A^{\frac{1}{2}}\tilde{u}, \nabla \tilde{u}, \nabla u \in L^2(0, T'; L^2(\Omega))$$

Ideas of Proof II

(iii) Show that $\tilde{u} = \mathcal{F}(\tilde{u})$ defines a weak solution $u = \tilde{u} + E$ of (NSt) in $\mathcal{LH}_{T'}$ with initial value u_0

Step 1: Show that $\nabla \tilde{u} \in L^2(0,T;L^2(\Omega))$:

Use Yosida approximation operators to get for $\tilde{u}_n = J_n \tilde{u}$ that

$$\left\|A^{\frac{1}{2}}\tilde{u}_{n}\right\|_{2,2;T} \leq c\left\|u\right\|_{q,s;T}\left(\left\|A^{\frac{1}{2}}\tilde{u}_{n}\right\|_{2,2;T} + \left\|\nabla E\right\|_{2,2;T}\right)$$

Choose T small for absorption \Rightarrow uniformly in $n \in \mathbb{N}$

$$\left\|A^{\frac{1}{2}}\tilde{u}_{n}\right\|_{2,2:T} \leq 2c \left\|u\right\|_{q,s;T} \left\|\nabla E\right\|_{2,2;T} < \infty.$$

$$n \to \infty \Rightarrow$$

$$A^{\frac{1}{2}}\tilde{u},\nabla\tilde{u},\nabla u\in L^2(0,T';L^2(\Omega))$$

Step 2: Show that $uu \in L^2(0,T;L^2) \Rightarrow u$ is a weak Leray-Hopf solution satisfying the energy equality on [0, T]

Besov space notation by H. Amann (2002):

$$\mathbb{B}_{q',s'}^{2/s}(\Omega) = B_{q',s'}^{2/s}(\Omega) \cap L_{\sigma}^{q'}(\Omega) = \{ v \in B_{q',s'}^{2/s}(\Omega) : \operatorname{div} v = 0, N \cdot v |_{\partial\Omega} = 0 \}$$

Define

$$\mathbb{B}_{q,s}^{-2/s}(\Omega) = \left(\mathbb{B}_{q',s'}^{2/s}(\Omega)\right)^* = \left(L_{\sigma}^{q'}, \mathcal{D}(A_{q'})\right)_{1-1/s',s'}^* = \left(\mathcal{D}(A_{q'})^*, L_{\sigma}^{q}\right)_{1-1/s,s}$$

using real interpolation, duality \Rightarrow

$$||u_0||_{\mathbb{B}_{q,s}^{-2/s}(\Omega)} \sim ||A^{-1}u_0||_{(L_{\sigma}^q(\Omega),\mathcal{D}(A_q))_{1-1/s,s}} \sim \left(\int_0^{\delta} ||e^{-\tau A}u_0||_q^s d\tau\right)^{1/s}$$

for bounded Ω and with δ

 \Rightarrow integrability of $||e^{-\tau A}u_0||_{q}^{s}$, $u_0 \in L^2_{\sigma}(\Omega)$, is crucial only near 0

Applications

Apply criteria using $\mathbb{B}_{q,s}^{-2/s}(\Omega)$ along a given weak solution at all t_0 (or at almost all t_0 (?)) and identify the local strong solution starting at t_0 with the weak solution via Serrin's Uniqueness Theorem

⇒ left-hand or right-hand local/global regularity and uniqueness, see Sohr, Varnhorn, F. (Indiana Univ. Math. J. 2007, JMFM 2008, 2012, 2014, Ann. Univ. Ferrara 2009, 2014)

Extension to Quasi-optimal Initial Values

$$\mathcal{D}(A_2^{1/4}) \subset L^3_\sigma(\Omega) \subset L^{3,r}_\sigma(\Omega) \subset \mathbb{B}_{q,s_q}^{-2/s_q}(\Omega) = \mathbb{B}_{q,s_q}^{-1+3/q}(\Omega)$$

where
$$\frac{2}{s_q} + \frac{3}{q} = 1$$
.

Extension to Quasi-optimal Initial Values

$$\mathcal{D}(A_2^{1/4}) \subset L^3_{\sigma}(\Omega) \subset L^{3,r}_{\sigma}(\Omega) \subset \mathbb{B}_{q,s_q}^{-2/s_q}(\Omega) = \mathbb{B}_{q,s_q}^{-1+3/q}(\Omega)$$

where $\frac{2}{s_{a}} + \frac{3}{a} = 1$.

For $s_q < s < \infty$ we proceed with

$$\mathbb{B}_{q,s_q}^{-1+3/q}(\Omega)\subset\mathbb{B}_{q,s}^{-1+3/q}(\Omega)\subset\mathbb{B}_{q,\infty}^{-1+3/q}(\Omega)$$

where
$$\frac{2}{s} + \frac{3}{q} = 1 - 2\alpha$$
, $0 < \alpha < \frac{1}{2}$.

Extension to Quasi-optimal Initial Values

$$\mathcal{D}(A_2^{1/4}) \subset L^3_{\sigma}(\Omega) \subset L^{3,r}_{\sigma}(\Omega) \subset \mathbb{B}_{q,s_q}^{-2/s_q}(\Omega) = \mathbb{B}_{q,s_q}^{-1+3/q}(\Omega)$$

where $\frac{2}{8a} + \frac{3}{a} = 1$.

For $s_q < s < \infty$ we proceed with

$$\mathbb{B}_{q,s_q}^{-1+3/q}(\Omega)\subset\mathbb{B}_{q,s}^{-1+3/q}(\Omega)\subset\mathbb{B}_{q,\infty}^{-1+3/q}(\Omega)$$

where
$$\frac{2}{s} + \frac{3}{q} = 1 - 2\alpha$$
, $0 < \alpha < \frac{1}{2}$.

Here $\mathbb{B}_{q,s}^{-1+3/q}(\Omega)=\left(\mathcal{D}(A_{q'})^*,L^q_\sigma(\Omega)
ight)_{1-lpha-1/s,s}$ and

$$||u_0||_{\mathbb{B}_{q,s}^{-1+3/q}} \sim ||e^{-\tau A}u_0||_{\mathbf{L}_{\alpha}^{s}(\mathbf{L}^q)} := \int_0^{\infty} \left(\tau^{\alpha} ||e^{-\tau A}u_0||_q\right)^s d\tau < \infty$$

$$\sim \int_0^\delta \left(\boldsymbol{\tau}^{\boldsymbol{\alpha}} \| e^{-\tau A} u_0 \|_q \right)^s d\tau < \infty$$

How far do the previous results hold when $s_q < s < \infty$?

We are looking for an $L^s_{\alpha}(L^q)$ -strong solution u, i.e., u is a Leray-Hopf weak solution and

$$\int_0^T (\boldsymbol{\tau}^{\boldsymbol{\alpha}} \| u(\tau) \|_q)^s \, d\tau < \infty$$

where
$$2 < s < \infty$$
, $3 < q < \infty$, $0 < \alpha < \frac{1}{2}$ with $\frac{2}{s} + \frac{3}{q} = 1 - 2\alpha$

Main Theorem (Giga, Hsu, F. ('14))

Let $u_0 \in L^2_{\sigma}(\Omega)$ and s, q, α be given.

(1) There exists an $\epsilon_* = \epsilon_*(q, s, \alpha, \Omega) > 0$: If

$$||e^{-\tau A}u_0||_{L^s_{\alpha}(0,T;L^q)} \le \epsilon_*,$$

then (NSt) has a unique $L^s_{\alpha}(L^q)$ -strong solution with data u_0 on [0,T).

Main Theorem (Giga, Hsu, F. ('14))

Let $u_0 \in L^2_{\sigma}(\Omega)$ and s, q, α be given.

(1) There exists an $\epsilon_* = \epsilon_*(q,s,\alpha,\Omega) > 0$: If

$$||e^{-\tau A}u_0||_{L^s_{\alpha}(0,T;L^q)} \leq \epsilon_*,$$

then (NSt) has a unique $L^s_{\alpha}(L^q)$ -strong solution with data u_0 on [0,T).

(2) The condition

$$\int_0^\infty (\boldsymbol{\tau}^{\boldsymbol{\alpha}} \| e^{-\tau A} u_0 \|_q)^s \, d\tau < \infty$$

is sufficient and necessary for the existence of a unique $L^s_{\alpha}(L^q)$ -strong solution $u \in L^s_{\alpha}(0,T;L^q)$ with data u_0 .

(3) The $L^s_{\alpha}(L^q)$ -strong solution satisfies the energy equality on [0,T).

Ideas of Proof I

(i) Construction of the $L^s_{\alpha}(L^q)$ -strong solution: Find $\tilde{u}=u-E$, $E(t)=e^{-tA}u_0$, as fixed point $\tilde{u}=\mathcal{F}(\tilde{u})$ of the operator

$$\mathcal{F}(\tilde{u})(t) = -\int_0^t A^{1/2} e^{-(t-\tau)A} (A^{-1/2} P \operatorname{div})(\tilde{u} + E) \otimes (\tilde{u} + E))(\tau) \, d\tau.$$

Ideas of Proof I

(i) Construction of the $L^s_{\alpha}(L^q)$ -strong solution: Find $\tilde{u}=u-E$, $E(t)=e^{-tA}u_0$, as fixed point $\tilde{u}=\mathcal{F}(\tilde{u})$ of the operator

$$\mathcal{F}(\tilde{u})(t) = -\int_0^t \!\! A^{1/2} e^{-(t-\tau)A} (A^{-1/2} P \mathrm{div}\,) (\tilde{u} + E) \otimes (\tilde{u} + E))(\tau) \, d\tau.$$

Lemma: (Weighted Hardy-Littlewood-Sobolev inequality)

Let $0 < \lambda < 1$, $\alpha_2 \le \alpha_1$, $1 < s_1 \le s_2 < \infty$, $-\frac{1}{s_j} < \alpha_j < 1 - \frac{1}{s_j}$, j = 1, 2 and $\frac{1}{s_1} + (\lambda + \alpha_1 - \alpha_2) = 1 + \frac{1}{s_2}$. Then

$$I_{\lambda}f(t) = \int_{\mathbb{D}} (t - \tau)^{-\lambda} f(\tau) d\tau$$

defines a bounded operator $I_{\lambda}: L^{s_1}_{\alpha_1}(\mathbb{R}) \to L^{s_2}_{\alpha_2}(\mathbb{R})$.

Ideas of Proof II

Lemma: $\nabla u \in L^2(0,T;L^2)$, hence $u \in L^2(0,T;L^6)$

Proof Weighted Hardy-Littlewood-Sobolev inequality ⇒

$$\left\|A^{\frac{1}{2}}J_n u\right\|_{2,2,;T} \le 2c \left\|u\right\|_{L^s_{\alpha}(L^q)} \left\|\nabla E\right\|_{2,2;T} < \infty.$$

Ideas of Proof II

Lemma: $\nabla u \in L^2(0,T;L^2)$, hence $u \in L^2(0,T;L^6)$

Proof Weighted Hardy-Littlewood-Sobolev inequality ⇒

$$\left\| A^{\frac{1}{2}} J_n u \right\|_{2,2:T} \le 2c \left\| u \right\|_{L^s_{\alpha}(L^q)} \|\nabla E\|_{2,2;T} < \infty.$$

As a direct consequence of Hölder's inequality and $\tilde{u}=\mathcal{F}(\tilde{u})$ (this argument requires $\alpha>0\,(!)\big)$

$$\|\tilde{u}(t)\|_{2} \le c\|u\|_{L_{\alpha}^{s}(0,t;L^{q})}\|\nabla u\|_{L^{2}(L^{2})}$$

$$\Rightarrow u \in L^{\infty}(0,T;L^2)$$
 and $\|\tilde{u}(t)\|_2 \to 0$ as $t \to 0$

$$\Rightarrow$$
 $u(t) \to u_0 \text{ in } L^2(\Omega) \text{ as } t \to 0$

$$\Rightarrow u$$
 is a weak solution with $u(0) = u_0$

Ideas of Proof III

Lemma: $u \in L^4_{\alpha/(2+8\alpha)}(0,T;L^4(\Omega)).$

Proof With $\beta=\frac{1}{2+8\alpha}$, $q_1,s_1\ldots$, $\frac{2}{s_1}+\frac{3}{q_1}=\frac{3}{2}$, and an interpolation inequality

$$\int_{0}^{T} \tau^{4\alpha\beta} \|u\|_{4}^{4} d\tau \leq \|u\|_{L_{\alpha}^{s}(L^{q})}^{4\beta} \|u\|_{L^{s_{1}}(L^{q_{1}})}^{4(1-\beta)} < \infty. \quad \Box$$

Ideas of Proof III

Lemma: $u \in L^4_{\alpha/(2+8\alpha)}(0,T;L^4(\Omega)).$

Proof With $\beta=\frac{1}{2+8\alpha}$, $q_1,s_1\ldots$, $\frac{2}{s_1}+\frac{3}{q_1}=\frac{3}{2}$, and an interpolation inequality

$$\int_{0}^{T} \tau^{4\alpha\beta} \|u\|_{4}^{4} d\tau \leq \|u\|_{L_{\alpha}^{s}(L^{q})}^{4\beta} \|u\|_{L^{s_{1}}(L^{q_{1}})}^{4(1-\beta)} < \infty. \quad \Box$$

 $\Rightarrow u \in L^4(\varepsilon, T; L^4(\Omega)) \Rightarrow u \otimes u \in L^2(\varepsilon, T; L^2)$ can be considered as right-hand side of a Stokes system on (ε, T) $\Rightarrow u$ satisfies the energy equality on (ε, T) :

$$\frac{1}{2}\|u(t)\|_{2}^{2} + \int_{\varepsilon}^{t} \|\nabla u\|_{2}^{2} d\tau = \frac{1}{2}\|u(\varepsilon)\|_{2}^{2}$$

Since $u(\varepsilon) \to u_0$ in $L^2(\Omega)$ as $\varepsilon \to 0$,

u satisfies the energy equality on [0,T).

Are $L^s_{\alpha}(L^q)$ -strong solutions unique?

The proof of Serrin's uniqueness theorem does not work when $\alpha > 0$!

Are $L^s_{\alpha}(L^q)$ -strong solutions unique?

The proof of Serrin's uniqueness theorem

does not work when $\alpha > 0!$

Uniqueness Theorem: Let $2 < s < \infty$, $3 < q < \infty$, $0 < \alpha < \frac{1}{2}$

with $\frac{2}{s}+\frac{3}{q}=1-2\alpha$ and $u_0\in L^2_\sigma(\Omega)\cap \mathbb{B}^{-1+\frac{3}{q}}_{q,s}(\Omega).$

Then the unique $L^s_{\alpha}(0,T;L^q)$ -strong solution u is unique on [0,T) in the class of all well-chosen weak solutions.

16 / 21

Definition of well-chosen weak solutions I

Assumptions

- (i) Let $u_{0n} \rightharpoonup u_0$ in $L^2_\sigma(\Omega)$ and $u_{0n} \to u_0$ in $\mathbb{B}_{q,s}^{-1+\frac{3}{q}}(\Omega)$ as $n \to \infty$
- (ii) Let $(J_n)\subset \mathcal{L}ig(L^q_\sigma(\Omega),D(A_q^{1/2})ig)$ such that

$$||J_n||_{\mathcal{L}(L^q_\sigma)} + ||\frac{1}{n}A_q^{1/2}J_n||_{\mathcal{L}(L^q_\sigma)} \le C_q \text{ and } J_nu \stackrel{n \to \infty}{\to} u \text{ in } L^q_\sigma(\Omega)$$

Consider the approximate (NSt)

$$\begin{cases} \partial_t u_n - \Delta u_n + (\underline{J_n u_n}) \cdot \nabla u_n + \nabla p_n = 0, & \text{div } u_n = 0 \\ u_n|_{\partial\Omega} = 0, & u_n(0) = u_{0n} \end{cases}$$

Definition of well-chosen weak solutions I

Assumptions

(i) Let $u_{0n} \rightharpoonup u_0$ in $L^2_\sigma(\Omega)$ and $u_{0n} \to u_0$ in $\mathbb{B}_{q,s}^{-1+\frac{3}{q}}(\Omega)$ as $n \to \infty$

(ii) Let $(J_n)\subset \mathcal{L}ig(L^q_\sigma(\Omega),D(A_q^{1/2})ig)$ such that

$$||J_n||_{\mathcal{L}(L^q_\sigma)} + ||\frac{1}{n}A_q^{1/2}J_n||_{\mathcal{L}(L^q_\sigma)} \le C_q \text{ and } J_nu \overset{n\to\infty}{\to} u \text{ in } L^q_\sigma(\Omega)$$

Consider the approximate (NSt)

$$\begin{cases} \partial_t u_n - \Delta u_n + (J_n u_n) \cdot \nabla u_n + \nabla p_n = 0, & \text{div } u_n = 0 \\ u_n|_{\partial\Omega} = 0, & u_n(0) = u_{0n} \end{cases}$$

Example Yosida approximation $J_n = \left(I + \frac{1}{n}A^{1/2}\right)^{-1}$, $u_{0n} = J_n u_0$

Consequences \exists ! weak solution $u_n \in \mathcal{LH}_{\infty}$:

$$||u_n||_{L^{\infty}(L^2)} + ||u_n||_{L^2(H^1)} \le C||u_{0n}||_2 \le C < \infty$$

Definition of well-chosen weak solutions II

There exists $(u_{n_k}) \subset (u_n)$ and $v \in \mathcal{LH}_{\infty}$:

$$u_{n_k} \rightharpoonup v \text{ in } L^2(H_0^1), \ u_{n_k} \stackrel{*}{\rightharpoonup} v \text{ in } L^{\infty}(L^2), \ u_{n_k} \to v \text{ in } L^2(L^2).$$

$$\Rightarrow u_{n_k}(t_0) \to v(t_0)$$
 in $L^2(\Omega)$ for a.a. $t_0 \in (0,T)$.

$$\Rightarrow v$$
 is a weak solution of (NSt) with $v(0) = u_0$

Definition of well-chosen weak solutions II

There exists $(u_{n_k}) \subset (u_n)$ and $v \in \mathcal{LH}_{\infty}$:

$$\begin{split} u_{n_k} &\rightharpoonup v \text{ in } L^2(H_0^1), \quad u_{n_k} \stackrel{*}{\rightharpoonup} v \text{ in } L^\infty(L^2), \quad u_{n_k} \to v \text{ in } L^2(L^2). \\ &\Rightarrow u_{n_k}(t_0) \to v(t_0) \text{ in } L^2(\Omega) \text{ for a.a. } t_0 \in (0,T). \end{split}$$

 $\Rightarrow v$ is a weak solution of (NSt) with $v(0) = u_0$

Definition The solution v constructed as above is called a well-chosen weak solution of (NSt) with $v(0) = u_0$.

Remark By the uniqueness theorem (to be proved) the well-chosen weak solution v with $v(0)=u_0$ is unique; $\Rightarrow v$ does *not* depend on the choice of $u_{0n} \to u_0$ and the choice of (weakly) convergent subsequences!

Proof of uniqueness theorem for well-chosen weak solutions I

(i) Construction of a local strong $L^s_{\alpha}(L^q)$ -solution u' on [0,T'):

$$\exists \ \varepsilon_* > 0$$
, and since $u_{0n} \to u_0$ in $\mathbb{B}_{q,s}^{-1+3/q}(\Omega)$, we find $0 < T' \le T$:

$$\int_0^{T'} \left(\tau^{\alpha} \| e^{-\tau A} u_{0n} \|_q \right)^s d\tau < \varepsilon_*$$

 \Rightarrow the approximate (NSt) has a unique solution $u_n \in L^s_\alpha(0,T';L^q)$ with bound

$$||u_n||_{L^s_{\alpha}(0,T';L^q)} \le C\varepsilon_* \quad \forall n$$

- $\Rightarrow \exists$ subsequence (u'_{n_k}) of (u_{n_k}) : $u'_{n_k} \rightharpoonup u'$ in $L^s_{\alpha}(0,T';L^q)$
- $\Rightarrow u' = v$ is a strong $L^s_{\alpha}(L^q)$ -solution on [0,T') with $u'(0) = u_0$.

Proof of uniqueness theorem for well-chosen weak solutions II

Up to now we got 3 solutions:

$$u \in L^s_{\alpha}(0,T;L^q), \quad u' \in L^s_{\alpha}(0,T';L^q), \quad v \in \mathcal{LH}_T$$

Uniqueness in $L^s_{\alpha}(0,T';L^q) \Rightarrow \mathbf{u} = \mathbf{u}' = \mathbf{v} \text{ on } (0,T')$

$$\Rightarrow u_n \rightharpoonup u' = u$$
 in $L^s_{\alpha}(0, T'; L^q)$ (whole sequence (u_n)), $u_n \rightharpoonup v = u$ in \mathcal{LH}_T

Proof of uniqueness theorem for well-chosen weak solutions II

Up to now we got 3 solutions:

$$u \in L^s_{\alpha}(0,T;L^q), \quad u' \in L^s_{\alpha}(0,T';L^q), \quad v \in \mathcal{LH}_T$$

Uniqueness in
$$L^s_{\alpha}(0,T';L^q) \Rightarrow u = u' = v \text{ on } (0,T')$$

$$\Rightarrow u_n \rightharpoonup u' = u \text{ in } L^s_{\alpha}(0, T'; L^q) \text{ (whole sequence } (u_n)\text{),}$$

 $u_n \rightharpoonup v = u \text{ in } \mathcal{LH}_T$

$$\Rightarrow v$$
 satisfies (EE) on $[0,T']$ and, of course, (SEI) on $[0,T)$

$$\Rightarrow v$$
 satisfies (EI) on $[T',T)$. Serrin's Uniqueness Theorem \Rightarrow

$$u = v$$
 on $[T', T)$

The limit $s=\infty$

Is the space $B_{q,\infty}^{-1+3/q}(\Omega)$ too large? For $\Omega=(0,2\pi)_{\rm per}^3$

$$\exists u_0 \in \bigcap_{1 < q < \infty} B_{q,\infty}^{-1+3/q}(\Omega) \cap L_{\sigma}^2(\Omega)$$

such that each Leray-Hopf weak solution \boldsymbol{u} with $\boldsymbol{u}(0)=\boldsymbol{u}_0$ satisfies

$$||u(t) - u_0||_{B_{q,\infty}^{-1+3/q}} \ge \delta > 0$$

with δ independent of u, although

$$||u(t) - u_0||_{L^2(\Omega)} \to 0 \text{ as } t \to 0,$$

cf. Cheskidov-Shvydkoy, Proc. AMS 2010

The limit $s=\infty$

Is the space $B_{q,\infty}^{-1+3/q}(\Omega)$ too large? For $\Omega=(0,2\pi)_{\rm per}^3$

$$\exists u_0 \in \bigcap_{1 \le q \le \infty} B_{q,\infty}^{-1+3/q}(\Omega) \cap L_{\sigma}^2(\Omega)$$

such that each Leray-Hopf weak solution u with $u(0)=u_0$ satisfies

$$||u(t) - u_0||_{B_{q,\infty}^{-1+3/q}} \ge \delta > 0$$

with δ independent of u, although

$$||u(t) - u_0||_{L^2(\Omega)} \to 0 \text{ as } t \to 0,$$

cf. Cheskidov-Shvydkoy, Proc. AMS 2010

What about
$$B_{q,\infty}^{-1+3/q}(\Omega)^{\mathrm{o}} := (\mathcal{D}(A_{q'})', L_{\sigma}^{q}(\Omega))_{1-\alpha,\infty}^{\mathrm{o}}$$
?