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3D Navier-Stokes equations (NSE) – describing a flow of 3D incompressible viscous
fluid – read

ut + (u · ∇)u = −∇p+ ν4u,

supplemented with the incompressibility condition divu = 0, where u is the velocity of
the fluid, p is the pressure, and ν is the viscosity

taking the curl yields the vorticity formulation,

ωt + (u · ∇)ω = (ω · ∇)u+ ν4ω,

where ω = curlu is the vorticity of the fluid
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ω = curlu → 4u = − curlω

u(x) = c

∫
∇

1

|x− y|
× ω(y) dy

∂

∂xi
uj(x) = c P.V.

∫
εjkl

∂2

∂xi∂yk

1

|x− y|
ωl(y) dy
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vortex-stretching has been viewed as the principal physical mechanism responsible for
the vigorous creation of small scales in turbulent flows

this goes back to G.I. Taylor:

Production and dissipation of vorticity in a turbulent fluid, Proc. Roy. Soc., A164
(1937), 15–23

the production part is relatively well-understood; amplification of the vorticity via the
process of vortex stretching is essentially a consequence of the conservation of the
angular momentum in the incompressible flows..

Taylor vs. v. Karman 〈V ST 〉 > 0 vs. 〈V ST 〉 = 0

perhaps this is scale-dependent [?]
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the precise physics and mathematics behind the vortex stretching-induced dissipation
is much less transparent..

for his part, Taylor – based primarily on the wind tunnel measurements of turbulent
flow past a (uniform) grid – concluded the following:

“It seems that the stretching of vortex filaments must be regarded as the principal
mechanical cause of the high rate of dissipation which is associated with turbulent
motion.”

−→ locally anisotropic dissipation
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there is strong numerical evidence that the regions of intense vorticity organize in
coherent vortex structures, and in particular, in elongated vortex filaments, cf.

[Siggia, 1981; Ashurst, Kerstein, Kerr and Gibson, 1987; She, Jackson and Orszag,
1991; Jimenez, Wray, Saffman and Rogallo, 1993; Vincent and Meneguzzi, 1994]

an in-depth analysis of creation and dynamics of vortex tubes in 3D turbulent
incompressible flows was presented in [Constantin, Procaccia and Segel, 1995];
see also

[Galanti, Gibbon and Heritage, 1997; Gibbon, Fokas and Doering, 1999; Ohkitani,
2009; Hou, 2009]
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there are two imminent signatures of the filamentary geometry

(i) local coherence of the vorticity direction

(ii) local existence of a sparse/thin direction
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geometric depletion of the nonlinearity

rigorous study of the anisotropic dissipation induced by local coherence of the vorticity
direction was pioneered by Constantin [Constantin, 1994]

based on a singular integral representation for the stretching factor in evolution of the
vorticity magnitude featuring a geometric kernel depleted by local coherence of the
vorticity direction

this was utilized in [Constantin and Fefferman, 1993] to show that as long as

| sinϕ
(
ξ(x, t), ξ(y, t)

)
| ≤ L|x− y| holds in the regions of intense vorticity, no

finite-time blow up can occur; ξ = ω
|ω|

and later in [Beirao da Veiga and Berselli, 2002] where the Lipschitz condition was
replaced by 1

2
-Hölder
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localized vortex-stretching term can be written [G., 2009] as

(ω · ∇)u · φω (x) = φ
1
2 (x)

∂

∂xi
uj(x)φ

1
2 (x)ωi(x)ωj(x)

= −c P.V.
∫
B(x0,2r)

εjkl
∂2

∂xi∂yk

1

|x− y|
φ

1
2 ωl dy φ

1
2 (x)ωi(x)ωj(x) + LOT

= VST + LOT (1)

geometric cancelations in the highest order-term V ST were utilized in [G., 2009] to
obtain a spatiotemporal localization of 1

2
-Hölder coherence of the vorticity direction

regularity criterion
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and later in [G. and Guberović, 2010] to introduce a family of scaling-invariant
regularity classes featuring a balance between coherence of the vorticity direction and
the vorticity magnitude

the following regularity class – a scaling-invariant improvement of 1
2

-Hölder coherence
– is included, ∫ t0

t0−(2R)2

∫
B(x0,2R)

|ω(x, t)|2 ρ21
2
,2R

(x, t)dx dt <∞; (2)

ργ,r(x, t) = sup
y∈B(x,r),y 6=x

| sinϕ
(
ξ(x, t), ξ(y, t)

)
|

|x− y|γ

a corresponding a priori bound had been previously obtained in [Constantin, 1990],∫ T

0

∫
R3
|ω(x, t)||∇ξ(x, t)|2 dx dt ≤

1

2

∫
R3
|u0(x)|2 dx

(see also [Constantin, Procaccia and Segel, 1995].)
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the studies of the coherence of the vorticity direction up to the boundary-regularity
criteria (for slip boundary conditions) were presented in [Beirao da Veiga and Berselli,
2002] and [Beirao da Veiga, 2013]

* *

assuming the type I blow-up (at most scaling-invariant blow-up rate),

|u(x, t)| ≤
C

(T − t)
1
2

,

Giga and Miura [2011] showed that if the vorticity direction possesses a uniform
modulus of continuity, no singularity can form at t = T

(cf. [Giga, Hsu and Maekawa, 2014], for the case of the half-space)
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* * *

essentially, the unhappy scenario is ‘crossing of the vortex lines’ – the vorticity
direction becomes discontinuous (in some sense) – as we approach the singularity

[Holm and Kerr, 2002]
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local anisotropic diffusion and vortex stretching

Definition

Let x0 be a point in R3, r > 0, S an open subset of R3 and δ in (0, 1).

The set S is linearly δ-sparse around x0 at scale r in weak sense if there exists a unit
vector d in S2 such that

|S ∩ (x0 − rd, x0 + rd)|
2r

≤ δ.

denote by Ωt(M) the vorticity super-level set at time t; more precisely,

Ωt(M) = {x ∈ R3 : |ω(x, t)| > M}

then the following holds [G., Nonlinearity 2013]
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Theorem (local anisotropic diffusion)

Suppose that a solution u is regular on an interval (0, T ∗).

Assume that either

(i) there exists t in (0, T ∗) such that t+
1

d20‖ω(t)‖∞
≥ T ∗, or

(ii) t+
1

d20‖ω(t)‖∞
< T ∗ for all t in (0, T ∗), and there exists ε in (0, T ∗) such that

for any t in (T ∗ − ε, T ∗), there exists s = s(t) in
[
t+ 1

4d20‖ω(t)‖∞
, t+ 1

d20‖ω(t)‖∞

]
with the property that for any spatial point x0, there exists a scale r = r(x0),
0 < r ≤ 1

2d20‖ω(t)‖
1
2∞

, such that the super-level set Ωs(M) is linearly δ-sparse around

x0 at scale r in weak sense; here, δ = δ(x0) is an arbitrary value in (0, 1),

h = h(δ) = 2
π

arcsin 1−δ2
1+δ2

, α = α(δ) ≥ 1−h
h

, and M = M(δ) = 1
dα0
‖ω(t)‖∞.

Then, there exists γ > 0 such that ω is in L∞
(

(T ∗ − ε, T ∗ + γ);L∞
)

, i.e., T ∗ is not

a singular time. (d0 is a suitable absolute constant.)
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a remark

it suffices to assume the sparseness condition at (suitably chosen) finitely many times
/ intermittently in time

main ingredients in the proof

(i) a local-in-time lower bound on the radius of spatial analyticity in L∞

(ii) translational and rotational symmetries

(iii) a consequence of the general harmonic measure majorization principle:

let D be open and K closed in C, f analytic in D \K, |f | ≤M , and |f | ≤ m on K.

then
|f(z)| ≤ mθM1−θ

for any z in D \K, where θ = h(z,D,K) is the harmonic measure of K with respect
to D evaluated at z

(iv) a result on extremal properties of the harmonic measure in the unit disk D
[Solynin, 1999]
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consider a flow near the first (possible) singular time T ∗, and define the region of
intense vorticity at time s(t) < T ∗ to be the region in which the vorticity magnitude
exceeds a fraction of ‖ω(t)‖∞; this corresponds to the set

Ωs(t)

( 1

c1
‖ω(t)‖∞

)
,

for some c1 > 1

denote a suitable macro scale associated with the flow by R0; the picture painted by
numerical simulations indicates that the region of intense vorticity comprises – in
statistically significant sense – of vortex filaments with the lengths comparable to R0

let us for a moment accept this as a plausible geometric blow up scenario; the length
scale associated with the diameters of the cross-sections can then be estimated
indirectly, by estimating the rate of the decrease of the total volume of the region of

intense vorticity Ωs(t)

( 1

c1
‖ω(t)‖∞

)
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taking the initial vorticity to be a bounded measure, Constantin [1990] showed that
the L1-norm of the vorticity is a priori bounded over any finite time-interval; a desired
estimate on the total volume of the region of intense vorticity follows simply from
Tchebyshev inequality,

Vol

(
Ωs(t)

( 1

c1
‖ω(t)‖∞

))
≤

c02
‖ω(t)‖∞

(c02 > 1)

this implies the decrease of the diameters of the cross-section of at least
c03

‖ω(t)‖
1
2∞

(c03 > 1), which is exactly the scale of local one-dimensional sparseness of the region
of intense vorticity [the scale of local anisotropic diffusion] needed to prevent the
formation of singularities presented in the previous theorem

in other words, the NSE problem in this scenario becomes critical
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it is instructive to check the scaling in the geometrically worst case scenario, no
sparseness – the super level set being clumped in a ball

in this case, the criticality requires

λω(t)(β) = O

(
1

β3/2

)
uniformly in (T ∗ − ε, T ∗); here, λ denotes the distribution function

this is a scaling-invariant condition – back to super-criticality

O

(
1

β3/2

)
vs. O

(
1

β1

)

−→ the vortex stretching in this scenario acts as the mechanism bridging (literally)
the scaling gap in the regularity problem
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back to the vortex-stretching term Sω · ω (S is the symmetric part of ∇u)

one way to identify the range of (axial) scales at which the dynamics of creation and
persistence of vortex filaments takes place is to identify the range of scales of
positivity of Sω · ω

exploit a new spatial multi-scale averaging method designed to detect sign fluctuations
of a quantity of interest across physical scales

introduced in the study of turbulent transport rates in 3D incompressible fluid flows:

[Dascaliuc and G., Comm. Math. Phys. 2011, 2012, 2013; C. R. Math. Acad. Sci.
Paris 2012]

Zoran Grujić Vortex stretching and local anisotropic diffusion in the 3D NSE



back to the vortex-stretching term Sω · ω (S is the symmetric part of ∇u)

one way to identify the range of (axial) scales at which the dynamics of creation and
persistence of vortex filaments takes place is to identify the range of scales of
positivity of Sω · ω

exploit a new spatial multi-scale averaging method designed to detect sign fluctuations
of a quantity of interest across physical scales

introduced in the study of turbulent transport rates in 3D incompressible fluid flows:

[Dascaliuc and G., Comm. Math. Phys. 2011, 2012, 2013; C. R. Math. Acad. Sci.
Paris 2012]
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let B(0, R0) be a macro-scale domain

a physical scale R, 0 < R ≤ R0, is realized via suitable ensemble averaging of the
localized quantities with respect to ‘(K1,K2)-covers at scale R’

let K1 and K2 be two positive integers, and 0 < R ≤ R0; a cover {B(xi, R)}ni=1 of
B(0, R0) is a (K1,K2)-cover at scale R if(

R0

R

)3

≤ n ≤ K1

(
R0

R

)3

,

and any point x in B(0, R0) is covered by at most K2 balls B(xi, 2R)

the parameters K1 and K2 represent the maximal global and local multiplicities,
respectively
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for a physical density of interest f , consider – localized to the cover elements B(xi, R)

(per unit mass) – local quantities f̂xi,R,

f̂xi,R =
1

R3

∫
B(xi,2R)

f(x)ψδxi,R(x) dx

for some 0 < δ ≤ 1

denote by 〈F 〉R the ensemble average given by

〈F 〉R =
1

n

n∑
i=1

f̂xi,R

. . .
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the key feature of {〈F 〉R}0<R≤R0
is that 〈F 〉R being stable – i.e., nearly-independent

on a particular choice of the cover (with the fixed local multiplicity K2) – indicates
there are no significant sign fluctuations at scales comparable or greater than R

on the other hand, if f does exhibit significant sign fluctuations at scales comparable
or greater than R, suitable rearrangements of the cover elements up to the maximal
multiplicity – emphasizing first the positive and then the negative parts of f – will
result in 〈F 〉R experiencing a wide range of values, from positive through zero to
negative, respectively (the larger K2, the finer detection..)
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for a non-negative density f , the ensemble averages are all comparable to each other
throughout the full range of scales, 0 < R ≤ R0; in particular, they are all comparable
to the simple average over the macro scale domain

1

K1
F0 ≤ 〈F 〉R ≤ K2F0 (3)

for all 0 < R ≤ R0, where

F0 =
1

R3
0

∫
f(x)ψδ0(x) dx
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denote the time-averaged localized vortex-stretching terms per unit mass associated to
the cover element B(xi, R) by V STxi,R,t,

V STxi,R,t =
1

t

∫ t

0

1

R3

∫
(ω · ∇)u · ω φi dx ds (4)

the quantity of interest is the ensemble average of {V STxi,R,t}ni=1,

〈V ST 〉R,t =
1

n

n∑
i=1

V STxi,R,t (5)
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B(xi, R)-localized enstrophy level dynamics is as folows

∫ t

0

∫
(ω · ∇)u · φi ω dx ds =

∫
1

2
|ω(x, t)|2ψi(x) dx+

∫ t

0

∫
|∇ω|2φi dx ds

−
∫ t

0

∫
1

2
|ω|2

(
(φi)s +4φi

)
dx ds

−
∫ t

0

∫
1

2
|ω|2(u · ∇φi) dx ds, (6)

for any t in (2T/3, T ), and 1 ≤ i ≤ n
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denote by E0,t time-averaged enstrophy per unit mass associated with the macro scale
domain B(0, 2R0)× (0, t),

E0,t =
1

t

∫ t

0

1

R3
0

∫
1

2
|ω|2φ1/20 dx ds,

by P0,t a modified time-averaged palinstrophy per unit mass,

P0,t =
1

t

∫ t

0

1

R3
0

∫
|∇ω|2φ0 dx ds+

1

t

1

R3
0

∫
1

2
|ω(x, t)|2ψ0(x) dx

(the modification is due to the shape of the temporal cut-off η),

and by σ0,t a corresponding Kraichnan-type scale,

σ0,t =

(
E0,t

P0,t

) 1
2

Zoran Grujić Vortex stretching and local anisotropic diffusion in the 3D NSE



denote by E0,t time-averaged enstrophy per unit mass associated with the macro scale
domain B(0, 2R0)× (0, t),

E0,t =
1

t

∫ t

0

1

R3
0

∫
1

2
|ω|2φ1/20 dx ds,

by P0,t a modified time-averaged palinstrophy per unit mass,

P0,t =
1

t

∫ t

0

1

R3
0

∫
|∇ω|2φ0 dx ds+

1

t

1

R3
0

∫
1

2
|ω(x, t)|2ψ0(x) dx

(the modification is due to the shape of the temporal cut-off η),

and by σ0,t a corresponding Kraichnan-type scale,

σ0,t =

(
E0,t

P0,t

) 1
2
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then the following holds [Dascaliuc and G., J. Math. Phys. 2012]

Theorem (vortex stretching/Taylor vs. v. Karman)

Let u be a global-in-time local Leray solution on R3 × (0,∞), regular on (0, T ).
Suppose that, for some t ∈ (2T/3, T ),

C max{M
1
2
0 , R

1
2
0 }σ

1
2
0,t < R0 (7)

where M0 = sup
t

∫
B(0,2R0)

|u|2 <∞, and C > 1 a suitable constant depending only

on the cover parameters.
Then,

1

C
P0,t ≤ 〈V ST 〉R,t ≤ C P0,t (8)

for all R satisfying

C max{M
1
2
0 , R

1
2
0 }σ

1
2
0,t ≤ R ≤ R0. (9)
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a couple of remarks

(i) suppose that T is the first (possible) singular time, and that the macro scale
domain contains some of the spatial singularities (at time T ); this, paired with the
assumption that u is a global-in-time local Leray solution implies

σ0,t → 0, t→ T−

hence, the condition (7) in the theorem is automatically satisfied for any t near the
singular time T

(ii) P0,t →∞, t→ T− −→ the vortex stretching intensifies as we approach the
singularity

(iii) the power of 1
2

on σ0,t is a correction originating in the localized transport term
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any hope for breaking the criticality in this setting?

one can try to get a bit of extra decay on the distribution function of the vorticity

2 different (and somewhat complementary) results

[Bradshaw and G., J. Math. Fluid Mech. 2013]

[Bradshaw and G., Indiana Univ. Math. J. 2014]

the idea is to try to get a uniform-in-time estimate on∫
ψwk logwk dx or

∫
ψw logw dx(

wk =
√

1 + ω2
k, w =

√
1 + |ω|2

)
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the idea is to try to get a uniform-in-time estimate on∫
ψwk logwk dx or

∫
ψw logw dx(

wk =
√

1 + ω2
k, w =

√
1 + |ω|2

)
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[Bradshaw and G., Indiana Univ. Math. J. 2014] (vectorial approach)

the maximal function of a distribution f is defined as

Mhf(x) = sup
t>0
|f ∗ ht(x)|

where h is a fixed, normalized test function supported in the unit ball, and ht denotes
t−nh(·/t)

a distribution f is in the Hardy space H1 if ‖f‖H1 = ‖Mhf‖1 <∞

the local maximal function is defined as,

mhf(x) = sup
0<t<1

|f ∗ ht(x)|, x ∈ Rn,

a distribution f is in the local Hardy space h1 if ‖f‖h1 = ‖mhf‖1 <∞
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Div-Curl Lemma (Coifman, Lions, Meyer, Semmes)

suppose that E and B are L2-vector fields satisfying divE = curlB = 0 (in the sense
of distributions). then,

‖E ·B‖H1 ≤ c(n) ‖E‖L2‖B‖L2

the classical space of bounded mean oscillations, BMO is defined as follows

BMO =

{
f ∈ L1

loc : sup
x∈Rn,r>0

Ω
(
f, I(x, r)

)
<∞

}

where Ω
(
f, I(x, r)

)
=

1

|I(x, r)|

∫
I(x,r)

|f(x)− fI | dx is the mean oscillation of the

function f with respect to its mean fI = 1
|I(x,r)|

∫
I(x,r) f(x) dx, over the cube I(x, r)

centered at x with the side-length r
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a local version of BMO, usually denoted by bmo, is defined by finiteness of the
following expression,

‖f‖bmo = sup
x∈Rn,0<r<δ

Ω
(
f, I(x, r)

)
+ sup
x∈Rn,r≥δ

1

|I(x, r)|

∫
I(x,r)

|f(y)| dy,

for some positive δ

if f ∈ L1, we can focus on small scales, e.g., 0 < r < 1
2

. let φ be a positive,

non-decreasing function on (0, 1
2

), and consider the following version of local weighted
spaces of bounded mean oscillations,

‖f‖
b̃moφ

= ‖f‖L1 + sup
x∈Rn,0<r< 1

2

Ω
(
f, I(x, r)

)
φ(r)

of special interest will be the spaces b̃mo = b̃mo1, and b̃mo 1
| log r|

Zoran Grujić Vortex stretching and local anisotropic diffusion in the 3D NSE



a local version of BMO, usually denoted by bmo, is defined by finiteness of the
following expression,

‖f‖bmo = sup
x∈Rn,0<r<δ

Ω
(
f, I(x, r)

)
+ sup
x∈Rn,r≥δ

1

|I(x, r)|

∫
I(x,r)

|f(y)| dy,

for some positive δ

if f ∈ L1, we can focus on small scales, e.g., 0 < r < 1
2

. let φ be a positive,

non-decreasing function on (0, 1
2

), and consider the following version of local weighted
spaces of bounded mean oscillations,

‖f‖
b̃moφ

= ‖f‖L1 + sup
x∈Rn,0<r< 1

2

Ω
(
f, I(x, r)

)
φ(r)

of special interest will be the spaces b̃mo = b̃mo1, and b̃mo 1
| log r|
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(
H1
)∗

= BMO and
(
h1
)∗

= bmo; the duality is realized via integration of one object
against the other

a sharp pointwise multiplier theorem.

let h be in b̃mo, and g in L∞ ∩ b̃mo 1
| log r|

. then

‖g h‖
b̃mo
≤ c(n)

(
‖g‖∞ + ‖g‖

b̃mo 1
| log r|

)
‖h‖

b̃mo

more precisely, the space of pointwise b̃mo multipliers coincides with L∞ ∩ b̃mo 1
| log r|
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let M denote the Hardy-Littlewood maximal operator

Coifman and Rochberg

‖ logMf‖BMO ≤ c(n)

for any locally integrable function f (the bound is completely independent of f .)

this estimate remains valid if we replace Mf with Mf =
(
M
√
|f |
)2

. the advantage
of working with M is that the L2-maximal theorem implies the following estimate

‖Mf‖1 ≤ c(n)‖f‖1

(a bound that does not hold for the original maximal operator M .)
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for any τ in [0, T ),

I(τ) ≡
∫
ψ(x)w(x, τ) logw(x, τ) dx ≤ I(0) + c

∫ τ

0

∫
x
ω · ∇u · ψ ξ logw dx dt

+ a priori bounded

in order to take the advantage of the Coifman-Rochberg’s estimate, we decompose
the logarithmic factor as

logw = log
w

Mw
+ logMw
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denoting

∫ τ

0

∫
x
ω · ∇u · ψ ξ logw dx dt by J , this yields J = J1 + J2 where

J1 =

∫ τ

0

∫
x
ω · ∇u · ψ ξ log

w

Mw
dx dt

and

J2 =

∫ τ

0

∫
x
ω · ∇u · ψ ξ logMw dx dt
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for J1, we use the pointwise inequality

w log
w

Mw
≤Mw − w

(a consequence of the pointwise inequality Mf ≥ f , and the inequality ex−1 ≥ x for
x ≥ 1)

this leads to

J1 ≤
∫ τ

0

∫
x
|∇u|

(
Mw − w

)
ψ dx dt

which is a priori bounded by the Cauchy-Schwarz and the L2-maximal theorem
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for J2, we have the following string of inequalities

J2 ≤ c
∫ τ

0
‖ω · ∇u‖h1‖ψ ξ logMw‖bmo dt

≤ c
∫ τ

0
‖ω · ∇u‖H1‖ψ ξ logMw‖

b̃mo
dt

≤ c
∫ τ

0
‖ω‖2‖∇u‖2

(
‖ψ ξ‖∞ + ‖ψ ξ‖

b̃mo 1
| log r|

)(
‖ logMw‖BMO + ‖ logMw‖1

)
dt

≤ c sup
t∈(0,T )

{(
1 + ‖ψ ξ‖

b̃mo 1
| log r|

)(
‖ logMw‖BMO + ‖ logMw‖1

)} ∫
t

∫
x
|∇u|2

≤ c
(

1 + sup
t∈(0,T )

‖ψ ξ‖
b̃mo 1

| log r|

) (
1 + sup

t∈(0,T )
‖ω‖1

) ∫
t

∫
x
|∇u|2

by h1 − bmo duality, the Div-Curl Lemma, the pointwise b̃mo-multiplier theorem, the
Coifman-Rochberg’s estimate, and the L1-bound on the modified maximal operator
M
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this implies the following result [Bradshaw and G., Indiana Univ. Math. J. 2014]

Theorem (breaking the criticality/the log-log-chaos sphere)

Let u be a Leray solution to the 3D NSE. Assume that the initial vorticity ω0 is in
L1 ∩ L2, and that T > 0 is the first (possible) blow-up time. Suppose that

sup
t∈(0,T )

‖(ψξ)(·, t)‖
b̃mo 1

| log r|

<∞.

Then,

sup
t∈(0,T )

∫
ψ(x)w(x, t) logw(x, t) dx <∞.
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good news:

b̃moφ contains discontinuous functions if and only if

∫ 1
2

0

φ(r)

r
dr =∞

in particular, b̃mo 1
| log r|

contains bounded functions with the singularities of, say,

sin log | log( something algebraic )|-type

ξ can (as it approaches T ) oscillate among infinitely many points on the unit sphere –

ξ(singx, T ) ∼

– and still yield extra-log decay of the distribution function of ω

[in particular, ‘crossing of the vortex lines’ is not an obstruction]
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conclusion:

* for a physically, numerically and mathematical analysis-motivated scenario

∥∥ξ(·, T )
∥∥ <∞ =⇒ λω(t)(β) = O

(
1

β log β

)
=⇒ anisotropic diffusion wins
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