Martin ZIEGLER, Mar.13, IRTG1529, WASEDA

Computability and Complexity Theory of PDEs

Algorithmic Foundations of Numerics

Overview

- 1. Theory of Computing over countable, discrete sets
- 2. Theory of Computing over separable metric spaces
- 3. Un-/computability of PDEs
- 4. Complexity Theory of PDEs
- 5. Encodings of function spaces
- 6. Summary and Perspectives

Theory of Computing over countable, discrete sets

Computability & Complexity of PDEs

Input: finite bit string / encoded integer, graph...; Output: 0/1 Runtime asymptotic growth w.r.t. binary input length $n \rightarrow \infty$

Computability & Complexity of PDEs

Input: finite bit string / encoded integer, graph...; Output: 0/1 Runtime asymptotic growth w.r.t. binary input length $n \rightarrow \infty$

Theory of Computing over separable metric spaces X,Y

Computability & Complexity of PDEs

Input: finite bit string / encoded integer, graph...; Output: 0/1 Runtime asymptotic growth w.r.t. binary input length $n \rightarrow \infty$

Definition: a) **Input:** <u>infinite</u> bit string for <u>compact</u> X encoding some $x \in X$ by a sequence of approximations

- b) Output: <u>infinite</u> bit string encoding $y=f(x) \in Y$ by a sequence of approximations
- c) **Runtime** asymptotically w.r.t. binary output length $n \rightarrow \infty$

Theory of Computing over separable metric spaces

⇔ Halting problem

Fact: • (i)–(iv) computably equivalent; stricly stronger than v)

- Algorithm can convert (ii) ↔ (iii) ↔ (iv);
 but not → (i)
- Conversion runtime (ii) \leftrightarrow (iii) is polynomial, (iv) \rightarrow (ii) not
- +, ×, exp, ln, ... computable in polynom. time w.r.t. (ii), (iii)
- i) sequence of binary coefficients $(b_n) \subseteq \{0,1\}$ s.t. $r = \sum_n b_n 2^{-n}$
- ii) sequence of signed bin. coefficients $(c_n) \subseteq \{-1,0,1\}$ s.t. $r = \sum_n c_n 2^{-n}$
- iii) sequence of dyadic approximations $(a_n) \subseteq \mathbb{Z}$ s.t. $|r-a_n/2^n| \le 2^{-n}$
- iv) unbounded sequences (a_n) , (b_n) , $(c_n) \subseteq \mathbb{Z}$ s.t. $|r-a_n/b_n| \le 1/c_n$
- v) sequence $(a_n)\subseteq \mathbb{Z}$ s.t. $a_n/2^n \to r$ as $n\to\infty$.

Definition: a) Input: infinite bit string

encoding some $x \in X$ by a sequence of approximations

- b) Output: <u>infinite</u> bit string
 - **encoding** $y=f(x) \in Y$ by a sequence of approximations
- c) Runtime asymptotically w.r.t. binary output length $n \rightarrow \infty$

Theory of <u>Encodings</u> of separable metric spaces

Computability & Complexity of PDEs

Fact: • (i)–(iv) computably equivalent;

- Algorithm can convert (ii) ↔ (iii) ↔ (iv);
- Conversion runtime (ii) ↔ (iii) is polynomial,
- +, ×, exp, ln, ... computable in polynom. time w.r.t. (ii), (iii)

Research programme: Take a space X with operations f,g,...

- Devise 'reasonable' encodings of X over infinite binar.strings
- that render given operations f,g,... (polyn.time) computable.
- Compare&classify encodings w.r.t. computable equivalence, w.r.t. computable conversion, polynomial-time convertability

Examples: a) \mathbb{R} with +, ×, exp, ln, lim, < w.r.t. computability

- b) Finite/countable Cartesian products, quotients, unions, ...
- c) Compact Euclidean sets d) space C(X,Y) of cont. func.s
- e) Analytic functions f) Gevrey's Hierarchy [Kawamura, Z, ...]

& Complexity of PDEs

Springer-Verlag

Computability of PDEs

- Weierstrass function \rightarrow [Myhill'71] computable $h \in \mathbb{C}^1(\mathbb{R})$ with uncomputable derivative h'(1) and $h \equiv 0$ on $[0, \frac{1}{2}]$
- [Pour-El&Richards'81] 3D wave equation with initial condition $f(\underline{x}) := h(|\underline{x}|), g(\underline{x}) :\equiv 0 \rightarrow \mathbf{un}$ computable $u(1,\underline{0})$
- $\pi(V) = \ln rau che^{2\pi i h(t)} = \ln H^{s}(\mathbb{R}^{3})$
- [Weihrauch&Zhong'05] solution to KdV is congular to KdV.
- [Weihrauch&Zhong'06] Schrödinger's equation of the Analysis and Physics
- [Weihrauch&Zhong'07] abstract Cauchy problem
- [Sun&Zhong&Z.'15] L²-computability of Navier-Stokes

Church-Turing Hypothesis (Kleene):

Anything 'computed' by a physical device $\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial x^2} = \frac{\partial^2$

Computability & Complexity

Friedman&Ko'82ff

Fix polyn.time computable (\Rightarrow continuous) $f:[0;1] \rightarrow [0;1]$

- Max: $f \to \text{Max}(f)$: $x \to \text{max}\{f(t): t \le x\}$ Max(f) computable in exponent. time; polyn.time-computable iff $P=\mathcal{N}P$
 - even when restricting to $f \in C^{\infty}$
- $\int: f \to \int f: (x \to \int_0^x f(t) dt)$ $\int f$ computable in exponential time; polynom-time computable iff P=#P

polytime if f is analytic

• odesolve: $C^1([0;1]\times[-1;1])\ni f \to z: \dot{z}(t)=f(t,z), z(0)=0.$ *PSPACE*-"complete"

[Kawamura,Ota,Rösnick,**Z.**'14]

 Solution to Poisson's Equation is classical and $\#\mathcal{P}$ -"complete"

 $\Delta u = f$ on $B_2(\mathbf{0}, 1)$ u = 0 on $\partial B_2(0,1)$

[Kawamura, Steinberg, Z.'13]

 $P \subset \mathcal{N}P \subset \#P \subset PSPACE \subset ES$

'Max is \mathcal{NP} -hard'

 $\mathcal{NP} \ni L = \{ M \subseteq \mathbb{N} \mid \exists M < N : \in \mathcal{P}, M \Rightarrow \in \mathcal{V} \not \ni o \not \vdash \text{ teim } \mathcal{P} \}$

To every $L \in \mathcal{NP}$ there exists a polytime computable C^{∞} function $g_L:[0,1] \to \mathbb{R}$ s.t.: $[0,1] \ni t \to \max g_L|_{[0,t]}$ again polytime iff $L \in \mathcal{P}$

Uniform Complexity of Operators Computability & Complexity Encoding Function Spaces of PDEs

■ There is no encoding of the (compact) set $\operatorname{Lip}_1([0;1],[0;1])$ rendering application $(f,x) \rightarrow f(x)$ polynomial-time computable:

■Because $\operatorname{Lip}_1([0;1],[0;1])$ has too large a *metric entropy* for sequential access to f: $f \in C[0;1]$ encoding over strings 01101011... $x \in [0;1]$

• Give <u>oracle</u> access to f, 10010111... cmp. *Information-Based Complexity*

Apply: $y=f(x) \in Y$ 0100011...

Research programme: Take a space X with operations f,g,...

- Devise 'reasonable' encodings of X over infinite binar.strings
- that render given operations f,g,... (polyn.time) computable
- Compare&classify encodings w.r.t. computable equivalence, w.r.t convertibility, w.r.t. polynomial-time convertability

Uniform Complexity of Operators Computability & Complexity Encoding Function Spaces of PDEs

- There is no encoding of the (compact) set $\operatorname{Lip}_1([0;1],[0;1])$ rendering application $(f,x) \rightarrow f(x)$ polynomial-time computable:
- ■Because $\operatorname{Lip}_1([0;1],[0;1])$ has too large a *metric entropy* for <u>sequential</u> access to f: encoding over strings $x \in [0;1]$
- Give <u>oracle</u> access to f, $100101\overline{11}$... cmp. *Information-Based Complexity*
- [Kawamura&Cook'10]: A 2nd-order representation is an encoding over graded Baire space of binary string functions

 $y=f(x)\in Y$

0100011...

- C[0;1] is not (even σ -)compact, no runtime bounds in n only:
- [Kawamura&Cook'10]: 2nd-order polynomial time on C[0;1]: bounded by a polynomial in *n* and a modulus of continuity of *f*

Summary and Perspectives

- Rigorous algorithmic foundation of numerical calculations:
- Systematic study of encodings of separable metric spaces
- comparison/classification w.r.t. (polyn.-time) computability
- Purportedly "easy" computational problems over the reals actually correspond to known algorithmically hard ones: Millennium Prize \mathcal{P}/\mathcal{NP} or even undecidable Halting problem.
- Previous results on computability of solutions to PDEs
- to refine from the perspective of computational complexity
- uniformly, i.e. with initial data "given" by encoding as oracle
- require non-classical function spaces for well-posedness
- Canonical encoding of L^p and Sobolev spaces?
- Counterpart to modulus of continuity as runtime parameter?