The initial-boundary value problems for scalar conservation laws with stochastic forcing

Dai Noboriguchi

Graduate School of Education, Waseda University, Japan

The 11th Japanese-German International Workshop on Mathematical Fluid Dynamics, March 13, 2015, Waseda University, Japan

Our problem

Scalar Conservation Laws with stochastic perturbation

(1)
$$\begin{cases} du + \operatorname{div}(A(u))dt = g(u)d\beta(t) & \text{in } (0, T) \times D \\ u(0, \cdot) = u_0(\cdot) & \text{on } D \\ u \cong u_b & \text{on } (0, T) \times \partial D \end{cases}$$

Here,

- T > 0 and $d \in \mathbb{N}$,
- $(\Omega, \mathscr{F}, \{\mathscr{F}_t\}_{t\geq 0}, \mathbb{P})$ is a probability space with a filtration,
- $D \subset \mathbb{R}^d$ is a bounded convex domain with a smooth boundary ∂D ,
- A (called Flux function) is a function from \mathbb{R} to \mathbb{R}^d ,
- g is a function from $\mathbb R$ to $\mathbb R$,
- β is a Brownian motion with respect to $\{\mathscr{F}_t\}_{t\geq 0}$.

(Determinisitc) Scalar Conservation Laws

(2)
$$\begin{cases} \partial_t u + \operatorname{div}(A(u)) = 0 & \text{in } (0, T) \times D \\ u(0, \cdot) = u_0(\cdot) & \text{on } D \\ u \cong u_b & \text{on } (0, T) \times \partial D \end{cases}$$

Problems:

Image: A match a ma

3 / 1

(Determinisitc) Scalar Conservation Laws

(2)
$$\begin{cases} \partial_t u + \operatorname{div}(A(u)) = 0 & \text{in } (0, T) \times D \\ u(0, \cdot) = u_0(\cdot) & \text{on } D \\ u \cong u_b & \text{on } (0, T) \times \partial D \end{cases}$$

Problems:

• We cannot get the existence of a strong solution and the uniqueness of weak solutions in general.

< 4 ∰ > <

3/1

(Determinisitc) Scalar Conservation Laws

(2)
$$\begin{cases} \partial_t u + \operatorname{div}(A(u)) = 0 & \text{in } (0, T) \times D \\ u(0, \cdot) = u_0(\cdot) & \text{on } D \\ u \cong u_b & \text{on } (0, T) \times \partial D \end{cases}$$

Problems:

- We cannot get the existence of a strong solution and the uniqueness of weak solutions in general.
- It is well known that a solution is constant along characteristic curves.

Entropy solution and Kinetic solution

Entropy solution

For all convex
$$S\in C^\infty(\mathbb{R})$$
 and $arphi\in C^\infty_c([0,\,\mathcal{T}) imes D)$ with $arphi\ge$ 0,

$$\int_0^T \int_D \left(S(u) \partial_t \varphi + \eta(u) \cdot \nabla \varphi \right) + \int_D S(u_0) \varphi + \int_0^T \int_{\partial D} S(u_b) \varphi \ge 0,$$

where $\eta(\xi) := S'(\xi)a(\xi)$, a := A'.

Kinetic solution

 $\exists m \in \mathcal{M}^{b}_{+}([0, T) \times D \times \mathbb{R}), \ \exists \bar{m}_{\pm} \in L^{1}_{loc}((0, T) \times \partial D \times \mathbb{R}): \text{nonnegative} \\ \text{s.t.} \ \forall \varphi \in C^{\infty}_{c}([0, T) \times \overline{D} \times \mathbb{R}),$

$$\int_{0}^{T} \int_{D} \int_{\mathbb{R}} f_{\pm}(\partial_{t} + a(\xi) \cdot \nabla)\varphi + \int_{D} \int_{\mathbb{R}} f_{\pm}^{0}\varphi + M \int_{0}^{T} \int_{\partial D} \int_{\mathbb{R}} f_{\pm}^{b}\varphi$$
$$= \int_{[0,T) \times D \times \mathbb{R}} \partial_{\xi}\varphi \ dm + \int_{[0,T) \times \partial D \times \mathbb{R}} \partial_{\xi}\varphi \ d\bar{m}_{\pm}.$$

where M is constant depending on flux A, $f_+ = \mathbf{1}_{u > \xi}$ and $f_- = 1 - f_+$.

Bardos, Le Roux, Nédélec (1979)

• They proved that if the initial datum u_0 is BV(D) and the boundary datum is C^2 -regular, there exists a unique entropy solution.

Otto (1996)

• In the case of L^{∞} data, he proved the existence and the uniqueness of entropy solution.

Imbert, Vovelle (2004)

• In the case of L^{∞} data, they proved the equivalence between entropy solutions and kinetic solutions.

・ロト ・ 同ト ・ ヨト ・ ヨト

Known results (stochastic case)

Debussche, Vovelle (2010)

• They proved that there exists a unique kinetic solution on periodic domain.

Bauzet, Vallet, Wittobold (2013)

• Under the assumption that the flux function A is globally Lipschitz continuous, they proved that there exists a unique entropy solution with 0-Dirichlet boundary condition.

Stochastic inviscid Burgers' equation

$$du + \partial_x \left(\frac{u^2}{2}\right) dt = g(x, u) d\beta(t)$$

Crucial difference between deterministic case and stochastic case

In the deterministic case, we can get L^{∞} a priori estimate:

 $||u(t)||_{L^{\infty}} \leq C.$

But in the stochastic case, we can only get L^p a priori estimate:

 $||u(t)||_{L^p} \leq C_p.$

- Can we prove the uniqueness and the existence of stochastic kinetic solution in the case of bounded domains?
- Can we relax the assumption of global Lipschitz continuity of the flux function *A*?

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Scalar Conservation Laws with stochastic perturbation

(1)
$$\begin{cases} du + \operatorname{div}(A(u))dt = g(u)d\beta(t) & \text{in } (0, T) \times D \\ u(0, \cdot) = u_0(\cdot) & \text{on } D \\ u \cong u_b & \text{on } (0, T) \times \partial D \end{cases}$$

- The flux function A is of class C²(R : R^d) and its derivatives have at most polynomial growth.
- **2** The function $g : \mathbb{R} \to \mathbb{R}$ is Lipschitz continuous.
- $u_0 \in L^{\infty}(D)$ and $u_b \in L^{\infty}((0, T) \times \partial D)$.

Definition(kinetic solution)

A measurable function $u: \Omega \times (0, T) \times D \to \mathbb{R}$ is called a kinetic solution to (1) if

$$\begin{aligned} \exists m \in \mathcal{M}^{b}_{+}([0, T) \times D \times (-N, N)), \\ \exists \bar{m}_{\pm} \in L^{1}_{loc}((0, T) \times \partial D \times (-N, N)) : \text{ nonnegative} \\ \text{s.t. } \forall \varphi \in C^{\infty}_{c}([0, T) \times \overline{D} \times (-N, N)), \end{aligned}$$

$$\int_{0}^{T} \int_{D} \int_{-N}^{N} f_{\pm}(\partial_{t} + \mathbf{a} \cdot \nabla)\varphi + \int_{D} \int_{-N}^{N} f_{\pm}^{0}\varphi(0) + M_{N} \int_{0}^{T} \int_{\partial D} \int_{-N}^{N} f_{\pm}^{b}\varphi$$
$$= -\int_{0}^{T} \int_{D} g(u)\varphi(t, x, u) \, dxd\beta(t) - \frac{1}{2} \int_{0}^{T} \int_{D} g^{2}(u) \,\partial_{\xi}\varphi(t, x, u) \, dxdt$$
$$+ \int_{[0, T) \times D \times (-N, N)} \partial_{\xi}\varphi \, dm + \int_{0}^{T} \int_{\partial D} \int_{-N}^{N} \partial_{\xi}\varphi \, d\bar{m}_{N}^{\pm} \qquad \text{a.s.},$$

 $M_N = \max_{|\xi| \le N} |a(\xi)|, \quad f_+ = \mathbf{1}_{u > \xi} \text{ and } f_- = f_+ - 1.$ where,

Theorem

We assume $A'' \in L^{\infty}(\mathbb{R})$. Then, there exists a unique kinetic solution to (1) with data (u_0, u_b) . Moreover, given data (u_0^1, u_b^1) and (u_0^2, u_b^2) , the L^1 -contruction property holds:

$$\mathbb{E}\left|\left|u^{1}(t)-u^{2}(t)\right|\right|_{L^{1}} \leq \mathbb{E}\left|\left|u^{1}_{0}-u^{2}_{0}\right|\right|_{L^{1}}+M\left|\left|u^{1}_{b}-u^{2}_{b}\right|\right|_{L^{1}},$$

where, *M* is a constant depending on $||u_{1,b}||_{L^{\infty}}$ and $||u_{2,b}||_{L^{\infty}}$.

Thank you for your attention!

Noboriguchi (Waseda Univ.) The I.V.P for SCL with stochastic forcing

3

(日) (周) (三) (三)